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Abstract:
In this paper, we propose a system for natural and intu‐
itive interaction with the robot. Its purpose is to allow a
personwith no specialized knowledge or training in robot
programming to program a robotic arm. We utilize data
from the RGB‐D camera to segment the scene and detect
objects. We also estimate the configuration of the opera‐
tor’s hand and the position of the visual marker to deter‐
mine the intentions of the operator and the actions of
the robot. To this end, we utilize trained neural networks
and operations on the input point clouds. Also, voice
commands are used to define or trigger the execution of
the motion. Finally, we performed a set of experiments to
show the properties of the proposed system.

Keywords: Human‐robot interface, Robot programming,
3D perception

1. Introduction

Cooperative robots are becoming increasingly
popular in modern industry, because they support the
production process. Once programmed, they perform
repetitive tasks for days or months. Reprogramming
a robot is a process that requires robotics expertise.
New methods of robot programming are constantly
being developed to enable operators to conveniently
program robots to perform complex tasks. This article
addresses theproblemof intuitive robotprogramming
using natural language. The proposed interface does
not rely on expensive devices for robot programming,
such as operator panels (teach pendants) or virtual
reality goggles. The main goal of the integrated sys‐
tem is to interpret the operator’s intentions based on
camera images and voice commands to program the
robot’s motions.

Convolutional Neural Networks (CNN) enable the
detection of objects in the scene and the interpretation
of context related to the robot operator’s intentions.
Tomake robot programmingmore ϐlexible and enable
fast and natural programming of movements, in this
article, we propose to use 3D perception and CNNs
to interpret the operator’s intentions. The goal of the
designed interface is to mimic human‐to‐human com‐
munication, which is based on words and gestures.
The operator uses his hands to point at an object to be
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Figure 1. Interaction of the operator with the robot
using gestures: pointing at the object by the operator
(a), grasping the object by the robot initiated by a voice
command (b), passing to hand order (c), transferring an
object to the operator’s hand (d)

grasped or asks the robot to pass an object to his hand
(Fig. 1) by giving an appropriate voice command.

2. Related Work
This article proposes to use various interfaces to

deϐine the robot’s expected motion. The recognized
user’s commands can cause scheduling or direct exe‐
cution of repetitive tasks like in [5, 11]. In this work,
we combined hand gesture recognition, voice com‐
mands, and scene understanding to implement a new
natural human‐robot interface for programming the
manipulator. Many human‐robot interfaces use mul‐
tiple channels of communication with the user. The
popular approach is connecting gestures with voice
commands as in [18]. Such a solution prevents many
faulty actions caused by the user’s mistakes in ges‐
tures or misunderstandings by a robot.

One of the most natural ways to interact with
a robot is through verbal communication. Xiaoling
et al. [17] present a system that controls a mobile
robot using voice commands. MFCCs (Mel Frequency
Cepstral Coefϐicients) are extracted as audio signal
features. Authors perform speech recognition based
on a pattern matching algorithm – Dynamic Time
Warping (DTW). A similar and common approach
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Figure 2. Architecture of the proposed robot programming system – a user can interact with the robot through voice
commands, hand gestures, and a pointer to indicate 3D positions and trigger desired actions

is the use of the Hidden Markov Model (HMM).
A common solution to the speech recognition prob‐
lem is to use off‐the‐shelf software for this purpose,
such as Microsoft or Google Speech API [18, 22], CMU
Sphinx [23], or wit.ai environment. For the correct
performance of the human‐robot interface, the voice
recognizer module has to convert speech to text, ϐind
a keyword in the command, connect itwith the speciϐic
action, and send an order to the robot. Voice com‐
mands greatly simplify the communication between
the operator and the robot [1].

Many human‐robot interfaces use vision as a
source of information for planning the robot’s motion.
Gesture recognition is an important function of many
user interfaces, as it is natural for people to com‐
plete a verbal message with a gesture. This method
enables the user to select an object in the scene or to
show the desired robot position. In [3], the authors
implemented an interface to control a dual‐arm robot.
They used a Leap Motion sensor and estimated the
position and orientation of the operator’s hands using
Kalman and particle ϐilters. The method presented
in [4] uses RGB‐D images to detect hand gestures
and track whole body parts, allowing the operator to
select objects on the ϐloorwith his arm.Manymethods
use neural networks to detect hand (or body) posi‐
tions and conϐigurations and classify gestures [8, 19,
20, 24]. The recognized gestures are then translated
into commands corresponding to the deϐined robot
motions. In [6, 7] human action prediction in human‐
object interactions is performed using a probabilistic
framework. Similar to our approach, RGB‐D images
are utilized.

