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Abstract: This study aims to investigate the dynamic pattern of landscape ecological units (LEUs) and analyse spatial 
variations of the ecological risk in Parangtritis coastal dune, Yogyakarta, Indonesia. A quantitative method was used 
in this research as part of landscape ecological analysis using a geographic information system. LEUs were interpreted 
by small format aerial photographs (SFAPs) and verified through field survey, then were calculated using the formula 
within grids to produce the ecological risk index (ERI) in the total area. According to the sub-class and class scenario, 
many LEUs showed changes in their landscape pattern. The ERI in the study area consisted of five levels (very low to 
very high), each of which was spatially varied. The ecological risk formed clusters coinciding with certain LEUs where 
fragility chiefly contributed to the sub-class scenario, while disturbance contributed to the class scenario.
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Introduction

An indication of land degradation is habitat 
fragmentation (Harmonis, Saud 2017). Habitat 
fragmentation is a landscape-scale process by 
which a large, continuous habitat is divided into 
smaller isolated patches with a smaller total area 
that are separated by various human-modified 
land uses, changing the matrix of the landscape 

structure (Shi et al. 2015). In this context, there 
have been prior studies investigating into chang-
es in land use/land cover (LULC), landscape 
pattern modification and landscape ecological 
risk (LER) assessment (Gong et al. 2015, Cao et 
al. 2019).

Ecological risk assessment is a process of 
evaluating the tendency of an object in an eco-
system to be ecologically impacted by exposure 
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to stressors (USEPA 1992). It was first tradition-
ally applied at the site scale with a chemical 
stressor and then developed for a non-chemical 
stressor (Hayes, Landis 2004). As a result, LER 
assessment has been widely used as an effec-
tive ecological measure to support decision for 
landscape management (USEPA 1998, Wang et 
al. 2020) and thus frequently studied on a re-
gional scale, for example, mountains (Wang et 
al. 2020, Gong et al. 2021), coastal areas (Li et 
al. 2017, Zhang et al. 2020) and administratively 
defined regions that cross various topographies 
(Zhang et al. 2018, Cao et al. 2019, Liu et al. 2020). 
However, LER assessment in coastal dunes is 
still under-researched.

LER indicates landscape degradation. 
Although the perspective of degradation in one 
landscape may be different from that in anoth-
er, it is generally accepted that in a landscape 
structure, the matrix should be maintained 
and protected from degradation. For instance, 
Parangtritis coastal dune is naturally dry and 
grows in size depending on the amount of loose 
sand particles carried by the wind (Sunarto 2014). 
Consequently, the abiotic element such as the 
bare land should be the main object of protection, 
which is contrary to hilly terrains or forests that 
require biotic elements to be maintained (Günlü 
et al. 2009, Adepoju, Salami 2017) for their ecolog-
ical sustainability heavily relies on biodiversity.

Remote sensing products such as Landsat im-
agery with medium spatial resolution are con-
sidered adequate to evaluate LER on a medium 
scale. Nevertheless, when calculating the ecolog-
ical risk index (ERI), its grid size selection needs 
to be optimised. For example, spatial data with 
a 30-m resolution can be utilised in a 1:60,000 
scale or smaller (Tobler 1987); therefore, accord-
ing to Rossiter (2000), the minimum mappable or 
observable area is 14.29 hectares or 378 × 378 m. 
LER is currently mapped in grids measuring 
mostly 5 × 5 km up to 20 × 20 km. There have 
only been a limited number of studies using finer 
grid size, but at the same time, using a coarser 
grid size will generate a lower spatial autocorre-
lation (Xie et al. 2013, Liu et al. 2020).

The objectives of this study are to (1) investi-
gate the dynamic pattern of landscape ecological 
units (LEUs) based on LULC and human inter-
vention and (2) assess the LER by analysing its 
spatial variation in Parangtritis coastal dune.

Materials and methods

Study Area

This study was conducted in Parangtritis 
coastal dune, a landscape located in vicinity to 
Parangtritis village in the southern part of the 
Special Region of Yogyakarta of Java Island, 
Indonesia (Fig. 1). As for the absolute location, 
it spans from 110°17′0″ E, 8°0′30″ S to 110°20′30″ 
E, 8°1′30″ S. The dune area is bordering with a 
wide beach and Indian Ocean from the south, the 
Opak River from the west, a highland with a high 
cliff from the east, and a partly forested and set-
tled agricultural land from the north.

