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In recent years elastic optical networks have been perceived as a prospective choice for future optical networks due to better
adjustment and utilization of optical resources than is the case with traditional wavelength division multiplexing networks.
In the paper we investigate the elastic architecture as the communication network for distributed data centers. We address the
problems of optimization of routing and spectrum assignment for large-scale computing systems based on an elastic optical
architecture; particularly, we concentrate on anycast user to data center traffic optimization. We assume that computational
resources of data centers are limited. For this offline problems we formulate the integer linear programming model and
propose a few heuristics, including a meta-heuristic algorithm based on a tabu search method. We report computational
results, presenting the quality of approximate solutions and efficiency of the proposed heuristics, and we also analyze and
compare some data center allocation scenarios.
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1. Introduction

Bandwidth consuming network services, like IP video
and business applications, entail an incessant increase
in the network traffic volume and the amount of data
sent. The substantial impact of traffic growth is also
a result of the cloud computing model, more and more
popular and expanding during recent years. User data
and computational resources are no longer localized on
user or company premises, but are available in the
cloud. Thus it is necessary to use the global computer
network for access to data or business applications.
According to the Cisco forecast (Cisco, 2014), average
Internet traffic will increase 2.8-fold, and busy-hour
Internet traffic even 3.4-fold over the years 2013–2018,
finally exceeding 1 Pbit per second. Increasing user
demands will force network providers and operators to
apply advanced and more efficient methods of network
bandwidth management, including prospecting of new
technologies and algorithms which will guarantee better
utilization of the given network infrastructure.

In this context, a very attractive and promising
solution is the elastic optical network (also called the

SLICE—spectrum-sliced elastic optical path network)
architecture. This technology enables the division of a
spectrum into slots (or slices or subcarriers) of 6.25 GHz
width, and building optical channels consisting of an even
number of adjacent slots (ITU-T, 2012).

The concept of the SLICE network is based on
usage of bandwidth-variable transponders as terminating
elements of a lightpath and wavelength cross connects
(WXCs) for transit optical switching (Jinno et al., 2009).
Transponders are responsible for the proper converting
of the data signal at the beginning of the lightpath and
retrieving it at the end. Depending on the length of
the optical path (and signal regeneration possibilities),
the most convenient modulation format is applied, e.g.,
BPSK, QPSK, 8QAM. The necessary bitrate is adjusted
by allocating an appropriate amount of spectral resources
(number of subcarriers). Optical channels in elastic
optical networks (EONs) must be built using a continuous
sequence of subcarriers in order to guarantee spectrum
contiguity. WXCs are used in transit nodes, their task
being to switch the optical signal between input and output
ports in order to establish an end-to-end lightpath. The
rule of spectrum continuity must be observed—the same
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spectrum range must be used along the whole lightpath
(Chatterjee et al., 2015). The SLICE architecture makes it
possible to elastically fit the optical channel bandwidth for
user demands, and to create optical channels of a relatively
small (sub-wavelength accommodation) as well as an
exceeding 100 Gb/s (super-wavelength accommodation)
bandwidth. Features and architecture of elastic optical
networks were widely described by Jinno et al. (2009) and
Layec et al. (2013).

Together with migration to the cloud computing
model, the pressure on scalability and reliability of
cloud-available services is growing (Yoo et al., 2013).
Distributed and cloud computing technologies are ready to
satisfy those demands, services are rendered by numerous
servers or data centers, geographically distributed and
cooperating as one logical entity. The ability of choosing
one or a few of them for particular user demand gives the
cloud provider the opportunity to select the optimal data
center (or set of data centers) for demand processing. The
decision may be based on network latency, availability
of computing resources, cost (Wubin et al., 2013),
etc. Delegating demand to many data centers ensures
scalability and increases clients’ quality of experience
by reducing processing time. Working in the cloud
environment entails, in its matter, taking advantage of
anycast traffic. Moreover, two types of anycast traffic may
be distinguished while analyzing distributed computing
systems: classic anycast transmission (to one data center)
or multi-destination anycast (in the case when demand is
split into sub-demands and each sub-demand is sent to
another data center in the anycast group).

There are many computational power consuming
applications in different fields of science, e.g., for
satellite imagery processing (Warren, 2015), weather
forecasting, biomedical processing (Cierniak, 2014) or
big-data processing (Wang et al., 2016). Efficient
processing, or real-time processing, of huge volumes of
data more and more frequently requires utilization of
distributed computing resources since one machine or data
center does not offer a satisfactory processing power. In
such a processing model, huge amounts of data (e.g.,
raw bitmap satellite imagery) are sent for processing to
data/computational centers. In many cases the processing
time is proportional to the volume of incoming data.
When processing is completed, results are to be sent
backward to the client; usually the volume of results
is significantly smaller (e.g., vector maps made on the
basis of bitmaps or conclusions derived from big data)
than raw data sent to the data center (Warren, 2015).
For faster task completion, or in the case of tasks which
exceed the power of a single data center, raw data may
be divided into portions and few data centers may be
selected for processing. In the paper we focus on such
a real-time data processing model: we assume a high
data transfer rate from a client to the data centers (a lot

of raw data), a possibility of dividing tasks into subtasks
and processing at many data centers (and generating
multi-destination anycast traffic), the required processing
power proportional to the incoming data stream, and
relatively small data rates of results sent from the data
center to the client side.

