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Abstract:
Amanipulatormounted on a satellite is often used to per‐
form active debris removal missions. The space manipu‐
lator control system needs to take the dynamic model of
the satellite‐manipulator system into account because of
the influence of the manipulator motion on the position
and attitude of the satellite. Therefore, precise modeling
of the space manipulator dynamics as well as parameter
identification are needed to improve the credibility of the
simulation tools. In this paper, we presented the iden‐
tification of the flexible‐joint space manipulator model
based on dynamic equations of motion. Experiments
were performed in an emulated microgravity environ‐
ment using planar air bearings. The arbitrarily selected
joint‐space trajectory was performed by the manipula‐
tor’s control system. The experimentswere repeatedmul‐
tiple times in order to analyze the identification method
sensitivity. The identification is based on the Simulink
SimMechanics model. Thus, the procedure can be used
for any space manipulator without the need to obtain
analytical relations for dynamic equations each time.
Including joint flexibility and spring viscous damping in
the dynamic model allowed it to reflect the experimental
measurements better than the reference model could.
Identified parameters of the flexible joint have values
of the same magnitude as corresponding real system
parameters.

Keywords: Orbital robotics, Mathematical modeling,
Parameter identification, Flexible‐joint space manipula‐
tor, Microgravity simulator

1. Introduction
The increase of space debris in low Earth orbit

(LEO) led to the development of ideas for on‐orbit
servicing (OOS) and active debris removal (ADR) mis‐
sions [1]. One of the considered methods for active
removal of malfunctioning satellites from Earth’s
orbit is to utilize a robotic manipulator mounted
on a servicing satellite. Several OOS and ADR mis‐
sions have already been proposed, e.g., European
Space Agency (ESA) mission e.Deorbit [2]. The con‐
tact between the debris and the satellite‐manipulator
system has a signiϐicant inϐluence on the system
dynamics. The dynamics characteristics of impact and
contact between the target and the manipulator’s
end‐effector are derived in [3]. The stages (approach,
grasping, de‐orbit) of the debris removal using the

space manipulator are discussed in [4]. After the cap‐
ture of the debris, the mass and inertia of the target
have a signiϐicant impact on the system dynamics.
Thus, proper control for the detumbling of the system
must be proposed [5,6].

One of the advantages of space manipulators is
their high Technology Readiness Level (TRL) in com‐
parison to other methods such as space nets or har‐
poons [7]. However, designing a control system for
the manipulator mounted on the satellite is difϐicult
due to the inϐluence of the manipulator’s motion on
the position and attitude of the servicing satellite. In
close proximity to the target object, we encounter
one of the following cases: the system is free‐ϐloating,
the satellite is fully controlled, or the satellite control
is used to give nonzero velocity before the manip‐
ulator’s operations (tangent capture case) [8]. Most
commonly, it is assumed that the Attitude and Orbit
Control System (AOCS) for the satellite is turned off
because the external forces and torques induced by
satellite thrusters can cause undesirable changes of
position and orientation of the end‐effector, which
might lead to a collision with the target object. As a
consequence of uncontrollable satellites, the system
has conserved momentum and angular momentum;
thus, it is nonholonomic [9, 10]. Such systems will be
referred to as free‐ϐloating (the ϐirst case mentioned
above). Due to the inϐluenceof themanipulatormotion
on the state of the servicing satellite, it is necessary
to design dedicated control laws that depend on the
system’s dynamic parameters [11]. One of the main
concepts for control of the free‐ϐloating manipulator
is the so‐called Dynamic Jacobian, which depends on
the state of both the manipulator and the satellite
as well as on the mass and inertia parameters of
the system [12]. In addition, there are multiple con‐
trol methods proposed for the satellite‐manipulator
system, e.g., predictive control [13] and impedance
control [14].

Since the control system of the space manipulator
takes the dynamic model into account, it is extremely
important to design a precise mathematical model of
the space manipulator’s joint. Dynamic effects that
occur in the joint have a signiϐicant inϐluence on
the system’s dynamics. Therefore, including them in
the mathematical model allows us to improve the
credibility of the simulation tool. The most popular
aspects considered in modeling the dynamics of the
free‐ϐloating manipulator are joint ϐlexibility, friction,