The Parangtritis coastal dune area is 412.8 
ha, consisting of the supporting zone in the east 
(176.4 ha), the centre or core zone (141.1 ha) and 
the restricted zone in the west (95.3 ha). It is a 
unique landscape as it is the first-discovered and 
one of the last not urbanised coastal dunes con-
taining a barchan morphology in Southeast Asia 
(Sunarto 2014, Nehren et al. 2016). This barchan 
has been formed in the tropical-humid climate 
zone, specifically in the coastal area, instead of in 
the arid zone where it is usually formed (Sunarto 
et al. 2010).

Its morphology consists of small coastal dunes 
with wind migrating towards southeast barchan 
forms, and then entering the coastal agricultural 
and settled (inhabited) land. The beach has tide 
and wave which influenced/inducted the for-
mation of the coastal dunes. The tide and wave 
move and reach the beach covered by sand which 
has 40–80 m width. The barchan forms are de-
veloped due to wind-driven transport from the 
beach to the land with southeast direction. The 
height of the barchan nearly reached 11 m in 2011 
but decreased 2 m in 2020.

This ecosystem is an almost natural habitat 
characterised with a moderate climate (D) based 
on Schmidt–Ferguson classification of the mete-
orological statistics (Putri 2008), an annual rain-
fall of 1000–2000 mm (Services of Public Works, 
Housing, Energy and Mineral Resources for the 
Special Region of Yogyakarta 2014), an annual 
temperature of 26–27°C (Malawani 2014) and 
an average wind speed of 5.3–9.2 m s−1 (Services 
of Public Works, Housing, Energy and Mineral 
Resources for the Special Region of Yogyakarta 
2014). The word almost presents before the 
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natural habitat because other than the native flo-
ra and fauna, there are also introduced flora and 
fauna on the sand dunes. Moreover, human in-
tervention could be seen by their activity and the 
distribution of non-bare land cover observed rap-
idly from the aerial photography, mainly within 
the supporting zone and restricted zone.

The study area is a habitat for some native 
desert-like flora, but coastal and tropical climate 
zones are characterised by torn-like small-leaf 
and long-root flora. Other than native flora, there 
are also introduced flora such as Eupatorium in-
ulifolium, Acacia mangium, Swietenia mahagoni, 

Anacardium occidentale, Gliricidia sepium and 
Casuarina equisetifolia. The non-native flora is con-
firmed to be a disturbance agent for the coastal 
dune because it has a wetter condition that will 
affect the creation of a new ecosystem that is not 
suitable with the original coastal dune condition 
(Services of Environment for the Special Region 
of Yogyakarta 2017). Besides, the introduced flo-
ra tend to indirectly change the dune morpholo-
gy through the change in process intensity.

The Parangtritis coastal dune materials come 
from Merapi volcano, transported through riv-
ers to meet the Opak River as the mouth before 

Fig. 1. Location of Parangtritis coastal dune (source: National Geospatial Agency 2020, processed).

Fig. 2. Illustration of the Parangtritis coastal dune formation.
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entering the Indian Ocean. The wave and current 
move the sand from the ocean to be deposited 
on the beach. After that, the wind transports the 
dry sand from the beach to the land. The wind 
that brings the dry sand will slowly deposit the 
sand on the land, forming dunes, when the ener-
gy becomes lower and the movement is trapped 
by the Batur–Agung Hills (Fig. 2). Since 1985, 
Fakhruddin et al. (2010) reported that the Kretek 
Bridge over the Opak River has stimulated the 
development of infrastructure in Parangtritis to 
support its function as a tourism location, includ-
ing the settlement. The material supply from the 
Opak River reduces with time. It is also aggravat-
ed by the buildings and Casuarina forest along 
the beach, which become an obstacle for the wind 
to bring the sand to the land.

Determining landscape ecological units

A landscape ecological units (LEU) is a unit 
in analysing an ecological system or geosys-
tem, which consists of geology, relief and natu-
ral conditions creating the materials within the 
land (Burel, Baudry 2003). The LEU can be deter-
mined based on the terrain landscape, non-ter-
rain landscape (such as LULC) or a combination 
of the two (Chattaraj et al. 2018). This study as-
sumed Parangtritis coastal dune as one terrain 
landscape coastal dune, while the next level 
landscape is characterised by the LULC for de-
tailing the LEU.