The operator can use gestures to specify an object
for the robot to grasp. Other ways of selecting objects
utilize visual markers. A popular approach is based
on a laser pointer and detecting the laser spot in the
RGB image. This solution is often used in robotic arms
supporting partially paralyzed people [9]. A simple
detection process and fast selection of objects from a
long distance are the main advantages of using a laser
pointer. However, this method can be problematic for
detecting the laser spot on transparent or reϐlective
objects.

The human‐robot interface plays an important
role, but only the visual understanding of the scene
enables the robot to interact with the a priori
unknown and ever‐changing environment [1, 21].
Object recognition is another ϐield that gives robots
new advanced capabilities. Today’s state‐of‐the‐art
methods are based on Convolutional Neural Net‐
works. Examples include YOLO [2], SSD [16], andMask
R‐CNN [10]. Knowledge about the categories of the
objects on the scene often helps in grasp planning [14]
and enables selecting an object by name.

All robotic systems with user interfaces have to
meet the imposed requirements regarding the cor‐
rect understanding of commands, effectiveness, and
time to complete the requested tasks. HRI veriϐi‐
cation scenarios include the execution of tasks like
assembling [18] or objects grasping [4]. One of the
most common criteria of veriϐication metrics is a
task success rate and execution time [3]. For the
system based on voice commands [18] the authors
evaluated the time and accuracy of a voice command
understanding.

In this research, we used the latest advances in
machine learning for hand detection, object detec‐
tion, and grasping to achieve an efϐicient and intu‐
itive human‐robot interface. The presented results
are an extension of the approaches shown in pre‐
vious papers [11–13]. Compared to our previous
publications, this algorithm improves the pointer‐
less programming presented in [13] by enabling an
indication of the target with the ϐinger. Also, voice
command communication is developed to work in
two‐way asynchronous mode. In this work, we inte‐
grate vision‐based pointer [11] and gesture recogni‐
tion [13] approaches and perform extended experi‐
mental veriϐication of the resulting system.

Our contributionwith respect to state of the art can
be summarized as follows:
‐ intuitive robot programming interface based on nat‐
ural language,

‐ object selection method based on neural object
detector, scene segmentation, and hand gestures,

‐ a complete architecture of the user interface that
improves the robot‐human interaction process.
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Figure 3. Gestures recognized by the classifier: pointing
and outreached

3. Natural Human‐Robot Interaction System
This research was conducted using our mobile‐

manipulating platform Robot 4.0 [14]. During exper‐
iments, we do not use the lower part of the robot,
but only the Universal Robots UR5 robotic arm pre‐
sented in Figure 1. The robot is equippedwith an Intel
Realsense D435 camera mounted on its wrist, and
the Microsoft Kinect Xbox One mounted on its head
for 3D perception. For grasping, we use an industrial
two‐ϐingered OnRobot RG6 gripper. Because of force
feedback, using such grippers increase the success
rate of many grasp‐planning algorithms. The Robot
Operating System (ROS) coordinates the functionality
of all modules. The robotworkspace consists of a table
with various objects on its surface.

3.1. System Architecture

The architecture of the proposed system is pre‐
sented in Figure 2. The user communicates with the
robot through voice commands, gestures, and the
pointer. Hand, objects, and pointer detection are per‐
formed based on RGB‐D images. The scene segmen‐
tation module processes the point cloud from the
camera. After recognizing proper voice commands,
estimated hand conϐiguration and pointer position, as
well as the information about the objects on the scene,
determine the robot’s motion.

3.2. Voice Commands

The proposed human‐robot interface uses voice
commands to conϐirm intentions expressed by ges‐
tures or to command the robot directly. For this
purpose, the module that converts speech to text is
needed.We decided to use an off‐the‐shelf solution for
this purpose – the SpeechRecognition library and the
Google Speech Recognition module, which is easy to
integrate, highly effective, and has a choice of many
different languages. The beginning of the operator’s
speech is automatically detected (the module works
asynchronously), and the voice command is recorded
and sent to the recognizer server (Internet connection
is required). After successful speech processing, the
user can ensure that the recognized command is valid
since the text is converted back to audio format and
played.