We consider distributed large-scale computing
systems consisting of data centers and client systems
connected to the nodes of an elastic optical network. Data
centers offer computational services, and the amount of
computational (processing) resources available at each
data center is limited. Client systems, localized across the
network, utilize computational power of data centers in
order to complete computational tasks. Each task may
be executed at one data center or may be divided into
portions and executed at many data centers. Then for
each portion of a computational task we consider anycast
or multi-destination anycast traffic from the client system
to the data center. Apart from user–data center traffic,
we assume that direct unicast data transmission between
client systems must be accomplished at the same time in
the network. The optimization problem consists in task
distribution over data centers and allocation of the routes
and spectrum for anycast and unicast traffic in order to
minimize the maximal or average usage of the spectrum
in the optical network. For each data transmission demand
the optical channel in the EON must be assigned, which
means that the route over the network and the spectrum
(sequence of slices) along the chosen route must be
selected. In the network there are many possible routes
(paths) between each pair on nodes. We assume that
for each node pair the set of alternative candidate paths
is given, and one path must be chosen for each data
transmission.

The main novelty and contribution of this study
is the formulation of anycast user–data center and
unicast user–user traffic optimization problem in elastic
optical network-based large-scale computing systems
with constraints on the processing power of data
centers and the possibility of dividing computational
tasks for simultaneous processing at many data centers.
We introduce an integer linear programming (ILP)
formulation of the problem considered for two objective
functions: average and maximal spectrum usage. For
both the objectives we propose an improved tabu search
method, offering a faster discovery of local optima. We
report results of extensive computational experiments,
discussing the quality of tabu search solutions and
properties of the problem considered. Finally, a case study
of different data center allocation scenarios is reported.

The paper is organized as follows. In Section 2
we present a review of EON optimization problems
and solutions considered in the literature. The network
model and ILP formulation are described and discussed
in Section 3. In Section 4 we propose heuristic
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greedy algorithms, and in Section 5 a tabu search-based
meta-heuristic. The experimental setup, the tuning
process of the tabu algorithm and results of experiments
are described in Section 6. Section 7 concludes the paper.

2. Related works

Route assignment in elastic optical networks is strictly
connected with the spectrum reservation necessity along
the lightpath. The most important problem considered
for the EON is routing and spectrum assignment (RSA)
(Talebi et al., 2014; Klinkowski and Walkowiak, 2011),
consisting in simultaneous route selection and reservation
of a continuous range of the spectrum along the path.
The maximal range of an optical signal is limited and
strictly depends on the chosen modulation level (Jinno
et al., 2009; Layec et al., 2013). Higher modulation
levels enable us to increase the throughput of the optical
channel, but they decrease the maximal range of the
signal. Then, in RSA problems the possibility of using
different modulation levels is often considered (Goścień
et al., 2014; Talebi et al., 2014). The range of the optical
signal may be extended using optical regenerators. In the
work of Fallahpour et al. (2014) or Aibin and Walkowiak
(2015) the regenerator placement problem is considered.

Most of the research concentrates on the off-line
RSA problem, when the traffic demands are of long-term
nature and are known in advance. The most important
optimization criteria considered in off-line RSA indicate
the minimization of spectrum usage (Walkowiak and
Klinkowski, 2013): the goal is to minimize the
total (or average) number of occupied slices. Other
formulations take into account other indicators as criteria
or optimization constraints: spectrum fragmentation
(Talebi et al., 2014), the number and placement of
regenerators (Aibin and Walkowiak, 2015), survivability
demands (Walkowiak et al., 2014b; Goścień et al., 2015),
the total number (or cost) of optical transceivers installed
in the network (Tornatore et al., 2015), etc. Optimization
problems are formulated for unicast traffic (Velasco et al.,
2012; Klinkowski and Walkowiak, 2011), anycast (Zhang
and Zhu, 2014), multicast (Liu et al., 2013) or combined
(Walkowiak and Klinkowski, 2013).

Off-line RSA is an NP-complete problem (Chatterjee
et al., 2015; Christodoulopoulos et al., 2011). In
the literature, ILP models may be found (Klinkowski
and Walkowiak, 2011; Velasco et al., 2012; Walkowiak
and Klinkowski, 2013). They are useful for small
network topologies. For bigger problem complexities,
heuristic and meta-heuristic approaches are considered
(Klinkowski and Walkowiak, 2011; Walkowiak and
Klinkowski, 2013; Walkowiak et al., 2014a). Wang
et al. (2011) prove the NP-hardness of the RSA problem,
propose an ILP model for solving it for small network
topologies, analyze lower and upper bounds of spectrum

utilization and present two heuristic algorithms for
efficiently solving the RSA problem for bigger networks.