The landscape ecology has a relation with 
anthropogenic geomorphology (Csorba 2010). 
Therefore, the anthropogenic impact to the land-
scape containing human intervention proposed 
by Szabó (2010) can be considered a determi-
nation method for the LEU. In this study, LEUs 
made by factoring in human intervention are 
called landscape class, while the one designed 
based on LULC is termed landscape sub-class. 
Small format aerial photographs (SFAPs) in 2011 
and 2020 with spatial resolutions of 30  cm and 
10  cm, respectively, were visually interpreted 
to identify the sub-class. The minimum map-
ping unit applied to the image interpretation 
for a 1:2000 map is about 158.76  m2. A map of 
the coastal dune obtained from the Parangtritis 
Geomaritime Science Park was also consulted in 
the SFAP interpretation, with some adjustment 
to the national classification system. Each iden-
tified LULC was complemented with human in-
tervention types proposed by Szabó (2010). The 
interpretation results, i.e., LEU maps, were later 
verified through a fieldwork and then re-inter-
preted and revised.

Assessing landscape ecological risk

A landscape ecological risk was assessed by 
calculating the landscape disturbance and land-
scape fragility (Xie et al. 2013) using the land-
scape class and sub-class scenarios with the 
pivot tables in a spreadsheet program that were 

Table 1. Formulas to calculate the landscape disturbance.

Index Equation Assessment Unit
Landscape disturbance
(Xie et al. 2013; X. Zhang et al. 
2013; Liu et al. 2020)

Si = aCi + bNi + cDi
a + b + c = 1

a = 0,5; b = 0,3; c = 0,2

landscape class or sub-class

Landscape fragmentation
(X. Zhang et al. 2013; Liu et al. 
2020)

landscape class or sub-class

Landscape isolation, segmenta-
tion, or splitting
(Xie et al. 2013; X. Zhang et al. 
2013; Liu et al. 2020)

landscape class or sub-class

Landscape dominance
(Jin et al. 2019)

landscape class or sub-class

Note: ni = the number of patches of landscape i; Ai = the total area of landscape i; A = the total area of all landscape 
types; Qi = the number of sampling units (including grid) of patch i divided by the total number of sampling units for 
all landscape types; Mi = the number of patches of landscape i divided by the total number of patches of all landscape 
types; Li = the area of landscape i divided by the total area of all landscape types.
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integrated with a set of tabular geographic in-
formation system. Landscape disturbance (Si) 
indicates the degree of interference in different 
landscapes and for this reason considers existing 
human activities. It was calculated based on the 
detected landscape pattern, including fragmen-
tation, isolation or dominance. The landscape 
fragmentation index (Ci) measures the complex-
ity of a segmented landscape’s spatial structure 
and the degree of disruption due to human activ-
ities. The landscape isolation index (Ni) reflects 
the degree of a patch distribution for a certain 
landscape type. The landscape dominance index 
(Di) explains the degree of the patch’s influence 
on the landscape pattern formation and changes. 
The equations used to calculate these indices are 
presented in Table 1.

Landscape fragility (Fi) in this study was as-
sessed using an analytical hierarchy process 
(AHP) (Liu et al. 2020), which was performed 
using the spatial multicriteria tool in ILWIS 3.4, 
i.e., pairwise comparison. The landscape fragility 
index is the priority value belonging to each class, 
which is accepted because the consistency ratio is 
0.0754 (<0.1). The fragility index of each class was 
applied to the sub-class (Xie et al. 2013, Shi et al. 
2015, Liu et al. 2020) because the AHP runs prop-
erly only with a limited number of pair compari-
sons (Ozdemir 2005). Further explanation is avail-
able in a previous study (Listyaningrum et al. in 
press), with the summary presented in Table 2.

The ecological risk index (ERI) of the iden-
tified landscape types was calculated using the 
equation in Table 3, as formulated by Zhang et 

Table 2. Landscape fragility index (Fi) of various landscape classes based on their genesis (natural processes or 
human interventions).

Landscape 
class Natural Agrogenic Tree 

agrogenic
Industro-

genic
Info-telecom-
munication

Tourism-
sports Traffic Urbano-

genic
Water

management

Index 1.000 0.686 0.145 0.472 0.068 0.319 0.098 0.048 0.215

Table 3. Landscape ecological risk index calculation.