78



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 17, N∘ 3 2023

link ϐlexibility, gear kinematics, and gear dynamics.
The ϐlexibility of the joint has a large impact on the
control system’s stability because it might generate
undesirable oscillations that can lead to worse posi‐
tioning of the end‐effector or even to the instability
of the control system [15]. Modeling of the ϐlexible‐
joint ϐixed‐base space manipulator was presented in
[16, 17]. The dynamic model of the ϐlexible‐joint and
ϐlexible‐link free‐ϐloating manipulator was derived
in [18], while joint friction was additionally included
in [19]. The inϐluence of the link and joint ϐlexibility
on the vibrations of the manipulator’s end‐effector
is analyzed in [20], while controlled vibration sup‐
pression of a ϐlexible‐base ϐlexible‐joint space manip‐
ulator is discussed in [21]. The ϐlexibility effects of
the target capture during the debris removal proce‐
dure are discussed in [22]. Target grasping maneu‐
vers of a ϐlexible‐link spacemanipulator are discussed
in terms of collision avoidance, aerodynamic effects,
and gravity gradient in [23]. The utilization of Kane’s
method in deriving the dynamic model of a ϐlexible‐
link space manipulator is presented in [24]. The inϐlu‐
ence of the nonlinear friction joint torque on the
ϐlexible space manipulator’s control system was ana‐
lyzed in [25]. The general expressions for the system’s
total momentum and angular momentum as well as
dynamic equations of motion of ϐlexible‐joint free‐
ϐloating manipulators were presented in [26]. The
analysis of the impact of gear kinematics on the free‐
ϐloating manipulator dynamics was discussed in [27].

The fact that the vast majority of control laws
designed for free‐ϐloating manipulators depend on
the system’s dynamic parameters exposes the neces‐
sity of experimental parameter identiϐication. There
are two main approaches for the identiϐication of a
space manipulator’s parameters. The ϐirst of them
takes advantage of the linear parametrization of the
dynamic equations of motion [28], while the other
one is based on equations for the conservation of
total angular momentum of the system [29]. However,
the former approach usually requires noise‐sensitive
measurements of the angular acceleration of the satel‐
lite as well as manipulator joint accelerations. On the
other hand, some parameters have to be known a pri‐
ori while using the latter approach (angular momen‐
tum equations). A novel method that allows for the
full identiϐication of a space manipulator’s dynamic
parameters with the assumption of perfectly rigid
joints is presented in [30],while parameter estimation
of ϐlexible space manipulators is discussed in [31].

In this paper, we present the identiϐication of the
space manipulator’s ϐlexible joint parameters based
on several experimental results. The mathematical
model of the planar free‐ϐloating space manipulator
with ϐlexible joints and viscous joint damping is pre‐
sented. One of the main novelties of the paper is that
the experimentswere performedwith the use of a real
ϐlexible‐joint manipulator operated on the air‐bearing
microgravity test‐bed. The identiϐication procedure is
based on optimization techniques used to match the
response of the Simulink SimMechanics model of the
system with experimental results. The main goal of

the identiϐication is to improve the credibility of the
designed systemmodel, while obtaining real values of
the ϐlexible‐joint parameters is only a secondary goal
of the presented research.

The paper is organized as follows. The dynamic
model of the system is described in Section 2. The
air‐bearing microgravity test‐bed is presented in
Section 3 along with the description of performed
experiments. The identiϐication results are presented
in Section 4 and discussed in Section 5. The paper is
brieϐly summarized in Section 6.

2. Dynamics of Planar Flexible‐Joint Space
Manipulator
Let us consider a planar manipulator mounted on

a free‐ϐloating satellite. The manipulator has 𝑛 rota‐
tional ϐlexible joints. The schematic view of the system
is presented in Figure 1. A stationary inertial frame of
reference is denoted asΠ𝑖𝑛𝑒 . It is ϐixed in an arbitrarily
selected point in the Cartesian space.

The idea formodeling the ϐlexible joint is schemat‐
ically depicted in Figure 2. The model is based on
connecting a motor (rigid part of the joint) and a link
with a torsional spring and a damper (ϐlexible part of
the joint). In comparison to the reference model (with
perfectly rigid joints), three additional parameters

Figure 1. Schematic view of planar n‐DoF space
manipulator

Figure 2. Schematic view of flexible joint with viscous
damping
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describe the joint: motor inertia, spring stiffness, and
viscous damping coefϐicient.

In order to derive the dynamic equations of
motion, we follow the Lagrange formalism. The vector
of generalized coordinates for the analyzed planar
system is given by:

x = ൣ𝑥0 𝑦0 𝑞0 q𝑇 q𝑇𝑚൧
𝑇 (1)

where 𝑥0 ∈ ℝ1 and 𝑦0 ∈ ℝ1 denote the X and Y com‐
ponents of the satellite Center of Mass (CoM) position
vector, respectively, 𝑞0 ∈ ℝ1 denotes the attitude of
the satellite, q = ൣ𝑞1 … 𝑞𝑛൧

𝑇 ∈ ℝ𝑛 denotes the
vector of manipulator joint angular positions, while
q𝑚 = ൣ𝑞𝑚1 … 𝑞𝑚𝑛൧

𝑇 ∈ ℝ𝑛 denotes the vector of
motor angular positions. It is noteworthy that q and
q𝑚 are measured with respect to the same frame of
reference (see Figure 1).