The set of available commands and associated
actions are presented below. We deϐined each of them
in English and Polish with a few equivalent versions
which contain synonyms:

Figure 4. Example output from the object detector – an
image with labeled objects

1) grasp (+object name): the robot plans and exe‐
cutes the trajectory to grasp the selected object
and closes the gripper,

2) give to hand: the robot passes the grasped object
to the operator’s hand,

3) put down: the robot places the grasped object in
the indicated (or saved) position on the table,

4) go there: the robot arm (end effector) moves to
the position of the detected pointer or hand,

5)move home: the robot arm moves to the prede‐
ϐined “home” conϐiguration,

6)move place: the robot arm moves to the prede‐
ϐined “place” conϐiguration,

7) go to initial conϔiguration: the robot arm moves
to the initial conϐiguration,

8) look down/front: sets end effector pitch angle,
9) save initial conϔiguration: saves current robot

conϐiguration as initial,
10) save robot conϔiguration: saves current robot

conϐiguration as a waypoint,
11) save put down position: saves indicated posi‐

tion as a place position,
12) save trajectory: saves current waypoint list as a

trajectory,
13) start scanning: the robot starts scanning the

environment (the table and objects),
14) open/close the gripper: the robot’s gripper

opens or closes,
15) clear/execute program: the motion program is

cleared or executed,
16) play: enables robotic arm external control

program,
17) stop: stops the execution of current trajectory.

3.3. Hand Detection and Gestures Recognition

The hand detection in the RGB image is per‐
formed using the state‐of‐the‐art system for hand
detection and tracking – Mediapipe Hands [26]. The
output from this module is a set of 21 hand landmark
points consisting of 3 coordinates: x, y, and relative
depth. Obtained data, which informs us about the
hand pose (conϐiguration of hand and ϐingers), can
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a b

Figure 5. Example pointer detection on RGB image (a)
and point cloud with object bounding boxes where red
box refers to the selected object (b)

be divided into categories representing gestures. We
propose a method that recognizes gestures to allow
effective interaction between the user and the robot.
Two gestures shown in Figure 3, named pointing and
outreached, are deϐined. The set of 63 coordinates
obtained from the hand detector is used as a fea‐
ture vector for classiϐication. First, we collected the
training data set consisting of 9700 samples (5500
for class pointing and 4200 for the outreached class).
Fourdifferent classiϐierswere trainedand testedusing
the scikit‐learn library: Random Forest, Support Vec‐
tor Classiϐier, Ridge Classiϐier, and K‐Nearest Neigh‐
bors. The ϐinal system utilizes the K‐NN algorithm
that has 99% accuracy on the test dataset containing
2400 samples. The recognized gesture type deϐines
the robot’s behavior. If the predicted class is point-
ing, the program searches for the selected object and
estimates the indicated point on the table. Conversely,
when the result of the classiϐier is an outreached ges‐
ture, a target position for the gripper to pass an object
is deϐined on the hand surface.
3.4. Pointer Detection

The main task of the pointer detection module is
to ϐind a pointer in the RGB image and estimate its
position in 3D space. Later, the obtained 3D coordi‐
nates are used todeϐine the target position of the robot
end effector, select an object for grasping, or deϐine
the place on the table to put the gripped object down.
First, the algorithm ϐinds a pointer in the HSV image
based on color and shape. Then, a mask is created,
which extracts image pixels ϐitting deϐined ranges of
HSV values corresponding to the color of the pointer.
The resulting image is converted to grayscale, thresh‐
olded, and blurred using a Gaussian ϐilter. We use the
Hough transform to ϐind the circle whose center is
the position (𝑥𝑝𝑥 , 𝑦𝑝𝑥) of the pointer in the image, as
illustrated in Figure 5a. The pointer 3D position is
determined using the coordinates of the found circle
center, the depth value in the corresponding point in
the depth image, and camera intrinsics.
3.5. Object Detection