Index Equation Assessment Unit

Ecological risk
grid
(if one grid contains > 1 classes or sub-classes, their indices are 
summed, adjusting the area proportion)

Landscape loss degree Ri = Fi × Si landscape class or sub-class

Note: Aki = the area of landscape I within grid k; Ak = the area of grid k; Fi = the fragility index of landscape i; Si = the 
disturbance index of landscape i.

Fig. 3. Division of the Parangtritis coastal dune (risk calculation area) into grids of equal size and the centroid 
or sampling centre.
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al. (2013). The assessment unit of the ERI was a 
grid of equal size whose value was represent-
ed by a centroid (Fig. 3). The grid is suitable for 
assessment in a small area, such as the coastal 
zone observed in this study (Liu et al. 2020). The 
grid was 63  ×  63  m in size, which is the mini-
mum area mappable or observable in a 1:10,000 
assessment.

Spatial interpolation enables ecological mod-
elling, which transforms vector data, including 
centroid, into raster data with continuous values. 
Some aspects to consider while selecting an inter-
polation technique are the sample data, type of 
surfaces to be generated and tolerance of the esti-
mated errors (Kumar, Sinha 2018). This study se-
lected Kriging (indicator type) because it has the 
least root-mean-square error (RMSE) among in-
terpolation techniques (Requia et al. 2019), which 
satisfies the spatial distribution of the ERI value 
in the study area.

Data analysis

This study analysed the LER using global 
and local spatial autocorrelations (Xie et al. 2013, 
Zhang et al. 2018). The former measures the de-
gree of global correlation and disparity between 
ecological phenomena using the common indi-
cator Moran’s I, while the latter uses a local in-
dicator of spatial association (LISA) to illustrate 
the spatial distribution of local heterogeneity and 
determine the degree of the spatial disparity be-
tween a region and its surroundings. The LISA 
detects any significant spatial clustering created 

by a region and its peripheries (Anselin 1995). 
The formulas used in the global and local spatial 
autocorrelations are shown in Table 4.

Results

Landscape ecological unit sub-classes 
constructed from LULC types

The spatial distribution of LULC in the study 
area is illustrated in Fig. 4. There were 34 and 37 
sub-classes of LEUs in 2011 and 2020, respective-
ly, corresponding to the detailed classification in 
Liu et al. (2020). The study area was mainly cov-
ered by bare land and sparse shrubs. In 2011, the 
bare land was more expansive (29.84% of the to-
tal area) than the sparse shrubs (19.89%), making 
it the landscape matrix for this year. However, 
in 2020, it had decreased significantly and be-
came the second-largest LULC (19.78%) after the 
sparse shrubs (25.68%).

Besides the area metrics, aggregation metrics 
such as the number of patches were also con-
sidered in the LER calculation. The number of 
patches in the study area varied from 1 to 278 in 
2011 and from 1 to 338 in 2020. In 2011, the bare 
land had the highest number of patches (278), fol-
lowed by sparse shrubs with 225 patches, where-
as in 2020, sparse shrubs had the most patches 
(338), followed by bare land, which amounted to 
253. Figure 4A, B also show that the landscape 
became more diverse significantly including (1) 
the addition of new LULCs such as fisheries and 

Table 4. Calculation of global and local spatial autocorrelation.
Global spatial autocorrelation Local spatial autocorrelation

Note: I = Moran’s I; xi = the observed value of certain attribute in spatial unit i; xj = the observed value of certain 
attribute in spatial unit j; x = the mean value of regional variables; S2 = mean squared deviation; wij = spatial weight 
value (expressed by n dimensional matrix, W [n × n]); Var(I) = the variance of Moran’s I; E(I) = the expected value of 
Moran’s I; zi = standardisation of the observation value in research unit i; zj = standardisation of the observation value 
in research unit j; zscore = the significance level of Moran’s I.
Interpretation of clusters derived from using LISA: high-high = the increasing value in a region will be followed by 
increasing values in adjacent regions; high-low = the increasing value in a region will be followed by decreasing val-
ues in adjacent regions; low-high = the decreasing value in a region will be followed by increasing values in adjacent 
regions; low-low = the decreasing value in a region will be followed by decreasing values in adjacent regions.
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main road to the supporting zone; (2) in the core 
zone, the bare land decreased in size but the for-
est area increased in size; and (3) the bare land in 
the restricted zone also decreased, and the one in 
the southeast was transformed into fisheries and 
tourist sites.