The second‐order Euler‐Lagrange equation is
given by [32]:

𝑑
𝑑𝑡 ቆ

𝜕ℒ
𝜕ẋቇ −

𝜕ℒ
𝜕x + 𝜕ℱ

𝜕ẋ = Q (2)

where ℒ ∈ ℝ1 denotes the Lagrange function of the
system, deϐined as difference between system’s total
kinetic energy and potential energy, ℱ ∈ ℝ1 denotes
Rayleigh’s dissipation function, while Q ∈ ℝ3+2𝑛

denotes the vector of generalized forces.
In the notation used in (2) we assume that the

derivative of a scalar functionwith respect to a column
vector is a column (in order to avoid writing multiple
transpositions).

As stated in Section 1, we assume that the ser‐
vicing satellite is uncontrolled. As a result, the ϐirst
three entries of the generalized forces vector are equal
to zero; thus, Q = ൣ0 0 0 01x𝑛 𝝉𝑇൧𝑇 , where
01x𝑛 ∈ ℝ𝑛 denotes vector ϐilled with zeros, while
𝝉 = ൣ𝜏1 … 𝜏𝑛൧

𝑇 ∈ ℝ𝑛 denotes the vector of
manipulator control torques. It is worth noting that
the control torques are applied to the motors (rigid
parts of manipulator joints).

In the case of spacemanipulators, the gravitational
potential energy is usually assumed to be equal to
zero. In addition, the gravity gradient is neglected due
to the relatively small size of the manipulator [33].
Each joint of the manipulator has a potential energy
coming from the spring. We assume that the stiffness
of the spring is linear [34], which is justiϐied by the
fact that the same model was used, e.g., in [16,17,26].
Thus, the Lagrange function of the analyzed system is
given by:

ℒ = 𝑇0 + 𝑇𝑟 + 𝑇𝑚 − 𝑉 (3)
Kinetic energies of the satellite𝑇0 ∈ ℝ1, the robotic

manipulator 𝑇𝑟 ∈ ℝ1 and the motors 𝑇𝑚 ∈ ℝ1 as well
as total spring potential energy 𝑉 ∈ ℝ1 are given by:

𝑇0 =
1
2𝑚0(�̇�20 + �̇�20) +

1
2𝐼0�̇�

2
0 (4)

𝑇𝑟 =
𝑛


𝑖=1

ቆ12𝑚𝑖|v𝑖|2 +
1
2𝐼𝑖𝜔

2
𝑖 ቇ (5)

𝑇𝑚 =
𝑛


𝑖=1

ቆ12𝐼𝑚𝑖𝜔𝑚
2
𝑖 ቇ (6)

𝑉 =
𝑛


𝑖=1

ቆ12𝑘𝑖(𝑞𝑚𝑖 − 𝑞𝑖)2ቇ (7)

where 𝑚0 ∈ ℝ1 and 𝐼0 ∈ ℝ1 denote mass and
inertia of the satellite, respectively, 𝑚𝑖 ∈ ℝ1 and 𝐼𝑖 ∈
ℝ1 denote mass and inertia of the 𝑖‐th manipulator
link, v𝑖 ∈ ℝ2 denotes the linear velocity of the 𝑖‐
th manipulator link’s CoM with respect to Π𝑖𝑛𝑒 , | ⋅ |
denotes Euclidean norm,𝜔𝑖 ∈ ℝ1 denotes the angular
velocity of the 𝑖‐th manipulator link with respect to
Π𝑖𝑛𝑒 , 𝐼𝑚𝑖 ∈ ℝ1 denotes inertia of the 𝑖‐thmotor,𝜔𝑚𝑖 ∈
ℝ1 denotes the angular velocity of the 𝑖‐th motor with
respect to Π𝑖𝑛𝑒 , while 𝑘𝑖 ∈ ℝ1 is the stiffness of 𝑖‐th
manipulator joint (spring). It is assumed that themass
of eachmotor is included in themass of the respective
manipulator link; thus, 𝑇𝑚 consists only of rotational
kinetic energy.

The Rayleigh’s dissipation function for the ana‐
lyzed system is given by:

ℱ =
𝑛


𝑖=1

ቆ12𝑏𝑖(�̇�𝑚𝑖 − �̇�𝑖)2ቇ (8)

where 𝑏𝑖 ∈ ℝ1 denotes viscous damping coefϐicient of
the 𝑖‐th manipulator joint.