In the dynamic (on-line) RSA problem, connection
requests appear dynamically and must be immediately
allocated in the network (Walkowiak et al., 2014a). The
most important optimization criterion is the blocking
probability (Zhang and Zhu, 2014), but other criteria
are also taken into account. Exact algorithms are not
sufficient for online problems, as decisions must be taken
in milliseconds; then heuristic algorithms are proposed.
Most RSA approaches assume utilization of a single path
for each demand in the EON. Zhu et al. (2013) notice
that for online provisioning it is often impossible to serve
large requests with single-path routing, while multi-path
routing allows such allocation. They proposed several
algorithms and verified that the use of multipath routing
can significantly decrease the blocking probability in
online RSA optimization.

The problem of applying EONs to data center
traffic optimization was considered by Yoo and Wen
(2012). Zhang and Zhu (2014) proposed several
heuristic algorithms for solving a dynamic RSA problem
in the EON for inter-data center traffic; moreover,
some data center resource limitations were taken into
account. A tabu-search algorithm for the RSA problem in
EON-based distributed computing systems was proposed
by Markowski (2015). Fang et al. (2015) present an
MILP model and solution algorithms for defragmentation
of different data center resources (like computing power,
memory, disc space). At first, demands are allocated to
data centers according to free resources and fragmentation
avoidance, after that the optical path and spectrum are
assigned for traffic demands. Some proposals for using
EONs for clouds were presented by Goścień et al. (2014)
and Yoo et al. (2013).

In this paper we formulate a novel spectrum
usage optimization problem in an EON-based large-scale
computing system, taking into account constraints put on
the processing power of data centers. We propose an ILP
model and a tabu-search meta-heuristic. To the best of our
knowledge, the so formulated problem with a processing
power constraint has never been studied before.

3. Network model

The elastic optical network is modeled as a directed graph
with V nodes labeled with v (v = 1, 2, . . . , V ) and E
links labeled with e (e = 1, 2, . . . , E). R data centers
are connected to the nodes of the network. For each
data center, the node and the computational power are
predetermined. Computational tasks are defined with
the number of the client node, the volume of traffic
demand that must be uploaded to the data center (anycast
upstream demand), the number of instructions required
process the uploaded demand, and the volume of the
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results which must be downloaded from the data center
to the client system (anycast downstream demand). Each
computational task can be executed in one data center or
may be divided into subtasks and sent for processing to
a few data centers. In the latter case, the computational
task generates data flows to a few chosen date centers,
as well as a few feedback flows. Those data flows will
be called ‘streams’ in our further discussion: anycast up-
stream streams from the client system to data centers and
anycast downstream streams—the feedback to the client.
Unicast traffic between client systems is given with source
and destination nodes, and the volume of demand.

Traffic demands are labeled with d; D is the total
number of demands, and A is the number of anycast
demands. Here d = 1, 2, . . . , A are anycast upstream
demands, d = A + 1, A + 2, . . . , 2A are anycast
downstream demands and d = 2A+1, 2A+2, . . . , D are
unicast demands. We assume that the volumes of anycast
downstream demands are significantly lower than those
of anycast upstream demands, as described in Section 1.
Upstream and downstream the demands realizing the
same anycast request are called associated. For each of
them, τ(d) indicates the demand associated with demand
d. For each data center used for demand d = 1, 2, . . . , 2A,
the upstream and downstream streams must be routed in
the network. The number of demand streams is limited by
the number of data centers. The volume of each demand
is denoted by hd and given in Gbps. We assume that the
volume of the downstream stream is proportional to that
of the upstream stream.

We assume that at most one data center is located
in each network node (or many data centers connected to
one node are treated as one and their processing powers
are summed up). Data centers have limited processing
power cv (in GIPS—giga instructions per second). The
number of instructions required to process demand d in a
data center is given by λd, where λd denotes the number
of instructions required to process the data of demand
d transmitted with a streaming rate of 1 Gbps and is
given in GIPS/Gbps. We assume that computational tasks
with the same λ generated by all users connected to the
same network node are aggregated and considered in the
optimization problem to be one computational task.

A simple example is presented in Fig. 1. The network
consists of five nodes and two data centers are connected
to the nodes. Their processing power is c1 = 4000 GIPS,
c3 = 3000 GIPS. Users at Node 2 need to complete
a computational task (Task 1), which generates anycast
upstream demand with volume of 150 Gbps (Demand 1),
anycast downstream demand with the volume of 3 Gbps
(Demand 3), and λ = 30 GIPS/Gbps. Similarly, users at
Node 5 generate Task 2, with anycast upstream demand of
100 Gbps (Demand 2), anycast downstream demand of 5
Gbps (Demand 4), and λ = 10 GIPS/Gbps. At the same
time unicast demand (Demand 5) from users at Node 4

Fig. 1. Example of task processing.

to users at Node 1, with the volume of 20 Gbps must be
routed in the network. An exemplifying solution for the
scenario is the following. Task 1 is being processed at two
data centers. Then the upstream and downstream traffic is
divided into two upstream streams (100 Gbps to the data
center at Node 1 and 50 Gbps to data center at Node 3)
and two downstream streams (with volumes proportional
to the associated upstream streams). Task 2 is processed
at one data center. Utilization of the data center at node
1 is equal to 100 Gbps × 30 GIPS/Gbps (part of Task
1) + 100 Gbps × 10 GIPS/Gbps (Task 2) = 4000 GIPS
(100% utilization), whereas utilization of the data center
at Node 3 is equal to 50 Gbps × 30 GIPS/Gbps (part of
Task 1) = 1500 GIPS.