Landscape ecological unit classes constructed 
from human intervention types

The spatial distribution of human interven-
tions is presented in Fig. 5. Parangtritis coastal 
dune was grouped into natural landscape and 
anthropogenic landscape; the latter was subdi-
vided into eight classes. In the course of 10 years 
from 2011 to 2020, natural landscape dominated 
the dune, covering up to 64.10% and 51.25% of 
the entire area, respectively.

The number of patches in the study area was 
in the range of 1–118 in 2011 and 3–246 in 2020. 
Natural landscape comprised the highest num-
ber of patches in 2011, which later lowered to the 
second-highest in 2020 after agrogenic landscape. 
Figure 5 illustrates that tree agrogenic was the 
main landscape class in the supporting zone, nat-
ural in the core zone and urbanogenic and tour-
ism-sports in the restricted zone. In 2010, indus-
trogenic was found in a small proportion in the 
supporting zone before expanding and sprawl-
ing to the restricted zone in 2020. Similarly, the 

landscape formed by info-telecommunication 
interventions showed a similar pattern of change 
to industrogenic. Anthropogenic interventions 
such as narrow paths called corridors formed the 
traffic landscape, which was distributed every-
where. Water management was a minor compo-
nent of the core zone and restricted zone, which, 
like the traffic, formed corridors too.

Landscape ecological risk description

The LER assessment produced ERI values 
ranging from 0.0 to 1.0, which are spatially dis-
tributed in Figure 6. To understand the ecologi-
cal risk level, these values were equally divided 
into very low (ERI ≤ 0.2), low (0.2 < ERI ≤ 0.4), 
moderate (0.4 < ERI ≤ 0.6), high (0.6 < ERI ≤ 0.8) 
and very high (0.8 < ERI ≤ 1.0) (Gong et al. 2015). 
Figure 7 shows that all these LER levels changed 
insignificantly in their spatial distribution, except 
for the very low risk in the 2011 landscape class 
(LEU) scenario.

Table 5 shows that for each scenario of land-
scape classes and sub-classes, Moran’s I was 
higher than zero, ranging from 0.4112 to 0.6342. 
It indicated that within the 63 × 63-m grid, there 
was a positive spatial autocorrelation between the 
LER indices. A relatively high Moran’s I also sug-
gested clustering of LER in the study area, except 
for the 2011 sub-class scenario whose Moran’s I 

Fig. 4. Spatial distribution of land use and land cover types in 2011 (A) and 2020 (B).
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Fig. 5. Spatial distribution of human interventions in 2011 (A) and 2020 (B).

Fig. 6. Spatial distribution of the landscape ecological risk (LER) levels for every landscape ecological unit 
(LEU) generated with four scenarios: 2011 sub-class (A), 2020 sub-class (B), 2011 class (C) and 2020 class (D).
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was 0.4112 (< 0.5). This may have caused the spa-
tial distribution of the ERI values in the 2011 sub-
class to be different from those in other scenarios, 
specifically in the core zone (Fig. 6A). Overall, 
both class and sub-class scenarios showed that 
Moran’s I increased in the years 2011–2020, sig-
nifying an increasingly stronger global spatial 
autocorrelation. The minimum Zscore in the study 
area was 18.0872 (> 1.96). As a result, at a signif-
icance level of 0.05, the null hypothesis was re-
jected. In other words, the values of the spatial 
attributes have spatial autocorrelation.

The local spatial autocorrelation of the LER in 
the study area is presented in four LISA cluster 
maps in Figure 8, which enable the analyses of 
Figure 6 in a cluster view and the significance of 
a unit’s LER level on its neighbours. The autocor-
relation process yielded high–high and low–low 
clusters, high–low and low–high outliers and 

Fig. 7. Area of the five landscape ecological risk (LER) 
levels for each scenario.

Fig. 8. Local indicator of spatial association (LISA) cluster map showing the local spatial autocorrelation of 
landscape ecological risk (LER) in the Parangtritis coastal dune.

Table 5. Global spatial autocorrelation of landscape 
ecological risk (LER) in the Parangtritis coastal dune.

Scenario Moran’s I Zscore

Sub-class 2011 0.4112 18.0872
Sub-class 2020 0.6342 27.0196
Class 2011 0.5775 24.6668
Class 2020 0.6177 26.3570
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not significant in 63 × 63 m grids. Each scenario 
has specific LEUs and patterns depending on the 
cluster formed.