After evaluating v𝑖 , 𝜔𝑖 , and 𝜔𝑚𝑖 as functions of
generalized coordinates and their derivatives, the
Lagrange function and Rayleigh’s dissipation function
can be directly applied to (2)which yields the dynamic
equations of motion of the system:

(M∗ + J∗)ẍ+ (C∗ + B∗)ẋ+ K∗x = Q (9)

Relations for matrices that appear in (9) are pre‐
sented below.

M∗ = ቈ M 0(3+𝑛)x𝑛
0𝑛x(3+𝑛) 0𝑛x𝑛

 (10)

J∗ = ቈ 02x2 02x(1+2𝑛)
0(1+2𝑛)x2 J  (11)

C∗ = ቈ C 0(3+𝑛)x𝑛
0𝑛x(3+𝑛) 0𝑛x𝑛

 (12)

B∗ = 
03x3 03x𝑛 03x𝑛
0𝑛x3 B −B
0𝑛x3 −B B

 (13)

K∗ = 
03x3 03x𝑛 03x𝑛
0𝑛x3 K −K
0𝑛x3 −K K

 (14)

Matrices M ∈ ℝ(3+𝑛)x(3+𝑛) and C ∈ ℝ(3+𝑛)x(3+𝑛)

are mass and Coriolis matrices for the reference
model (perfectly rigid manipulator joints), respec‐
tively. Thesematrices depend on satellite andmanipu‐
lator parameters and explicit relations for them can be
found in [35]. MatricesM∗ ∈ ℝ(3+2𝑛)x(3+2𝑛) and C∗ ∈
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ℝ(3+2𝑛)x(3+2𝑛) are ϐilled with zeros, which is a result
of expressing motor angular positions with respect to
the same frame of reference as ϐlexible joint angular
positions.

Matrices B ∈ ℝ𝑛x𝑛 and K ∈ ℝ𝑛x𝑛 denote damping
and stiffness matrices, respectively, given by:

K = diag(𝑘1, 𝑘2, … , 𝑘𝑛) (15)
B = diag(𝑏1, 𝑏2, … , 𝑏𝑛) (16)

where diag denotes an operator that forms a diagonal
matrix from given parameters – such a matrix has
nonzero components only on its diagonal.

Matrix J ∈ ℝ(1+2𝑛)x(1+2𝑛) is the inertia matrix of
manipulator motors given by:

J = 
J𝐴 0𝑛x1 J𝐵
01x𝑛 0 01x𝑛
J𝑇𝐵 0𝑛x1 J𝐶

 (17)

where each submatrix is derived as follows:

J𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑛


𝑖=1

𝐼𝑚𝑖

𝑛


𝑖=2

𝐼𝑚𝑖

𝑛


𝑖=3

𝐼𝑚𝑖 ⋯
𝑛


𝑖=𝑛

𝐼𝑚𝑖

𝑛


𝑖=2

𝐼𝑚𝑖

𝑛


𝑖=2

𝐼𝑚𝑖

𝑛


𝑖=3

𝐼𝑚𝑖 ⋯
𝑛


𝑖=𝑛

𝐼𝑚𝑖

𝑛


𝑖=3

𝐼𝑚𝑖

𝑛


𝑖=3

𝐼𝑚𝑖

𝑛


𝑖=3

𝐼𝑚𝑖 ⋯
𝑛


𝑖=𝑛

𝐼𝑚𝑖

⋮ ⋮ ⋮ ⋱ ⋮
𝑛


𝑖=𝑛

𝐼𝑚𝑖

𝑛


𝑖=𝑛

𝐼𝑚𝑖

𝑛


𝑖=𝑛

𝐼𝑚𝑖 ⋯
𝑛


𝑖=𝑛

𝐼𝑚𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)

J𝐵 =
⎡
⎢
⎢
⎢
⎣

𝐼𝑚1 𝐼𝑚2 𝐼𝑚3 ⋯ 𝐼𝑚𝑛−1 𝐼𝑚𝑛
0 𝐼𝑚2 𝐼𝑚3 ⋯ 𝐼𝑚𝑛−1 𝐼𝑚𝑛
0 0 𝐼𝑚3 ⋯ 𝐼𝑚𝑛−1 𝐼𝑚𝑛
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 𝐼𝑚𝑛

⎤
⎥
⎥
⎥
⎦

(19)

J𝐶 = diag(𝐼𝑚1 , 𝐼𝑚2 , … , 𝐼𝑚𝑛) (20)

It is noteworthy that the dynamic model considers
a slowly rotating motor because gear kinematics are
not included. In the real hardware, we expect a quickly
rotating motor that is connected with the rigid part of
the joint (output shaft) via gearbox. Then, the output
shaft is connectedwith themanipulator link via spring
and damper (as seen in Figure 2). Therefore, in order
to include inertia of quickly rotating motor in 𝐼𝑚𝑖 , its
moment of inertia must be multiplied by the square
of the gear reduction ratio. In addition, the model
presented above can also be used if the manipulator
has both rigid and ϐlexible joints. In such situations,
the respective sizes of eachmatrix can vary depending
on the number of ϐlexible joints.