We assume k candidate paths for each pair of nodes
of the network. For each demand d there is a set of Pd

candidate routing paths, indexed by p = 1, 2, . . . , Pd. For
each unicast demand we have a set of k candidate paths,
out of which exactly one must be used. For each anycast
demand the number of candidate paths is equal to Rk or
(R − 1)k if one of the data centers is located in the node
which is the source of upstream demand. For each anycast
demand, R (or R− 1) paths may be chosen, each of them
routing to another data center. For the above-considered
example, the routes chosen for all traffic demands (or
streams) are presented in Fig. 1.

The available spectrum resources in each optical link
are divided into a set of S frequency slices. Optical
channels can be built with an even number of adjacent
slices. The possible sizes of channels are denoted by
m = 2, 4, . . . ,M slices. On each optical link we may
build a different number of channels, depending on their
sizes. For anycast demands, the size of channels must be
chosen according to the volume of the demand streams,
since each anycast demand may use many data centers.
Channels of size m used for realizing anycast demands
are indexed with c, where c = 1, 2, . . . , Cm. For unicast
demand the required size of a channel for each path
is known, since each unicast demand is carried over a
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single path. Candidate channels for unicast demand d
on path p are indexed with g, where g = 1, 2, . . . , Gdp.
The maximal capacity of optical channels depends on the
length of the lightpath and the number of slices.

We consider an elastic optical network consistent
with the ITU frequency grid definition, i.e., ITU-T
Recommendation G.694.1 (Ed. 2.0), Spectral grids for
WDM applications: DWDM frequency grid (ITU-T,
2012). According to the definition, the spectrum has to
be allocated symmetrically around a central frequency and
the frequency slice width is equal to Δ = 6.25 GHz. We
apply the half distance law and assume that the 16QAM,
8QAM, QPSK and BPSK modulation formats can be used
with transmission up to 375 km, 750 km, 1500 km and
above 1500 km, respectively (Christodoulopoulos et al.,
2011; Walkowiak and Klinkowski, 2013). Moreover,
we assume that transponders operate with polarization
division multiplexing, i.e., the spectral efficiency is
doubled and equal to 2np [bit/s/Hz], where np is the
modulation level for lightpath p, equal to 4,3,2 and
1, respectively, for modulation formats BPSK, QPSK,
8QAM and 16QAM. The maximum capacity βdpm of
lightpath p of demand d with the width of m slices is equal
to 2npmΔ, [Gbps].

We consider two objective functions representing
spectrum usage in EON. One of them, the ToS (total spec-
trum), represents the number of frequency slices which
are used on any network link. The value of the ToS is an
answer to the question: What amount of the spectrum is
required for successful allocation of all traffic demands?
The ToS is usually equal to the largest index of the
allocated slices, but sometimes this might not be true
due to spectrum fragmentation. The other objective, the
AvS (average spectrum), represents the average width of
the spectrum (number of slices) used on network links.
Minimization of the AvS allows irregular utilization of
network links, while in order to minimize the ToS the
utilization of links should be as uniform as possible.

3.1. Optimization model. In order to formulate the
ILP model, we use the notation proposed by Walkowiak
and Klinkowski (2013), Klinkowski and Walkowiak
(2011) as well as Markowski (2015).

Indices
s = 1, 2, . . . , S, slices
m = 2, 4, . . . ,M , sizes of candidate channels

(in number of slices)
c = 1, 2, . . . , Cm, candidate channels of size

m (for anycast)
g = 1, 2, . . . , Gdp, candidate channels for

unicast demand d on path p

v = 1, 2, . . . , V , network nodes
d = 1, 2, . . . , D, demands (both anycast and

unicast)
d = 1, 2, . . . , A, upstream anycast demands
d = A+ 1, 2, . . . , 2A, downstream feedbacks
d = 2A+ 1, 2, . . . , D, unicast demands
p = 1, 2, . . . , Pd, candidate paths for flows

realizing demand d; path p connects the client
node and the data center node

e = 1, 2, . . . , E, network links

Constants
δedp = 1, if link e belongs to path p realizing

demand d; 0, otherwise
hd volume of demand d (Gbps)
γmcs = 1, if channel c of size m uses slice s; 0,

otherwise
γdpgs = 1, if channel g associated with unicast

demand d on path p uses slice s; 0, otherwise
βdpm maximum capacity of path p of anycast

demand d with width of m slices (Gbps)
tdpv = 1, if node v is the destination node of path

p for demand d; 0, otherwise
udpv = 1, if node v is the source node of path p for

demand d; 0, otherwise
cv processing power of server at node v (GIPS)
λd number of instructions required to process

data of demand d (anycast upload)
transmitted with the streaming rate of 1
Gbps (GIPS/Gbps)