Discussion

Consideration in determining landscape 
ecological units

Image interpretation elements in remote sens-
ing, landscape structure in the landscape ecology, 
the LULC classification system and the human 
intervention classification system have been con-
sidered in defining the LULC types in this study. 
Referring to Lillesand et al. (2015), the eight keys 
of image interpretation are size, shape, shadow, 
tone, colour, texture, pattern and association. 
Because the landscape of the Parangtritis coast-
al dune is characterised by linear objects such 
as corridors and non-linear objects such as ma-
trixes and patches (Forman 1995, Burel, Baudry 
2003), shape is the first element considered in in-
terpretation, instead of colour/tone. The LULC 
classification system has been developed using 
the national standard (National Standardisation 
Agency 2010, Geospatial Information Agency 
2016), with some modifications made to acquire 
spatial data and attributes of sub-classes in 2011 
and 2020.

In terms of LULC classification details, moni-
toring environmental elements with SFAP using 
the Szabó (2010) classification system simplifies 
the abiotic, biotic and cultural elements of LULC 
into two: abiotic and cultural. While non-built-up 
areas belong to the abiotic element, built-up areas 
are an example of the cultural element. Because 
fauna cannot be expressed in SFAP, the biotic 
element only comprises flora or vegetation. The 
flora in the study area are divided into native 
vegetation (abiotic) and introduced vegetation 
(cultural).

Szabó (2010) classified human interventions 
into montanogenic, industrogenic, urbanogen-
ic, traffic, water management, agrogenic, war-
fare, tourism and sports (in this study, tourism 
and sports are combined into tourism-sports). 
Montanogenic and warfare interventions are 
omitted because they do not exist in the study 
area. Overall, only human interventions that 
cause morphological changes like excavation, 

plantation or accumulation are observed. The 
derived LULC map has been used to investigate 
these alterations (Adzima et al. 2020).

The research factor is natural landscape be-
cause not the entire coastal dune is influenced 
by human interventions. The natural landscape 
consists of bare/vacant land, grassland, sparse 
shrubs, footpaths, litter accumulation and natu-
ral river. Bare land is the priority ecological unit 
in the landscape because it provides natural habi-
tats. Grassland and sparse shrubs are grown with 
native vegetation species that do not disturb the 
coastal dune formation (Services of Environment 
for the Special Region of Yogyakarta 2017). 
Footpaths and litter accumulation also do not 
significantly influence the morphology and the 
natural process occurring in the coastal dune. 
Natural river is distinguished from seasonal river 
because the former occurs naturally, whereas the 
latter is a construction installed on river banks 
with water management functions.

The class agrogenic has been modified and sub-
divided into agrogenic (general agrogenic) and 
tree agrogenic to accommodate varying species 
of introduced vegetation in the study area. Tree 
agrogenic is separated from agrogenic because 
the local multiple-species and Casuarina forests 
have a relatively high surface (canopies), which 
together with green paths and dense shrubs cre-
ate windbreakers on the coastline (Syahbudin et 
al. 2013a, b) and potentially block sand-carrying 
wind as the primary agent in coastal dune forma-
tion. Moreover, some vegetation species are not 
native to the Parangtritis coastal dune ecosystem 
such as A. mangium, S.mahagoni and A. occidentale 
in the multiple-species forest; C. equisetifolia in 
Casuarina forests and green paths; and G. sepium 
in the green paths and dense shrubs (Oktavianto, 
Handayani 2017, Services of Environment for the 
Special Region of Yogyakarta 2017, Widyantoro, 
Handayani 2017). In other words, most forests in 
the coastal dune are human-made and thus in-
cluded in the cultural, instead of biotic, element. 
An example of a biotic element is Borassus flabel-
lifer, which is a high, robust tree that is sparsely 
distributed and the covered area does not meet 
the minimum mapping unit.

The research has added another class to de-
scribe the human interventions in the study area, 
that is, info-telecommunication. It consists of 
transceiver and monitoring stations whose area 
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coverage meets the minimum mapping unit. 
These constructions are analysed in LER because 
their height can create barriers to sand-carrying 
wind and influence the coastal dune formation. 
However, the structures generally have voids of 
varying sizes, creating a surface through which 
wind can still flow, and for this reason, they are 
not included in the urbanogenic landscape.

