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Abstract:
In this paper, the design and implementation of a non‐
linear model‐based predictive controller (NMPC) for pre‐
defined trajectory tracking and to minimize the control
effort of a smartphone‐based quadrotor are developed.
The optimal control actions are calculated in each iter‐
ation by means of an optimal control algorithm based
on the non‐linear model of the quadrotor, considering
some aerodynamic effects. Control algorithm implemen‐
tation and simulation tests are executed on a smartphone
using the CasADi framework. In addition, a technique
for estimating the energy consumed based on control
signals is presented. NMPC controller performance was
compared with other works developed towards the con‐
trol of quadrotors, based on an H∞ controller and an
LQI controller, and using three predefined trajectories,
where the NMPC average tracking error was around 50%
lower, and average estimated power and energy con‐
sumption slightly higher, with respect to theH∞ and LQI
controllers.

Keywords: Quadrotor, Model‐based Predictive Control,
Smartphone, Trajectory Tracking, Energy Consumption.

1. Introduction
Interest in unmanned aerial vehicles (UAV) control

has grown signi icantly in recent years in research
areas focused on both military and civil applications
(e.g., intelligence, reconnaissance, surveillance, ex‑
ploration of dangerous environments). One type of
UAV that has caught the attention of the scienti ic
community is the quadrotor which, because of its
size, mechanical simplicity, low cost, maneuverability,
light autonomy, and wide range of applications, is
increasingly deployed and able to replace humans in
dif icult and risky tasks.

To develop a quadrotor’s control system, it is
necessary to measure the position and orientation
of the vehicle, which requires a light control card
and various sensors. These features can be found in
systems embedded in devices such as smartphones,
whose use has grown rapidly in recent decades. Hard‑
ware features such as processing power, memory,
sensors, and communication technologies, as well
as its programmable architecture, combine to pro‑
vide a lot of potential bene its in mobile application
development, so that the smartphone can execute
complex computational tasks and make use of its
peripherals [1].

Due to their features, quadrotors are increasingly
used in smartphone‑based robots and unmanned
vehicles as part of closed‑loop control systems. In [2],
a mobile application is developed to measure and
control the angular position of a test‑bed, where
a smartphone is located, feeding back its position
using its embedded sensors and calculating the
control signal using a PD controller. In [3], an au‑
tonomous robot controlled via an Android‑based
smartphone is developed using odometry derived
from the robot’s wheels and image recognition using
the smartphone’s camera to obtain a stereo image to
describe three‑dimensional objects. This allows the
robot to reach a certain position in a room and avoid
obstacles placed in its way. Taking advantage of the
inherent bene its of using an embedded system such
as a smartphone, in the work developed in [4] the
jOptimizer framework (based on java) and the CasADi
framework (based on C) were tested to solve an MPC
control optimization problem for the control of a
smartphone‑based quadrotor for trajectory tracking.
It can be seen that CasADi enables the solving of
non‑linear programming (NLP) problems, achieving
shorter processing times and less tracking error.

Aerodynamic effects have signi icant impact on
energy optimization and trajectory tracking, helping
researchers to get closer to real‑life quadrotor perfor‑
mance, so that more appropriate control signals can
be calculated. In [5], the quadrotor’s energy consump‑
tion is studied in three types of trajectories (minimum
acceleration, jerk, and snap), contributing to the
trajectory planning based on aerodynamic effects to
improve energy ef iciency in vehicles using an opti‑
mization algorithm. In [6], position error reduction
by incorporating aerodynamic drag into the dynamic
model of a quadrotor and performing a drag and
thrust compensation is achieved in single direction
displacement tests and control actions computing via
an ODROID‑C2 card. In [7], the mathematical model of
a DC motor (including aerodynamic drag losses) and
the dynamicmodel of a quadrotor are considered, and
two problems are formulated to optimize trajectories
withminimumenergy consumption, subject to system
constraints, with minimal computing time and ixed
energy consumption, to identify an energy ef iciency
function that quanti ies the energy saved in a mission.