τ(d) index of anycast demand associated with
demand d; if d is downstream demand, then
τ(d) must be an upstream connection and
vice versa

Variables
xdpmc = 1, if channel c of size m on candidate

path p is used to realize anycast demand d;
0, otherwise (binary)

xdpv flow of anycast demand d, assigned to path
p, sent to server located at node v, given in
Gbps (continuous)

zdpg = 1, if channel g on candidate path p is used
to realize unicast demand d; 0, otherwise
(binary)

yes = 1, if slice s is occupied on link e; 0,
otherwise (binary)

ys = 1, if slice s is occupied on any link in the
network; 0, otherwise (binary)

qe largest index of allocated slices in link e
(integer)

In the optimization model we use six sets of decision
variables. The binary variable xdpmc denotes the selection
of the path, size and number of a channel for demand d.
The continuous variable xdpv denotes the volume of the
anycast demand stream, being the part of demand d which
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is sent along path p to data centers located at node v. The
binary variable zdpg denotes the selection of the path and
channel for unicast demand d. The binary variable yes
indicates whether the slice s on link e is occupied. The
binary variable ys indicates whether the slice s is occupied
on any network links. Finally, the integer variable qe
denotes the largest index of allocated slices on link e.

3.2. Total spectrum optimization: Problem formula-
tion. The goal of total spectrum optimization (ToSO) is
to minimize the number of frequency slots used anywhere
in the EON. Slice s is ‘used’ when it is occupied in any
of the network links. The number of slots used is the
objective in the ToS optimization problem:

objective

minimize ToS =
∑

s=1,...,S

ys (1)

subject to

xdpv ≤
∑

m=2,4,...,M

∑

c=1,...,C

tdpvβdpmxdpmc,

d = 1, . . . , 2A, p = 1, . . . , P (d), v = 1, . . . , V, (2)

∑

p=1,...,P

∑

v=1,...,V

xdpv = hd, d = 1, . . . , D, (3)

∑

d=1,...,2A

∑

p=1,...,P

∑

m=2,4,...,M

∑

c=1,...,C

γmcsδedpxdpmc

+
∑

d=2A+1,...,D

∑

p=1,...,P

∑

g=1,...,G

γdpgsδedpzdpg ≤ yes,

e = 1, . . . , E, s = 1, . . . , S, (4)

∑

e=1,...,E

yes ≤ Eys, s = 1, . . . , S, (5)

∑

d=1,...,A

∑

p=1,...,P

λdxdpv ≤ cv, v = 1, . . . , V, (6)

∑

p=1,...,P

∑

m=2,4,...,M

∑

c=1,...,C

tdpvxdpmc ≤ 1,

d = 1, . . . , 2A, v = 1, . . . , V, (7)

∑

p=1,...,P

∑

m=2,4,...,M

∑

c=1,...,C

tdpvxdpmc

=
∑

p=1,...,P

∑

m=2,4,...,M

∑

c=1,...,C

uτ(d)pvxτ(d)pmc,

d = 1, . . . , A, v = 1, . . . , V, (8)

∑

p=1,...,P

∑

g=1,...,G

zdgp = 1, d = 2A+ 1, . . . , D. (9)

The goal of optimization is to minimize the total width
of the spectrum, defined as the number of slices occupied
whenever in the network, which is reflected in (1). The
constraint (2) guarantees that the traffic volume in each
optical channel selected for demand d will not exceed
the channel capacity. The whole demand must be served,
which yields (3). Each slice in each link can be used only
for one channel, which is expressed by (4). The constraint
(5) defines that slice s is employed in the network when it
is used in any of the network links. The constraint (6)
assures that the computational power of data centers is
not exceeded. For each anycast demand maximally one
path to and from each data center may be used, which
is exhibited by (7). Each anycast upstream stream must
be associated with the corresponding anycast downstream
stream, which implies (8). Finally, the constraint (9)
ensures that exactly one path is assigned to each unicast
demand.

3.3. Average spectrum optimization: Problem for-
mulation. The average spectrum optimization (AvSO)
problem (Markowski, 2015) consists in minimizing the
average width of the spectrum used in the network. The
width of spectrum used in each link is represented by the
largest index of allocated slot. We consider the following
problem:

objective

minimize AvS =
1

E

∑

e=1,...,E

qe (10)

subject to (2)–(4), (6)–(9),

syes ≤ qe, e = 1, . . . , E, s = 1, . . . , S. (11)

The objective (10) is to minimize the average spectrum
usage, defined as the average number of slices occupied
in network links. The constraint (11) defines the largest
index of allocated slices in link e. The remaining
constraints have the same meaning as in the optimization
problem with the objective ToS.