Analysis of landscape ecological risk

The landscape ecological risk (LER) values, 
as expressed in ERI, range from 0.0 to 1.0. This 
range of values likely results from the selected 
spatial interpolation method or the multiplica-
tion of landscape disturbance and fragility. In the 
spatial interpretation, the sampling points are 
grids of equal size with a centroid, resulting in an 
equidistant ERI. Kriging indicators are believed 
to contribute to the derived index values (Kumar, 
Sinha 2018). Because the sampling points are dis-
tributed evenly, the spatial value of the LER gen-
erates a very low RMSE. The four scenarios have a 
somewhat wide variety of landscape disturbance 
index (0.37–68.18) and landscape fragility index 
(0.048–1.0). Because the disturbance and fragili-
ty index values were multiplied proportionally 
within the grid, the LER value (or ERI) can vary 
from 0.0 to 1.0.

Based on the derived LISA cluster maps, 
bare land, grassland and sparse shrubs form 
high-high clusters. These three sub-classes natu-
rally have a high landscape fragility index that 
contributes to the LER calculation (Zhang et al. 
2018). Sheds, non-irrigated croplands, roofed/
indoor tourist attractions and parking areas also 
form high–high clusters, which is associated with 
high landscape disturbance (Liu et al. 2020), es-
pecially intensive fragmentation (Wang et al. 
2020). Meanwhile, low–low clusters can be found 
in rice fields, non-irrigated croplands, livestock 
farms and sparse shrubs with high fragility but 
low fragmentation degrees. In addition, dense 
shrubs, multiple-species forests, settlements, 
Casuarina forests, roofed/indoor tourist attrac-
tions and unroofed/outdoor tourist attractions 
are LULCs with low–low clusters because of the 
relatively low fragility.

The derived LISA cluster maps also show 
that low–low clusters are mainly found in natu-
ral, tree agrogenic and urbanogenic landscapes. 

Tree agrogenic and urbanogenic landscapes are 
slightly fragile because of the low possibility of 
being converted to other landscapes, whereas 
the natural landscape is highly fragile. Previous 
studies assume that fragmentation contributes 
more to landscape disturbance than dominance 
and isolation (Xie et al. 2013, Zhang et al. 2013, 
Liu et al. 2020). Because the natural landscape 
is the matrix and the largest patch of the coastal 
dune observed, its low LER value is attributed to 
the low degree of fragmentation (Li et al. 2020). 
Even though it is slightly fragile, the tree agro-
genic landscape also forms high–high clusters 
because of the high disturbance in the northern 
supporting zone. Other than the tree agrogen-
ic landscape, high–high clusters are distributed 
in agrogenic, industrogenic and tourism-sports 
landscapes chiefly because these types of inter-
vention are relatively highly fragile.

There are some differences in LER between 
the class and sub-class scenarios. The sub-class 
scenario has bare land as the matrix or the largest 
patch, while the class scenario has natural land-
scape. Bare land is a sub-class included in the nat-
ural landscape, which has the highest landscape 
fragility (Zhang et al. 2018). On the one hand, 
the bare land forms a high–high cluster; on the 
other hand, the natural landscape is a low–low 
cluster. Despite the same level of fragility, their 
disturbance levels are different because of the 
landscape fragmentation: high in bare land (this 
sub-class has the greatest number of patches) and 
low in natural landscape because of the merging 
of bare land, grassland, sparse shrubs, litter accu-
mulation, footpaths and natural river. Other than 
these differences, the LER levels derived from 
the class and sub-class scenarios generally form 
a similar pattern, i.e., none of the scenarios indi-
cate a particular risk level that represents a linear 
landscape structure.

Figure 8 can also be used to explain Figure 7 
to obtain information about the temporal varia-
tion of LER clusters. There are more LER clusters 
in 2020 than in 2011 for both class and sub-class 
scenarios. However, based on the size, the 2020 
clusters are generally smaller than the 2011 clus-
ters. An increase in the number of clusters is in 
line with the addition of patches, whereas a de-
crease in the cluster size indicates a reduction in 
the mean size of the patch. According to Forman 
(1995), patch number addition and mean patch 
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size reduction typify fragmentation and dissec-
tion (fragmentation by linear elements). Because 
the LER levels show no indication of risk from a 
linear landscape structure, it can be inferred that 
the spatial ecological process occurring in the 
study area is fragmentation.