Our system allows the user to specify a target
object without using hands or a pointer. It is possi‐
ble by including the object name in the voice com‐
mand. To enable this feature, we implemented an

a b
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Figure 6. Stages of example scene segmentation
process: an input point cloud – from one view (a),
estimated table planar (b), point clouds of segmented
objects (c), oriented bounding boxes aligned with the
input point cloud (d)

object detection procedure using a Single Shot Detec‐
tor (SSD) based on the Inception V2 neural network
architecture [16]. The SSD was pre‐trained on the MS
COCO dataset [15]. To create a training dataset, we
compiled a set of 10 objects including a sumo ϐigurine,
a probe, a dispenser, and a sponge. We collected and
manually labeled 1500 images of these objects with
bounding boxes and object classes. An example result
of the neural network’s inference is shown in Figure 4.

3.6. Scene Segmentation

In the proposed system, the 3D perceptionmodule
performs scene segmentation by processing a point
cloud. The output from this module is a set of cuboids
that approximate detected objects. The found Ori‐
ented Bounding Boxes (OBB) represent the objects’
poses and are later used for grasp planning. In the
ϐirst stage of processing, we detect the table plane
using the RANSAC algorithm – by matching the equa‐
tion of the plane to the data in the point cloud. The
resulting plane (Fig. 6b) is removed from the input
data to extract points corresponding to the objects.
Since the data obtained from a single perspective does
not contain information about the complete three‐
dimensional shape of the object, we perform a scan‐
ning procedure to collect and assemblemultiple views
of the scene. Another solution used in the system is
a 3D reconstruction [25], which completes the object
point cloudbased on the predicted view from its oppo‐
site side.

The next step of processing is Euclidean seg‐
mentation (based on the Euclidean distance between
points) which ϐinds instances of objects in the com‐
plete point cloud (Fig. 6c). For each cluster represent‐
ing an object, the position is estimated by calculating
the centroid. ThenweperformOrientedBoundingBox
ϐitting to approximate each object. For this purpose,
the Principal Component Analysis (PCA) is utilized.
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Figure 7. Identification of the pointed object. The
smallest distance value 𝑑𝑖 is associated with the
selected object

It ϐinds the three directions of the object point cloud
with the highest variance, which determines the OBB
orientation. Example bounding boxes matched to the
objects’ point cloud are shown in Figure 6d.

3.7. Object Grasping

The grasp‐planning method utilizes information
about the obtained OBB. The centroid of the object
is used as a gripper target position. Orientation of
the end‐effector depends on the box dimensions
and alignment. If the height of the object’s OBB is
smaller than the width and length, the grip is per‐
formed vertically from the top. If the box height is the
largest dimension, the robot tries to grasp the object
horizontally from the side. The distance between the
end‐effector and the TCP depends on the gripper
opening, which we estimate based on the OBB dimen‐
sions. While closing the gripper on the object, force
feedback is used. The gripper stops the motion when
the reaction force exceeds the threshold value. This
strategy compensates for the inaccuracies of the per‐
ception system, stabilizes the grasp, and increases the
success rate of the grasping method.

3.8. Object Selection

In case of multiple objects on the scene, the user
needs a method for specifying the item to grasp. Our
system offers three options. The ϐirst method uses
information about the current gesture and pose of
the hand. To determine which object is pointed at
by the user’s ϐinger, we utilize the position of two
hand landmark points detected in the image [26],
named INDEX_FINGER_MCP and INDEX_FINGER_TIP
(the origin and tip of the index ϐinger). Based on the
depth image and the camera matrix, the position of
these points in 3D space is obtained, which allows
the determination of the pointing vector 𝑃. In the
next step, the origin of the index ϐinger (MCP point)
is connected with the object centers to obtain a set
of 𝑀 vectors. As illustrated in Figure 7, to determine
which object is selected by the operator, it is nec‐
essary to ϐind the identiϐier id of the OBB that is at
a minimum distance (less than the threshold value)

a b

Figure 8. Pointing gesture identified on the RGB image
(a) and point cloud visualization (b) with the indicated
point on the table (green sphere – point estimated as a
line with plane intersection)

from the pointing vector:

argmin
𝑖𝑑

ቛሬሬ⃗𝑃 × ሬሬሬሬሬሬሬሬሬሬሬሬ⃗𝑀(𝑖𝑑)ቛ

ቛሬሬ⃗𝑃ቛ
. (1)

Another way to choose an object for grasping is a
pointer (Fig. 5). This method calculates the Euclidean
distances between the 3D pointer position and cen‐
troids of objects on the table. The selected object
is chosen only if the smallest distance is below the
required threshold value.