3. Description of the Test‐Bed and Performed
Experiments
Wepresent the identiϐication of ϐlexible joint of the

space manipulator based on experiments performed

in emulated microgravity environment using dedi‐
cated test‐bed operated by the Space Research Centre
of the Polish Academy of Sciences (CBK PAN) [36,37].

3.1. Microgravity Air‐Bearing Test‐Bed

The test‐bed consists of a precisely leveled granite
table, a planar manipulator mounted on the servic‐
ing satellite mock‐up, and the operator’s computer.
The granite table is 3 m x 2 m. Planar air bearings
located under both manipulator and satellite mock‐
ups allow us to emulate microgravity environment
via producing a thin ϐilm of pressurized air between
the surface of the table and air bearings. As a result,
the manipulator’s motion becomes frictionless in the
horizontal plane. The pressurized air is providedby an
air tank located on the satellite mock‐up. The manip‐
ulator has three rotational joints, the ϐirst of which
is ϐlexible, and the other two are rigid. As a result,
q = ൣ𝑞1 𝑞2 𝑞3൧

𝑇 and q𝑚 = 𝑞𝑚1 . The ϐlexibility of
the ϐirst joint is achieved by introducing the compliant
component. CAD models of the ϐlexible joint and the
compliant component are presented in Figure 3 [38].

The control system of the manipulator is realized
in the joint space and is based on the ATSAMA5D36
microcontroller located on the satellite mock‐up. The
manipulator joint angular positions are measured via
encoders. In addition, an external vision systemallows
the measurement of position and orientation (with
respect to Π𝑖𝑛𝑒) of dedicated markers mounted on
both the satellite mock‐up and the manipulator’s end‐
effector. Each joint has a harmonic gear with a gear
reduction ratio of 100 ∶ 1.

Parameters of themanipulator are listed inTable 1.
The mass of the satellite mock‐up is equal to 58.69 kg,

Figure 3. a – CAD model of the flexible joint; b – CAD
model of the compliant component; 1 – gear; 2 –
sleeve; 3 – compliant component; 4 – connector
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Table 1. Parameters of the manipulator

Parameter Link 1 Link 2 Link 3
Mass [kg] 2.81 2.82 4.64
Moment of
inertia [kgm2]

0.0637 0.0635 0.0515

Length [m] 0.449 0.449 0.310
Position vector
of CoM [m] ቈ 0.1362−0.0017 ቈ 0.1340−0.0005 ቈ0.15110.0004

while its moment of inertia is equal to 2.42 kgm2.
Thepositionvector of themanipulatormountingpoint
expressedwith respect toΠ0 and rotated toΠ0 is equal
to p(Π0)

𝑚 = ൣ0.337m −0.001m൧𝑇 . Expressing this
vector as rotated to Π0 is convenient as entries of the
vector are then constant.

3.2. Description of the Test Campaign

A set of experiments was performed on the micro‐
gravity air‐bearing simulator. In each test, the manip‐
ulator control system tracks the trajectory deϐined in
the joint space. It is noteworthy that the encoder in the
ϐirst joint is located before the compliant component.
Therefore, the measurements of the encoder relate to
the position of the motor 𝑞𝑚1 (rigid part of the joint).
Hence, in each test the trajectory of the motor angular
position will be realized. The discussion concerning
obtaining the angular position of the manipulator’s
ϐlexible joint 𝑞1 will be brought up in the next section.

The initial position and attitude of the satellite are
equal to 0 at the beginning of every experiment. Both
manipulator and satellite have zero initial velocity. The
experiment was repeated 5 times.

The test scenario is chosen arbitrarily. The desired
motion of the manipulator is represented by a
joint‐space trajectory of each joint accelerating with
a constant acceleration. The initial condition for the
manipulator is: 𝑞𝑚1(𝑡0) = 7.5 deg, 𝑞2(𝑡0) = −15 deg,
𝑞3(𝑡0) = −22.5 deg. The trajectory lasts 10 s.

3.3. Calculation of the Manipulator’s Flexible Joint
Angular Position

As stated in the previous Section, the encoder in
the ϐirst joint of the manipulator allows the measure‐
ment of the angular position of themotor (rigid part of
the joint). In order to obtain the angular position of the
ϐlexible joint of the manipulator, the external vision
system measurements of the position and attitude of
the satellite mock‐up and the position and orientation
of the end‐effector are used. However, it is noteworthy
that such measurements will not be available in a real
mission on orbit.