Both the formulated optimization problems are
NP-hard (Klinkowski and Walkowiak, 2011). The
proposed ILP formulation can be used for obtaining
optimal solutions with tools for solving linear
optimization problems, e.g., CPLex (ILOG, 2016),
for small problem instances. For big network topologies
and a high number of demands, obtaining the optimal
solution is impossible in reasonable time and with
reasonable computing resources (memory, processing
power). Then, in the remainder of paper, we propose
heuristic approaches to the problem considered: heuristic
algorithms able to find a feasible, sub-optimal solution



Heuristic algorithms for joint optimization of unicast and anycast traffic. . . 611

and a meta-heuristic based on the tabu search method,
allowing us to obtain results closer to optimality.

4. Heuristic algorithms

In this section, we propose construction-type greedy
algorithms to obtain fast suboptimal solutions. The
advantage of such algorithms is the short computing time,
but the obtained results may be far from optimal.

The idea is to process demands in the selected order
and assign a lightpath (or a few lightpaths) to each demand
(or stream). In each iteration of the algorithm, one
selected demand is processed. One of three ordering
methods of selecting demands in consecutive iterations
may be chosen:

• Anycast first (AF). The algorithm starts with
allocating anycast upstream demands in the
decreasing order of the demand volume. After
allocating all anycast upstream demands, unicast
demands, also in volume decreasing order, are
allocated. Finally, the algorithm allocates anycast
downstream demands, since their volumes and the
required number of slices are smallest (for each
anycast downstream demand, an optical channel
with the width of two slots is allocated).

• Unicast first (UF). The algorithm starts with
allocation of unicast demands, followed by anycast
upstream demands, and then anycast downstream
demands. Unicast and anycast upstream demands
are processed in the decreasing order of the demand
volume, as in the AF method.

• Biggest first (BF). Unicast and anycast upstream
demands are considered concurrently in the
decreasing order of the demand volume. After that,
anycast downstream demands are considered.

Let B be the set of demands that must be allocated.
The AF heuristic algorithm (Algorithm 1) starts from set
B containing all anycast upstream demands. In each
iteration of the algorithm, one demand with the highest
unsent volume of data is chosen (Step 2). Let Qd be the
set of possible paths for part of demand d. Each anycast
demand may be directed to many data centers. We assume
that for each anycast demand for each data center only one
path and one channel may be chosen in order to send the
part of the demand directed to this data center (we call the
flow allocating this part of the demand a ‘stream’). The
number of data centers and the ratio of demand streams
are the decision variables.

Each anycast upstream demand is divided into parts,
and those are allocated in consecutive iterations. The
volumes of parts of the demand are equal (the last part
may be smaller) to the amount of data that may be sent
during one second through the channel built with two

Algorithm 1. Anycast first algorithm.

Step 1. B ← {d : d = 1, 2, . . . , A}.
Step 2. d∗ = arg max(hd : d ∈ B), H = h∗

d .

Step 3. If (H ≥ 4Δs) then ε = 4Δs; otherwise, ε = H .

Step 4. For each path p ∈ Qd do Φp = FS(d∗, p).
Step 5. p = arg min(Φp), if the minimal value of Φ was
obtained for more than one path, use the path length, in
terms of the number of links, as an additional criterion.
Allocate part ε of demand d∗ to path p∗.

Step 6. H = Hε. If H > 0 then go to Step 3.

Step 7. B ← B \ {d∗}; if B �= ∅ then go to Step 2.

Step 8. B ← {d : d = 2A+ 1, 2A+ 2, . . . , D}.
Step 9. d∗ = arg max(hd : d ∈ B).

Step 10. Allocate demand d∗ to path p← FQ(d∗).
Step 11. B ← B \ {d∗}; if B �= ∅ then go to Step 9.

Step 12. B ← {d : d = A+ 1, A+ 2, . . . , 2A}.
Step 13. For each d ∈ B and for each stream of τ(d∗)
allocate the stream of demand d∗ to path p← FQ(d∗).

slices with a minimal (equal to one) modulation level. As
assumed in Section 3, the capacity of such a channel is
equal to 4Δ, where Δ denotes the frequency slice width.
The volume ε of part of demand is calculated in Step 3.
There are two allocation options for a successive part of
one demand: a new stream may be created or the part
considered may be added to one of the already existing
streams. A new stream may be created only if there is a
data center not used by the given demand. If the part of
demand is to be added to an existing stream, the channel
for that stream must be exchanged with a bigger one. For
such an operation an appropriate number of free slices,
adjacent to the existing channel, may be needed. If there is
no possibility of creating a new stream, nor adding the part
of demand to any of the existing streams, then one of the
existing streams must be reallocated to the new channel,
allowing accommodation of the given part of demand.