Developments have been made around optimal
control for trajectory tracking and energy consump‑
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tion optimization in quadrotors. One of the most
widely used optimal controllers is the Model‑based
Predictive Control (MPC), which aims to ind the
optimal control signals by minimizing a cost function,
subject to the system’s dynamics, inputs, and state
variables, among other constraints. For this purpose,
an optimal control problem (OCP) is solved at each
iteration along a prediction horizon. In [8], a linear
MPC controller is used to move a quadrotor in one
direction (round trip) using information provided
by a disturbance estimation model to suppress its
effects. In [9], a particle ilter MPC (PF‑MPC) control
is presented, which has advantages of conventional
MPC and adds measured noise and unmeasured
disturbances effects to follow a 2D trajectory and
minimize disturbances in a quadrotor. In [10], a
method to generate trajectories through a 3D terrain
for a quadrotor light using an MPC with acceleration,
position, and jerk linear constraints is presented,
as well as the terrain map cost, solving a convex
optimal control problem using the CVX package.
In [11], a hierarchical MPC control is applied to a
leet of quadrotors, which consists of a linear and
time‑varying MPC (LTV‑MPC) at the top level to
generate trajectories and avoid obstacles, and a linear
and invariant in time MPC (LTI‑MPC) at the lower
level to stabilize each quadrotor.

In reviewed studies, no research and develop‑
ment around MPC controller implementation using
a quaternion‑based non‑linear quadrotor model
were found. In addition, no online non‑linear MPC
(NMPC) has been implemented using a smartphone
to reduce trajectory tracking error or energy con‑
sumption reduction. For these reasons, this paper
presents a novel design and implementation of
NMPC controllers based on the dynamic model of a
quadrotor, considering aerodynamic effects, for pre‑
de ined trajectories tracking and energy consumption
monimization. The optimal control problem is solved
using the CasADi framework for the control algorithm.

This paper is structured as follows: a dynamic
model of the quadrotor in X con iguration, including
the aerodynamic effects and the estimation of energy
consumption, is presented in Section 2; an MPC op‑
timal control problem is de ined in Section 3; in Sec‑
tion 4, the implementation of the designed MPC con‑
trollers and trajectory tracking tests are performed;
and conclusions are presented in Section 5.

2. Quadrotor Model
A quaternion‑based quadrotor dynamic model is

used [12–15],whichhas advantages for eliminating ef‑
fects such as gimbal‑lock and the discontinuities of the
Euler angles‑based model [13]. This model includes
the aerodynamic effects due to translational drag, ro‑
tational drag, and gyroscopic torque. The system dy‑
namics can be expressed in relation to an inertial ref‑
erence frame to measure the quadrotor position, and
to a body‑ ixed frame to measure the quadrotor rota‑
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Fig. 1. Quadrotor scheme in “X” configuration.

tion, as shown in Figure 1.
The quadrotor model is based on the state vector

which is de ined as:

X =
[
ξT ξ̇T qT ηT

]T
, (1)

where ξ =
[
x y z

]T and ξ̇ =
[
ẋ ẏ ż

]T indi‑
cate the position and velocity, respectively, in the in‑
ertial reference frame, q =

[
q0 q1 q2 q3

]T is the
orientation quaternion, and η =

[
ωx ωy ωz

]T rep‑
resents the angular velocity of the quadrotor, both in
the body‑ ixed frame. Furthermore, the input vector
U =

[
Fth τ

]T
=

[
Fth τx τy τz

]T is de ined as:

U =


Fth

τx
τy
τz

 =


1 1 1 1

−kM kM −kM kM
−Lx −Lx Lx Lx

−Lx Lx Lx −Lx



F1

F2

F3

F4

 ,

(2)
where Fth, τx, τy , and τz indicate the thrust on the
z axis and the torques on the x, y, and z axis in the
body‑ ixed frame, and Fi = kT i

2(i = 1, 2, 3, 4) is
the thrust applied by the i‑th motor. The quaternion‑
based quadrotor model will be de ined as:

f (x, k) =

ξ̈q̇
η̇

 =


q ⊗

[
0

Fth/m

]
⊗ q∗ + g − 1

mDv

1
2q ⊗

[
0
η

]
J−1
q (τ − η × Jqη − τgyro −Dη)