Also, the user can specify the target object by voice
command.When the output of the neural object detec‐
tor includes an object with the given name, we ϐind
its bounding box in the image. The frame center is
converted to 3D space and compared to every object
centroid to ϐind the closest (selected) one.
3.9. Calculation of the Goal Position

The set of possible user actions also includes the
computation of the goal position of the object. We can
interpret the goal as the target position for the end
effector or the grabbed object – it depends on the
user’s voice command. To specify the desired position
of the object, the operator has two options. The ϐirst
method uses the pointer. In this case, the system uti‐
lizes the current pointer location to set the position on
the table to place the object or the point in space to
move the end effector.

Another more intuitive way uses a set of gestures.
As mentioned in section 3.3, the robot can pass the
grabbed object to the operator’s hand when the rec‐
ognized gesture is ”outreached”. Also, connected with
another voice command, this gesture causes the end
effector to move to the hand position. Apart from giv‐
ing the item to the hand, it is also possible to indicate
with a ϐinger the place to place it on the table as
illustrated in Figure 8. For this purpose, we determine
the intersection of the index ϐinger’s straight line given
by the point ሬሬሬሬ⃗𝑊 and vector ሬሬ⃗𝑃with the plane of the table
given by the normal vector ሬሬ⃗𝑁 and the point ሬሬ⃗𝑇.

In general, the task is to solve a system of
equations:

⎧⎪
⎨⎪⎩

𝑥 = 𝑃𝑥 ⋅ 𝑡 +𝑊𝑥
𝑦 = 𝑃𝑦 ⋅ 𝑡 +𝑊𝑦
𝑧 = 𝑃𝑧 ⋅ 𝑡 +𝑊𝑧
𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0) + 𝐶(𝑧 − 𝑧0) = 0

(2)
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a b c

Figure 9. Programming the robot using a pointer: user
selects a sponge with a pointer (a), the object is grasped
and the user chooses the goal position using a pointer
(b), the object is moved (c)

a b c

Figure 10. Programming the robot using a mixed
approach: user selects a bottle with a gesture (a), the
object is grasped and the user chooses the goal position
using a pointer (b), the object is moved (c)

where 𝑡 is a scalar parameter of 3D line equations
(parametric form, ϐirst three equations in eq. (2)), and

ሬሬ⃗𝑃 = ൣ𝑃𝑥 𝑃𝑦 𝑃𝑧൧
𝑇 – a vector lying on a line,

ሬሬሬሬ⃗𝑊 = ൣ𝑊𝑥 𝑊𝑦 𝑊𝑧൧
𝑇 – a point belonging to a line,

ሬሬ⃗𝑁 = [𝐴 𝐵 𝐶]𝑇 – a plane normal vector,
ሬሬ⃗𝑇 = [𝑥0 𝑦0 𝑧0]

𝑇 – a point belonging to a plane,
[𝑥 𝑦 𝑧]𝑇 – a searched line with plane

intersection point.

In our case, the task is simpliϐied. The reference
frame is placed on the robot’s footprint. A table plane
normal vector ሬሬ⃗𝑁 is [0 0 1] and a point belonging to the
table plane ሬሬ⃗𝑇 can be [0 0 ℎ𝑡], where ℎ𝑡 is a table height
(we estimate it from the point cloud). The ሬሬ⃗𝑃 vector is
calculated as a difference between position vectors of
ϐinger TIP and MCP points. The ሬሬሬሬ⃗𝑊 vector is a TIP or
MCP point. The last equation simpliϐies to:

𝑧 = ℎ𝑡 (3)

so we can determine 𝑡 as:

𝑡 = ℎ𝑡 −𝑊𝑧
𝑃𝑧

(4)

and substituting to the ϐirst two equations calculate 𝑥
and 𝑦 – the coordinates of the intersection point:

⎧

⎨
⎩

𝑥 = 𝑃𝑥 ⋅
ℎ𝑡−𝑊𝑧
𝑃𝑧

+𝑊𝑥

𝑦 = 𝑃𝑦 ⋅
ℎ𝑡−𝑊𝑧
𝑃𝑧

+𝑊𝑦

𝑧 = ℎ𝑡
(5)

3.10. Robot Program and Motion Planning

The goal of the previously described modules is
to deϐine the robot’s motions. For motion planning,
we use the MoveIt package. The robot executes joint‐
space or Cartesian‐space trajectories depending on
the task requirements, for example, the last motion

a

b

c

Figure 11. Example robot camera image (left column),
point cloud visualization (middle column), and side view
(right column) during the grasping experiment: user
selects the object with his finger (a), the object is
grasped (b), the object is passed to detected hand (c)

before grasping has to be linear. The MoveIt package
is also used to prevent the robot from self‐collisions
and from collisions with the table (we represent the
obstacles with Octomap).

During programming, themotions are executed on
the ϐly and stored in memory. If any system compo‐
nent returns an error, the robot does not perform any
action, and the command has to be repeated correctly.
The user is supported by a visualization on the screen
that allows him to validate the issued commands and
gestures. After the operator says the execute program
command, saved motions can be read and used in
repetitive tasks. When the operator wants to program
a new motion sequence, he can delete the current
program with the clear program command. A deϐined
robot program consists of a list of movements and
high‐level tasks, e.g., moving to the initial pose or
grasping an object of a given category.

4. Results
The capabilities of the proposed robot program‐

ming interface were tested in experiments divided
into two groups. The ϐirst group of experiments was
designed to check the time of programming motion
sequences of the robotic arm, in which the robot per‐
forms simple motions and gripper operations (voice
command sequences 1–3). For these trajectories, we
compared the proposed intuitive interface with the
standard programming methods using the operator
panel (teach pendant) and programming by mov‐
ing the robot manually (teaching by doing – TbD).
The goal of experiments in the second group was to
review the performance of the user interaction mod‐
ules during programming higher‐level tasks. These
tasks include picking and placing a selected object in
the speciϐied position on the work table, as well as
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a

b

c

Figure 12. Example robot camera image (left column),
point cloud visualization (middle column), and side view
(right column) during the grasping experiment: user
selects the object with his finger (a), the object is
grasped (b), the object is released in the place indicated
with a finger (c)

grasping and passing an item to the user’s hand (voice
command sequences 4–8).

In this paper, we repeat the experiments
performed in previous works [11–13] to test the
robot programming interface efϐiciency after making
changes in the speech recognition module. We also
added another test case that validates the indicating
place on the table with a ϐinger.

The following voice command sequences were
used during tests:
1–3. various length combination of commands: save
initial conϔiguration, go there, open/close the grip-
per, save robot conϔiguration, save trajectory, execute
program

4. grasp (with pointer), put down (with pointer),
go home

5. grasp + name (with object detection), put down,
go home

6. grasp (with gesture), give to hand, go home

7. grasp (with gesture), put down (with gesture),
go home

8. grasp (with gesture), put down (with pointer),
go home
During the experiments, we measured the pro‐

gramming time of each trajectory for different pro‐
gramming techniques: the standard methods and
using voice commands in combination with a pointer,
object detection, or gestures. The results are shown in
Table 1. For safety reasons, the robot’s speed during
the tests was limited to 50%.

Compared to our previous works [11–13] time of
programming in each of the proposed methods has
decreased. Themain reason is the recognition of voice
commands in the user’s native language. During the
experiments, we got the following results: 355/500

(71%) correct conversions in English, and 479/500
(96%) in Polish (native). For successful speech‐to‐
text processing, the orders have to be pronounced
clearly and with the correct accent. Speaking in the
native language signiϐicantly increases the effective‐
ness of speech recognition, reduces the need to repeat
commands, and thus shortens the robot programming
time. In the utilizedmodule, the language is easily con‐
ϐigurable and can be changed even when the system is
running. The efϐiciency of verbal communication with
the robot is also improved by audio feedback. After
speech‐to‐text processing, the output text is converted
back to audio and played. It ensures that the user’s
command has been correctly recognized and informs
him when the order is accepted. However, speech
recognition has a signiϐicant impact on extending
programming time. The mean time of recording,
converting to text, and playing back the command
during our experiments is about 6 seconds. This time
strongly depends on the length of the command,
the recorded audio signal quality, and the internet
connection.