Let function FS(d, p) return the value of the
degradation of the objective function in the case of
allocating part of demand d on path p, starting from
the lowest accessible slice. Moreover, FS(d, p) verifies
the available processing power of the data center located
at the end of path p, and returns +∞ in the case of
insufficient computational resources. All the previously
allocated demands and parts of demand d are taken into
account when calculating the value of FS(d, p). For those
data centers which are not used for demand d, we take
into account all paths leading to the data center node.
For the already used data centers, we take into account
only the path to which the existing stream is allocated.
The path with the lowest value of FS(d, p) is then used
for allocating part of demand d (Step 5). In case there



612 M. Markowski

are a few paths with the same value of FS, the length
of the path, in terms of the number of links, is taken
into account as an additional criterion. For each unicast
demand, a single channel leading from the source node to
the destination node must be allocated (Steps 8–11).

Let the function FQ(d) return the index p∗ of
the path for demand d, with the lowest value of the
degradation of the objective function in the case of
allocating demand d to path p∗, starting from the lowest
accessible slice. All the previously allocated demands are
taken into account when calculating the value of FQ(d).
The path given by FQ(d) is then used for allocating
demand d. In case there are a few paths with the same
value of degradation, the path length, in terms of the
number of links, is taken into account as an additional
criterion. Anycast downstream demands also may be
realized with a few streams. The downstream stream of
downstream anycast demands must be allocated for each
data center utilized for the associated upstream demand.
We assume that each downstream stream requires the
minimal possible channel capacity. Then it is built using
two slices. For downstream streams, we choose the best
path using the criterion function FS(d, p) (Step 13).

In the heuristic algorithm with the UF selecting
method, Steps 1–7 and 8–11 are swapped. In the case
of the heuristic algorithm BF, the AF algorithm should be
modified in the following way:

Step 1. B ← {d : d = 1, 2, . . . , A, 2A + 1, . . . , D}.
Then, in Step 2, demand d∗ is selected for allocation. If

d∗ ≤ A, then Steps 3–6 are executed, otherwise Steps
9–10 are executed.

5. Tabu search algorithm

Tabu search is one of meta-heuristic methods widely used
to solve many kinds of optimization problems (Talbi,
2009; Glover and Kochenberger, 2003). Meta-heuristiscs
offer capabilities to find solutions much better than simple
heuristics (often close to optimal), and need much fewer
resources and less computing time than exact algorithms
(e.g., solvers). In this section we propose a tabu search
algorithm for the optimization problem considered.

Let Ω be the current solution and Ω∗ be the
best-known solution. Tabu search (Algorithm 2) starts
with an initial solution Ω0, which must be a feasible
solution to the problem considered. It may be obtained
from heuristic algorithms (used during experiments) or
generated randomly. In the first step of the algorithm,
the initial solution becomes the current solution Ω and
the best-known solution Ω∗. Then, in each iteration, a
neighbor Ω′ of the current solution is generated. If the
value of the objective function of Ω′ is better than the
value of the objective function for the current solution,
then Ω′ becomes the current one. Moreover, if Ω′ is
better than Ω∗, it also becomes the best-known solution.

The operation of changing the current solution is called
a move. In order to avoid multiply testing the same
solution, a tabu list is utilized. All tested solutions (or
all performed moves) are added to the tabu list. When
choosing the neighbor, solutions (moves) from the tabu
list are forbidden. The above steps make it possible to
find a sub-optimal solution to the problem considered. To
escape from local optima, the non-improving solutions
are accepted for a specified number of iterations after
reaching a sub-optimal solution. This process is called
diversification, and it makes it possible to change the
search region into a non-explored area. There are a
few mechanisms that control the tabu search process:
the short-term and long-term memories, diversification
attributes, a selection method of neighboring solutions
(move), and stopping criteria.

5.1. Solutions. A solution is represented by a sequence
of allocations of demands and demand streams, and the
paths selected for each demand (or demand stream).
Demands (streams) are allocated in the network in
sequence order. An optical channel for each demand (or
stream) starts from the lowest possible slice. Then, the
decision variables are the position of demand (stream) on
the allocation sequence, the path for demand (stream),
and the volume of the stream (only for anycast upload
demands).

5.2. Moves. The aim of the move is to convert the
current solution into its neighbor with a better value of
the objective function. The neighbor of a given solution
Ω is the solution that differs from Ω in the value of one
decision variable. According to the problem formulation
and solution format, three kinds of moves may be made:

• Changing the position of one demand or stream in
the allocation sequence. The move is defined with
the following set of attributes: (i) demand number
d, (ii) stream (data center) number r—for anycast
demands, and (iii) the shift within the allocation
sequence (positive or negative).

• Choosing another path for demand or stream. The
move is defined with the following set of attributes:
(i) demand number d, (ii) stream (data center)
number r—for anycast demands, and (iii) current
path number pcur and new path number pnew .