 ,

(3)
wherem is the quadrotormass, g is the gravity vec‑

tor, and Jq = diag (Jxx, Jyy, Jzz) is the vehicle inertia
matrix. Dv , Dη , and τgyro correspond to the aerody‑
namic losses due to translational drag, rotational drag,
and gyroscopic torque, respectively, which are de ined
as follows:

Dv = Kvdiag(Rqξ̇)Rqξ̇, (4)

τgyro = Jr

4∑
i=1

η ×

 0
0

(−1)iωi

, (5)

Dη = Kηdiag(η)η, (6)
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whereKv andKη are the diagonal matrices that de‑
ine the translational and rotational drag coef icients,
respectively, Jr is the rotor moment of inertia, andRq

is the quaternion rotation matrix de ined as:

Rq =

2 (q20 + q21
)
− 1 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q0q3 + q1q2) 2
(
q20 + q22

)
− 1 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q0q1 + q2q3) 2
(
q20 + q23

)
− 1

 .

2.1. Rotor Speeds Estimation
Since there are no sensors to measure motor

speeds, an estimation is obtained using the relation‑
ship between the control inputs and the thrust forces
of themotors. Furthermore, it is known that the thrust
force of the motor is proportional to the square of its
speed, such that:

Fi = kTω
2
i [N ] , i = 1, 2, 3, 4. (7)

By replacing equation 7 in equation 2, a relation‑
ship between control signals andmotor speeds is pre‑
sented. In thisway, solving the equation for the speeds,
it is determined that:

ω1 =

√
1

4kT

(
Fth − τx

L
− τy

L
− τz

kM

)
,

ω2 =

√
1

4kT

(
Fth +

τx
L

− τy
L

+
τz
kM

)
,

ω3 =

√
1

4kT

(
Fth +

τx
L

+
τy
L

− τz
kM

)
,

ω4 =

√
1

4kT

(
Fth − τx

L
+

τy
L

+
τz
kM

)
.

Speeds are used to calculate the gyroscopic torque
given in equation 5. To reduce the computational load
caused by the square roots that contain the estimated
speedsof themotors, a Taylor series linear approxima‑
tion of these equations is obtained as follows, based on
the inputs Ū =

[
mg 0 0 0

]T (hovering):

ω̄1 ≈ 1

4

√
mg

kT
+

1

4
√
kTmg

(
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)
,
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L
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Solving equation 5:

τgyro = Jr

 ωy

−ωx

0

 (−ω1 + ω2 − ω3 + ω4) .

2.2. Energy Consumption Estimation
Akey focusof this study is to reduce thepower con‑

sumption of the quadrotor. For this reason, the con‑
sumption from the quadrotor’s rotors is considered
since it ismuch higher than that of the other electronic

elements. The power consumed by each motor is cal‑
culated by:

Pi = Fiωi = kTω
3
i , i = 1, 2, 3, 4.

Therefore, the net power consumed by the rotors
is:

P =

4∑
j=1

Pi = kT

4∑
j=1

ω3
i . (8)

Furthermore, the energy consumed over time T is
related to the power through:

E =

∫
T

P.dt.

3. NMPC Controller
NMPC controller design is based on themathemat‑

ical non‑linear modelling of the system. An optimiza‑
tion problem is de ined tominimize tracking error and
the control signal. For this, optimal control inputs are
calculated by solving an optimization problem in each
instant of time. The optimal control problem is repre‑
sented as [16,17]:

minimize
u

Np∑
k=1

[
(ξk − rk)

T
H (ξk − rk) + uT

kRuk

]
subject to xk+1 = RK4 (f (xk,uk) , Ts) , k = 1, . . . , Np − 1,

xmin ≤ xk ≤ xmax, k = 1, . . . , Np − 1,

umin ≤ uk ≤ umax, k = 1, . . . , Np − 1,

∥qk∥ = 1, k = 1, . . . , Np,

x0 = xest,
(9)

whereRK4 is the fourth order Runge‑Kutta integrator
applied to the model given by equation 3 and is evalu‑
ated at (xk, uk).H andR are diagonalmatrices which
contain the reference tracking and control weights for
the cost function. The estimated states vector xest is
fed back at each iteration to compute the next opti‑
mal control signal. This algorithm was implemented
in Android using C code generated through the CasADi
framework.