In order to obtain the angular position of the ϐlex‐
ible joint of the manipulator, we use the direct kine‐
matics equation written for the satellite‐manipulator
system:

ቈ𝑥𝑒𝑦𝑒 = ቈ𝑥0𝑦0 + R0p
(Π0)
𝑚 + R1 ቈ

𝑙1
0 + R2 ቈ

𝑙2
0 + R3 ቈ

𝑙3
0

(21)

where 𝑥𝑒 ∈ ℝ1 and𝑦𝑒 ∈ ℝ1 denote the X andY compo‐
nents of the end‐effector position vector, respectively,
𝑙𝑖 ∈ ℝ1 denotes the length of the 𝑖‐thmanipulator link,
while R0 ∈ ℝ2x2 denotes the rotation matrix of the
satellite with respect to Π𝑖𝑛𝑒:

R0 = ቈcos(𝑞0) −sin(𝑞0)
sin(𝑞0) cos(𝑞0)  (22)

The variableRi ∈ ℝ2x2 denotes the rotationmatrix
of the 𝑖‐th manipulator link with respect to Π𝑖𝑛𝑒 (with
𝑖 = 1, 2, 3):

R𝑖 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosቌ𝑞0 +
𝑖


𝑗=1

𝑞𝑗ቍ −sinቌ𝑞0 +
𝑖


𝑗=1

𝑞𝑗ቍ

sinቌ𝑞0 +
𝑖


𝑗=1

𝑞𝑗ቍ cosቌ𝑞0 +
𝑖


𝑗=1

𝑞𝑗ቍ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)

Equation (21) needs to be solved for 𝑞1 which
appears in R1, R2 and R3. Position components of the
end‐effector 𝑥𝑒 , 𝑦𝑒 as well as position and attitude
of the satellite 𝑥0, 𝑥0, 𝑞0 are measured via external
vision system. The angular positions of the second and
third joints of the manipulator 𝑞2, 𝑞3 are measured
via encoders. For each performed experiment, Equa‐
tion (21) is used inorder toobtain the angular position
of the ϐlexible joint of the manipulator.

4. Identification of Flexible Joint Parameters
In order to match the model with the behavior

of the manipulator on the air‐bearing test‐bed, three
parameters will be identiϐied: motor inertia 𝐼𝑚1 , joint
stiffness 𝑘1, and viscous damping coefϐicient 𝑏1. In
addition, it was decided that the initial spring offset
𝜆1(𝑡0 = 0) = 𝑞1(𝑡0 = 0) − 𝑞𝑚1(𝑡0 = 0) will
be identiϐied for each experiment. The initial spring
offset cannot be controlled on the test‐bed. At the
beginning of the test, the control system is able to
maintain constant angular positions of themotor 𝑞𝑚1 ,
the second joint 𝑞2, and the third joint 𝑞3. However,
the angular position of the ϐlexible joint 𝑞1 oscillates
around the equilibrium point 𝑞1 = 𝑞𝑚1 as a result of
spring potential energy. Then, the desired trajectory
is loaded to the manipulator’s control system, and the
spring offset at that current time will lead to different
dynamics of the system during trajectory realization.
The initial spring offset inϐluences the amplitudeof the
ϐlexible joint angular position oscillations.

The implemented identiϐication method is based
on the optimization technique. The dynamic Equa‐
tions (9) are linearly parametrized with respect
to three above‐mentioned ϐlexible joint parameters.
Therefore, it is intuitive to use a standard technique
such as least‐square method with State‐Variable Fil‐
ter (SVF) [39]. However, the initial spring offset
appears in the dynamic equations of motion non‐
linearly under trigonometric functions. Second, in
the case of free‐ϐloating manipulators, the analyti‐
cal derivation of the dynamic equations of motion
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is very complicated. Therefore, the goal of the pre‐
sented work was to implement a procedure that
would be based on Simulink SimMechanics model
of the system [40]. Designing a Simulink model
of the satellite‐manipulator system is much easier
than deriving analytical relations. The SimMechanics
model was validated with the use of analytical expres‐
sions for the dynamic model. In the future, the deriva‐
tion of the dynamic equations of motion will not be
needed again, as it is cross‐checked that the SimMe‐
chanics model gives valid results.

The SimMechanics model can be actuated via two
methods: by applying predeϐined motion of the body
or by applying generalized forces. In the presented
approach we actuate the motion of the second and
third joint of the manipulator with the use of encoder
measurements obtained in experiments. The satellite
is not actuated in order to comply with the nonholo‐
nomic nature of the system. Finally, the motion of
the motor (rigid part of the ϐirst joint) is actuated
with driving torques obtained with the use of inverse
dynamics approach for reference (rigid joints) model.
The motion of the manipulator’s ϐlexible joint is then
caused by the dynamic coupling of the spring‐damper
system. By changing parameters 𝐼𝑚1 , 𝑘1, 𝑏1, 𝜆1 we are
able to obtain different motion of the ϐlexible joint.