Land transformation caused by human in-
terventions is associated with the interaction of 
economy and ecology. Although human inter-
vention tends to prioritise economic interests, it 
is not always destructive but can give some pos-
itive values (Kubalikova et al. 2019). Landscape 
has multiple functions including ecological, so-
cial and economic (Li et al. 2020). Therefore, it 
is imperative that spatial planning to be applied 
(Cao et al. 2019, Wang et al. 2020) considering 
factors in natural habitats and ecosystems (e.g., 
bare land or natural landscape) as primary con-
servation areas (Liu et al. 2020). The Parangtritis 
coastal dune has been restored to protect the 
bare land or natural landscape (Hendrastuti et 
al. 2018), even though the restoration initiatives 
often focus on arranging fisheries and built-up 
areas (Laily et al. 2018). Restoration was selected 
as the best way to manage the Parangtritis coastal 
dune. It will help the sand dunes back to its initial 
condition slowly by reducing the remaining trees 
planted in the program since 1975 (Fakhruddin et 
al. 2010), without any hard structures. It does not 
prohibit people to do restricted economic activi-
ty. Some non-native flora and fauna are still alive 
on it (Łabuz 2015).

For ecological protection, it has been pro-
posed to prohibit afforestation and construction 
in the Parangtritis coastal dune, especially in 
the wind tunnel (Sunarto 2014), which includes 
the foredune and interdune of the core zone. 
However, in some other studies, reducing eco-
logical risk means improving the environment 
through reforestation (Peng et al. 2015, Zhang et 
al. 2018, Gong et al. 2021) because high LER is 
frequently assumed to result from deforestation 
(Wang et al. 2020) and desertification (Xie et al. 
2013). Furthermore, strategies to reduce LER are 
optimal when aimed at increasing matrix connec-
tivity (Xie et al. 2013).

This study has several limitations. It uses 
SFAP as reliable spatial data in a fine resolution 
to accommodate detailed mapping and LEU 
classification. However, for individual research, 
SFAP can be costly. Moreover, the most recent 

technology such as artificial intelligence has not 
been applied together with SFAP, which can 
otherwise facilitate the delineation of LEU and 
substantially reduce the time spent to perform 
visual interpretation. Human intervention is 
complex, and some may not be observable by 
SFAP. Furthermore, the study uses a relative-
ly simple calculation method (Cao et al. 2019), 
resulting in LER values that are sensitive to the 
grid size (Zhang et al. 2018) and scale (Liu et al. 
2020). The LER assessment is also to some ex-
tent subjective; therefore, AHP was used in the 
landscape fragility assessment to reduce the 
subjectivity. The derived model is static (Cao 
et al. 2019, Li et al. 2020) and only analyses the 
available data to illustrate the current condition, 
which is contrary to disaster risk assessment 
that projects future possibilities with existing 
data. The LER assessment results are also uncer-
tain (Cao et al. 2019; Liu et al. 2020) because the 
evidence in the field is rather lacking and is only 
limited to LULC and manifestation of human 
intervention. To provide recommendations for 
spatial planning, the LER assessment needs to 
use more reliable and specific methods to pro-
duce distinct results.

Conclusion

In summary, the ecological risk in the 
Parangtritis coastal dune can be assessed spa-
tially and temporally on a detailed scale. Fine-
resolution spatial data help achieve the mini-
mum mappable or observable area and produce 
detailed classification of LULC as a LEU in a 
sub-class scenario. Moreover, simplification by 
merging one or more sub-classes into a class of 
natural or anthropogenic landscape based on the 
types of human intervention is essential that it 
accommodates landscape fragility assessment 
with AHP. For instance, this study simplifies >30 
sub-classes during the study period by re-group-
ing them into nine classes. After the LER assess-
ment, it has been found that a significant LER 
value that forms clusters tends to occur in or 
follow a particular LULC or human intervention 
type. When the matrix is considered in the anal-
ysis, it can be said that landscape fragility plays 
a more substantial part in the sub-class scenario 
than in the class scenario. For example, both bare 
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land (sub-class) and natural landscape (class) 
are highly fragile to ecological changes, but it 
has been found that the former has high–high 
clusters, while the latter has low–low clusters. 
These findings indicate that the high fragility de-
termines the risk level in the sub-class scenario 
more significantly than the other risk constitu-
ent, i.e., disturbance. However, the opposite is 
true for the low disturbance that results in low–
low clusters, despite the high fragility in the 
class scenario. Therefore, reclassifying LULC by 
factoring in human interventions aims to accen-
tuate the role of landscape disturbances (primar-
ily fragmentation) according to the class scenario 
in the LER assessment.
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