4. Implementation Results
Performance tests were developed using two C

functions created inMatlab via the CasADi framework:
one function calculates the optimal control signal uk

and the other feeds back the estimated states xk+1

by evaluating the quadrotor dynamic function using a
fourth order Runge‑Kutta integrator. Estimated states
vector xest corresponds to the xk+1 state calculated
in the previous iteration, which is used as the initial
state for the optimal control problem. To implement
the light control algorithm, an LG Nexus 5X smart‑
phone with a Hexacore Qualcomm Snapdragon 808
CPU (with a maximum clock speed of 1.8 GHz), 2 GB
of RAM, and Android 8.0 operating system was used.
In addition, three test trajectories were de ined: the
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Tab. 1. Comparison of MPC controllers implemented on Android.

tev [ms]Model Trajectory
tmean σt

RMSE
[m]

Pmean

[kW ]
Emean

[kJ ]

Non‑linear
Square 42.29 10.94 0.09 9.73 779.47
Helical 59.47 31.82 0.49 9.74 584.91
Crop 59.47 23.97 0.38 9.74 730.95

Non‑linear
+ Aero

Square. 84.69 39.55 0.07 9.73 779.47
Helical 86.06 45.48 0.49 9.74 584.91
Crop 73.15 19.40 0.38 9.74 730.94

square trajectory is de ined as a square with side
lengths of 2 m, whose vertices are located at (0, 0, 2),
(2, 0, 2), (2, 2, 2), and (0, 2, 2); the helical trajectory is
de ined as an ascending spiral with a radius of 2 m
and origin at (0, 0, 3) that reaches a height of 8m; and
the crop trajectory is represented by a series of lines
that simulate movement through a crop, so that the
quadrotor starts its trip at position (0, 5, 2) and ends
at position (7.5, 0, 2). A prediction horizonNp = 20 is
used in the simulations.

In preliminary tests, a comparison was made
between two types of MPC controllers: an MPC
controller based on the non‑linear model without
aerodynamics and an MPC controller based on the
non‑linear model including the mentioned aerody‑
namic effects. This comparison was carried out to
analyze the evaluation times, tracking errors, and es‑
timated power and energy consumption. The results
of the tests implemented on the smartphone using
the CasADi framework are shown in Table 1, where
tev is the evaluation time with mean evaluation time
tmean and standard deviation σt, RMSE is the root
mean square trajectory tracking error, and Pmean and
Emean are the mean power and energy consumption.
The mean evaluation time for the non‑linear MPC
control without aerodynamics was 53.74 ms, while
the average evaluation time for the non‑linear MPC
control with aerodynamics was 81.30ms. The average
trajectory tracking error for the non‑linear MPC
control without aerodynamics was 0.32 m, while for
the non‑linear MPC control with aerodynamics it was
0.31 m. The estimated average power consumption
was 9.74 kW for the non‑linearMPC control bothwith
and without aerodynamics. The estimated average
energy consumption for the non‑linear MPC control
without aerodynamics was 698.44 kJ , while for the
non‑linear MPC control with aerodynamics it was
698.45 kJ .

Subsequently, trajectory tracking tests were
performed, where the performance of the non‑linear
MPC controller based on the model that includes the
aerodynamic effects was compared with H∞ and
LQI controllers, which were designed based on the
linearized model of the quadrotor, as shown in [18].
Tests were performed using Matlab and Simulink, and
results are shown in Table 2. Figure 2 shows square
trajectory tracking, where the MPC control shows
an RMS error of 0.04 m, which is much lower than

the tracking error of the H∞ and LQI controllers.
However, estimated average power and energy con‑
sumption was slightly higher than the LQI control, but
lower than the H∞ control. Figure 3 shows helical
trajectory tracking, where the MPC control shows an
RMS error of 0.22 m, which is much lower than the
tracking error reached byH∞ and LQI controllers, but
the estimated average power and energy consump‑
tion was slightly higher than both the LQI and H∞
controllers. Figure 4 shows crop trajectory tracking,
where the MPC controller shows an RMS error of
0.19m, which is almost half that of the tracking error
for the H∞ and LQI controllers, while the estimated
average power and energy consumption was slightly
higher than for the LQI andH∞ controllers.