In order to utilize the SimMechanics model in
the identiϐication procedure, we choose the Nelder‐
Mead method (also called the downhill simplex
method) [41]. The cost function for the optimization
procedure is chosen as:

𝑓𝑐𝑜𝑠𝑡( ̂𝐼𝑚1 , �̂�1, �̂�1, ො𝜆1)

=
𝑝


𝑖=1

((𝑞1𝑚𝑜𝑑(𝑡𝑖 , ̂𝐼𝑚1 , �̂�1, �̂�1, ො𝜆1) − 𝑞1𝑒𝑥(𝑡𝑖))2)

(24)

where ∧ denotes estimation value used in each iter‐
ation of the optimization procedure, subscript 𝑚𝑜𝑑
refers to SimMechanics model response, subscript 𝑒𝑥
refers to the performed experiment (see Section 3.3),
while 𝑝 denotes number of measurements.

The minimum of the cost function means that for
the chosen parameters we obtained the best match‐
ing between the model response and the experimen‐
tal results. The identiϐication procedure changes the
identiϐied parameters and solves the SimMechanics
model in each iteration in order to ϐind the best solu‐
tion. The lower and upper bounds for each parame‐
ter are:

0.001 kgm2 < ̂𝐼𝑚1 < 100 kgm2

0.01Nmrad < �̂�1 < 100Nmrad

0 < �̂�1 < 10kgms
−0.1 rad < ො𝜆1 < 0.1 rad

The identiϐication procedure was performed
for each experiment. The angular position of the

Figure 4. Flexible joint angular position – comparison
between model and experimental results for test #1

Figure 5. Flexible joint angular position – comparison
between model and experimental results for test #2

Figure 6. Flexible joint angular position – comparison
between model and experimental results for test #3

manipulator’s ϐlexible joint for the experiment as
well as the simulation of the reference model and
the ϐlexible‐joint model with identiϐied parameters
are presented in Figures 4–8 for each experiment,
respectively. The measurements from the vision
system and from the encoders contain noise [37].
Therefore, the identiϐied values are rounded to one
decimal place so that the identiϐication accuracy is
adequate to measurement uncertainty. The obtained
values of the ϐlexible joint parameters are listed in
Table 2. The identiϐied initial spring offset for each
experiment are presented in Table 3. The frames
obtained from the vision system during one of the
tests are presented in Figure 9.
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Figure 7. Flexible joint angular position – comparison
between model and experimental results for test #4

Figure 8. Flexible joint angular position – comparison
between model and experimental results for test #5

Table 2. Flexible joint parameter identification results

Parameter Motor Joint Damping
inertia stiffness coefϐicient

Symbol 𝐼𝑚1 𝑘1 𝑏1
Unit [kgm2] ቂNmrad ቃ ቂ kgms ቃ

Va
lu
e

Test #1 6.9 12.8 1.3
Test #2 3.3 5.1 0.4
Test #3 5.6 9.2 0.5
Test #4 7.6 5.1 0.0
Test #5 4.5 8.3 0.1
Average 5.6 8.1 0.5
Standard
deviation

1.8 3.2 0.5

Table 3. Values of the identified initial spring offset

Symbol 𝜆1
Unit [deg]

Va
lu
e

Test #1 −1.3
Test #2 2.8
Test #3 −0.2
Test #4 −0.4
Test #5 −1.1

5. Discussion
The identiϐication procedure gave satisfactory

results. By analyzing each ϐigure, it can be concluded
that in each case the ϐlexible‐joint model response
reϐlects the experimental results better than the refer‐
ence model response. The best matching between the

Figure 9. Frames captured by the vision system camera
during Test #2

test results and SimMechanics results was obtained
for Test #2 (see Figure 5). The frequency and ampli‐
tude of oscillations caused by the ϐlexibility of the joint
is well illustrated. In other experiments, it is observed
that the oscillations caused by the joint ϐlexibility are
not as signiϐicant. Thismight be caused by lower initial
spring offset which will be discussed in detail below.
In addition, it is observed that the motion of the ϐlexi‐
ble joint in the latter part of the test is more similar to
the experimental results for each case of the ϐlexible‐
joint model simulation.