The efϐiciency of executing the programmed
manipulation task heavily depends on the grasping
algorithm. The point‐cloud‐based method used in our
system [14] is not able to plan a successful grasp for
small objects or those with complicated geometry. For
such items (plastic shaft, ring lying down) the success
rate is 7.5%. Although, the algorithm performs well
for many other objects (e.g. sponge, dispenser bottle,
sumo ϐigurine, tape, ring (standing vertically), and
I‐shape part). For this set of objects, the success rate
is 76%. Another important metric that characterizes
our system is the accuracy of object recognition. The
SSD object detector achieves 76.9%mAP [16].

As we can see in Table 1, programming simple
trajectorieswith a pointer and voice commands can be
faster than standard programming methods with the
teaching pendant but is still not as fast as the teach‐
ing by doing method. The advantage of the proposed
interface is the increased intuitiveness and possibility
to program higher‐level tasks. The user can use the
pointer to select the object to pick and indicate its
place position, as illustrated in Figure 9.

Example experiments verifying interaction with
the robot using only gestures are shown in Figures 11
and 12. In this test case, the robot passes the selected
object to the user’s hand (command sequence no. 6)
or places chosen item in the indicated position (com‐
mand sequence no. 7). Based on the results shown in
Table 1, it can be seen that programming the robot
using gestures is slightly more time‐consuming than
using the pointer. Detecting the hand and calculating
its position takes an average of 56 ms (for the pointer
it is 36 ms [11]). The main advantage of this type
of interaction with the robot is that there is no need
to use additional hardware (pointer, marker). When
programming the robot using the visualization on the
computer screen, the user receives feedback on the
current interpretation of his gestures and voice com‐
mands, which offsets the inconvenience associated
with the delay in the system.
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Table 1. Comparison of programming time [s] of example motion sequences using six programming methods. The
symbols 𝜇 and 𝜎 denote mean and standard deviation values calculated for 10 measurements

sequence no. 1 2 3 4 5 6 7 8
number of commands 10 12 16 3 3 3 3 3

measurement 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

programming
time [s]

teach pendant 162.0 16.7 184.3 15.3 235.3 15.9 – – – – – – – – – –
TbD 100.0 12.3 113.4 9.9 155.4 12.5 – – – – – – – – – –

pointer and voice cmd. [11] 133.2 7.3 141.8 8.0 188.8 8.8 59.3 1.6 – – – – – – – –
object detection and voice cmd. [11] – – – – – – – – 68.4 4.4 – – – – – –

gestures and voice cmd. [13] 143.2 7.8 151.5 8.9 206.5 9.3 – – – – 62.0 4.5 63.8 5.9 – –
pointer, object detection,
gestures and voice cmd. 133.2 7.3 141.8 8.0 188.8 8.8 59.3 1.6 68.4 4.4 62.0 4.5 63.8 5.9 73.6 5.7

During the tests, the performance of the interface
integrating the different interaction modules was also
checked. We performed an experiment illustrated in
Figure 10, in which the user selects an object to grasp
using a gesture and then uses a pointer to determine
the place on the table where the object should be put
down (commands sequence no. 8). We observe that
the system using multiple modules for human‐robot
interaction at the same time runs slower because it
requires more computing resources. However, this
type of solution offers the greatest ϐlexibility. For
example, it allows the selection of an object of any
type, unlike a systemwith object detection,which only
lets the user choose items that were in the training
set. Only the integrated systempresented in the article
allows all deϐined tasks to be programmed.

5. Conclusion
This article proposes a system that uses voice

commands, gestures, and 3D perception to program
a robot to perform complex tasks. The advantage of
the designed system is the capability to easily program
tasks related to grasping and moving objects, which is
not possible with standard methods (teach pendant,
teaching by doing). In addition, an increase in the
intuitiveness of the robot’s operation was achieved
through the use of gesture recognition combined with
voice commands. The integrated robot interaction
modules allow the robot to be programmed not only
with gestures but also with a pointer. In the future, we
plan to increase the number of recognized gestures to
better understand the user’s intentions and improve
human‐robot interaction.
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