Because light conditions outside are not ideal
for a quadrotor, a translation test is de ined where
pulses are applied to the position of the system to ana‑
lyze MPC control disturbance rejection. These distur‑
bances emulate wind low that can affect the move‑
ment of the aircraft along the trajectory. As can be seen
in Figure 5, the MPC controller stabilizes the quadro‑
tor to track reference trajectory, reaching a tracking
error of 0.07m.

Tab. 2. Comparison of MPC,H∞, and LQI controllers for
trajectory tracking.

Model Control RMSE
[m]

Pmean

[kW ]
Pmean

[kW ]

Square
MPC 0.04 9.91 647.52
H∞ 0.07 9.76 634.73
LQI 0.08 9.75 634.31

Helical
MPC 0.22 9.75 490.78
H∞ 0.95 9.75 487.83
LQI 0.84 9.75 487.64

Crop
MPC 0.19 9.74 636.73
H∞ 0.36 9.73 632.97
LQI 0.40 9.73 633.01

5. Conclusion
In this work, non‑linear model‑based predictive

control (NMPC) algorithms were implemented to
control a quadrotor for trajectory tracking, where an
optimization problem must be solved at each sam‑
pling instant. Controllers were designed via Matlab
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Fig. 2. Comparison of controllers on square trajectory
tracking.
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Fig. 3. Comparison of controllers on helical trajectory
tracking.
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Fig. 4. Comparison of controllers on crop trajectory
tracking.

using the CasADi framework and exported as C lan‑
guage iles, whichwere used as libraries to implement
an Android‑based smartphone application. The main
challenge of this development was to execute MPC
algorithms and emulate a quadrotor’s behavior on
a smartphone, taking advantage of its processing
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Fig. 5. NMPC controller disturbance rejection.

power, thus demonstrating the advantages of us‑
ing smartphones in dynamic system control loops
and their ability to handle an MPC controller with
computationally‑intensive calculations. Also, these
type of devices provide various sensors that can be
used for state estimation in real implementation. It
is recommended to use a smartphone with high pro‑
cessing power, so that calculations can be executed
without affecting the sampling time of the system.

Establishing the same optimal control problem
for both simulation cases (nonlinear MPC with and
without aerodynamic effects), a signi icant reduction
in tracking error and slight reduction of estimated
energy consumption was obtained using the NMPC
controller which considers aerodynamic effects. How‑
ever, a very similar performance can be achieved with
the NMPC controller without aerodynamics, which
requires less evaluation time to solve the optimal
control problem. However, an evaluation of the aero‑
dynamic effects on the system must be considered
according to the structure of the quadrotor used in
tests.

A nonlinear MPC (NMPC) controller was com‑
pared with H∞ and LQI controllers [18] in path
tracking tests, where NMPC control reached 50%
lower tracking error in square trajectory, 80% less
for helical trajectory and 40 − 50% less for the crop
trajectory. Estimated energy consumption was about
2% higher thanH∞ and LQI controllers in the square
trajectory and about 1%higher in the helical and crop
trajectory, due to the control effort. Also, depending
on the test trajectory, H∞ and LQI controllers had
to be adjusted to correct the tracking error, while
the MPC control used only one design for all tests.
It should be noted that NMPC controller was based
on the non‑linear model of the quadrotor, while the
H∞ and LQI controllers were based on the linearized
model, so input thrust compensation may be required
to hold the quadrotor on a desired height. It could
be noted that the energy consumption was lower
in the helical trajectory, which has a smooth shape
compared to the square and crop trajectories. This is
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because abrupt changes in trajectory due to ”corners”
require strong movements for the quadrotor and,
therefore, a greater control effort is required to follow
the reference path.

Although a quadrotor is an inherently unstable
system which has complex dynamics, a smooth tran‑
sient response was achieved by implementing the
NMPC controller using a smartphone. It was observed
that the settling time obtained by using theNMPC con‑
troller was lower than in the H∞ and LQI controllers
(about 80% less), which contributed to the reduction
of trajectory tracking error. This shows that the NMPC
control algorithm developed in this work can be im‑
plemented for real‑life applications where the aircraft
can be tested on demanding paths.
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