The numerical results for the motor inertia range
from 3.3 kgm2 in Test #2 to 7.6 kgm2 in Test #4.
The average obtained value in the identiϐication is
equal to 5.6 kgm2 ± 1.8 kgm2. Although the standard
deviation is quite high, the identiϐied values had the
same order of magnitude in each case. As explained in
Section 2, the motor inertia 𝐼𝑚1 in the analyzed model
is expected to be very high (identiϐied parameter is
one order of magnitude higher than each manipula‐
tor link’s inertia) because the inertia of the quickly
rotatingmotormust be scaledwith the square value of
the harmonic gear reduction ratio. The motor inertia
inϐluences two main aspects in the model response.
First, high 𝐼𝑚1 values cause the amplitude of spring
oscillations to be greater. Second, this parameter inϐlu‐
ences the value of the d’Alambert (inertial) reaction
forces induced within the system.

The identiϐied value for the joint stiffness is equal
to 8.1 Nm

rad ± 3.2 Nm
rad . The design value of the compliant

component can be obtained from the CAD model and
is equal to 5.47 Nm

rad [38]. This value serves as the only
reference despite the fact that the real stiffness of
the compliant component might be slightly different
than the one obtained using the CAD model. Although
the average identiϐied value has the proper order of
magnitude, the exact value differs from the design
value. However, it is observed that the identiϐication
for Test #2 (which was previously concluded to be
the best result of all experiments) and Test #4 led
to the stiffness value of 5.1 Nm

rad which is very similar
to the corresponding CAD value. The joint stiffness
used in the ϐlexible‐joint model allows us to shape the
frequency and the amplitude of spring oscillations. For
instance, it can be clearly seen in Figure 4 that the
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frequency of the oscillations is not identical to that of
the experiment. The identiϐied stiffness for this case is
very high. However, the latter parts of the simulation
response are very close to the experimental results.
The proceduremaybe improved by introducing a scal‐
ing factor so that the cost function values the ϐirst part
of the experiment higher than the latter parts because
the ϐlexibility of the joint at the end of the experiment
was damped.

It must be here repeated (as previously stated in
Section 1) that the main purpose of the identiϐication
was to improve the credibility of the simulation tool,
not to identify real system parameters. On the other
hand, the obtained standard deviation is high, which
might lead to a conclusion that the compliant compo‐
nent’s stiffness is not linear, and the proposed spring
model might be imprecise.

The results for thedamping coefϐicientwereunsat‐
isfactory, e.g., the procedure identiϐied no damping for
Test #4 and very high damping for Test #1. This leads
to a conclusion that the friction of the spring is not
linear; hence, the proposed model for the oscillation
damping is not correct. Future work might include
identiϐication of friction forces induced within both
the motor (rigid part of the joint) and compliant
component.

Finally, in each experiment, the initial spring offset
was different. As explained before, this value cannot
be controlled in any way during the tests. In Test #2
(identiϐied as the best example fromperformed exper‐
iments), the highest initial spring offset was equal to
2.8 deg. On the other hand, Figure 6 shows that in
Test #3 almost no oscillations at the ϐirst part of the
testwere obtained. The initial spring offset for this test
wasmuch lower and equal to−0.2 deg. As a result, the
joint stiffness identiϐied for this case is very different
than the reference value (CAD model). It is intuitive
that the identiϐication procedure is very sensitive to
initial spring offset. If the offset is high, we achieve
greater excitation of identiϐied parameters, which is
very important in parameter identiϐication. Conse‐
quently, the results are more credible if the parameter
excitation is large enough, andwe desire as high initial
spring potential energy as possible in order to obtain
good identiϐication results.

6. Conclusion
In this paper, we have proposed the spacemanipu‐

lator’s ϐlexible joint parameter identiϐication based on
experiments performed in an emulated microgravity
environment. The experiments were performed using
the test‐bed based on air bearings. The manipulator
has a ϐlexible ϐirst joint, which allows testing of the
motion of the ϐlexible‐joint manipulator and compari‐
son with the simulation results.

The performed identiϐication results are satisfac‐
tory, although various problems were observed in
the proposed approach. The identiϐied motor iner‐
tia seems high, but the results are correct as the
value should account for the quickly rotating motor
inertia scaled with the square of the gear reduction

ratio. The identiϐied joint stiffness value has the same
order of magnitude as it was obtained from the CAD
model. The quality of the identiϐicationhighly depends
on the initial spring offset – higher offsets achieved
better the identiϐications. High initial offset allows
greater excitation of identiϐied parameters, which is
very important in parameter identiϐication. Finally,
the obtained damping coefϐicients are very different in
each experiment, which leads to a conclusion that the
spring friction is nonlinear and the proposed model is
inadequate.

Future work might include utilizing the nonlin‐
ear friction model in the identiϐication procedure and
modiϐication of the test‐bed so that the initial spring
offset can be controlled.
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