• Changing the volume of two anycast upstream
streams. The 4Δ [Gbps] flow may be reallocated
from one of the streams existing for demand d
(source stream) to another stream of this demand
(destination stream). As a result of this kind of
move, a new stream (to a previously unused data
center) may be created or an existing stream may
be eliminated (with an update of the associated
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downstream stream). Besides the impact on network
flows, this kind of move reallocates the part of
computations (proportional to reallocated traffic)
from one (source) data center to another (destination)
data center, which is possible only when sufficient
processing power is available in the destination data
center—constraints put on processing power are
verified at this step. A move is defined with the
following set of attributes: (i) demand number d,
(ii) source stream (data center) number ksour and
destination stream number kdest, and (iii) the volume
of flow moved from ksour to kdest.

In our further discussion we will denote the move as mv
and the neighbor of solution Ω generated as a result of
move mv as (Ω +mv).

For each current solution, we determine the set Γ (Ω)
of priority moves. Priority moves are nominated on
the basis of the properties of the current solution in the
following way. For an optimization problem with the AvS
objective function, for each network link e we calculate
the number of wasted slices. Slice s is wasted when it is
not assigned to any optical channel and there are assigned
slices with higher slice index on link e. Next, for each
link with a non-zero number of wasted slices we check
which demand d and stream number r (when d is anycast
demand) occupy the highest slice used on that link. All
moves, i.e.,

• lowering the position of demand d (and stream r if
applicable) on the allocation sequence,

• changing the path for demand d (and stream r if
applicable),

• reallocating part of demand d from stream r to
another stream (only for anycast upstream demands),

are added to set Γ (Ω).
For example, consider the following slice occupation

on link e. Slices 1–4 are assigned to demand d1,
Slices 7–8 are assigned to demand d2 and Slices 11–20 are
assigned to demand d3. Then the number of wasted slices
for link e is equal to 4 (Slices 5, 6, 9, 10 are not used),
and the appropriate moves for demand d3 (occupying the
highest slice used with index 20) will be added to the
set of priority moves. For the optimization problem with
objective ToS, we use another definition of priority moves.
We find the highest allocated slice s∗ over all network
links. Then, for each link e with occupied slice s∗, we
check which demand d and stream number r (when d is
anycast demand) occupy slice s∗. Next, all moves defined
for the ToS objective are added to set Γ (Ω). Priority
moves are considered in the first order while choosing the
neighbor Ω′. Moves are chosen randomly from set Γ (Ω).
If there are no possible moves in set Γ (Ω) (i.e., all moves
from set Γ (Ω) are on the tabu list) the next move is chosen
from the moves not belonging to Γ (Ω).

5.3. Short-term tabu list. The idea of short-term
memory is to prevent the testing of already tested
solutions while searching the neighborhood of the current
solution (Talbi, 2009) . All tested candidate moves which
did not yield a better solution are stored in a short-term
tabu list (STT ). The length of the short-term tabu list is
unlimited. This list is flushed when a better solution is
found and the move is performed.

5.4. Long-term tabu list. The idea of long-term
memory is to store information on the visited solutions
found during the search (Talbi, 2009). All performed
moves are added to the long-term tabu list (LTT ). The
length (TL) of the long-term tabu list is one of the key
parameters of an algorithm and has to be carefully selected
in order to get the best performance and best results of an
algorithm (Glover and Kochenberger, 2003).

5.5. Diversification parameters. Diversification is the
process that makes it possible to change the search area
after reaching the local optima. There are two important
parameters of diversification. The first one is the number
of iterations without a solution improvement, which is
denoted as thresholdDT (diversification threshold). After
DT iterations with solution improvement, we decide that
a local optimum has been found. Then the tabu algorithm
starts to accept the neighboring solutions worse than the
current one, in order to escape from local optima. DT
is given as a parameter. Its value may have a strong
impact on the tabu algorithm performance and the quality
of solutions, so it should be carefully selected in the
tuning process. The linear parameter DR (diversification
ratio) defines the level of acceptance of worse solutions.
Let F (Ω) be the value of the objective for solution Ω.
A solution Ω′ will be accepted during diversification if
F (Ω′) < F (Ω)× (1 +DR).

5.6. Stopping criteria. The following three stopping
conditions were used: the time limit, the iteration limit,
and founding an optimal solution. The time limit is
given in seconds. Each assignment of a candidate
move is counted as iteration, including neighborhood
candidate move generation and diversification moves.
When the number of iterations exceeds the iteration limit,
the algorithm terminates. The third stopping condition
(reaching the optimal solution) can be applied only
when an optimal solution for the problem considered is
known in advance (i.e., it has been obtained from the
CPLEX solver, which is possible for very small problem
instances). All stopping conditions are optional, but at
least one of them must be applied.

5.7. Tabu search algorithm. Let I be the iteration
counter of the tabu algorithm, and Ini be the counter of
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iterations with no solution improvement (non-improved).
Θ is the diversification coefficient; the algorithm starts

Algorithm 2. Tabu search algorithm.
1: Θ := 1, ; I := 0, ; Ini := 0
2: STT := ∅, ; LTT := ∅
3: Ω∗ := Ω := Ω0

4: determine the set of priority moves Γ (Ω)
5: repeat
6: select possible non-tabu move mv
7: if ToS(Ω +mv) < Θ × ToS(Ω) then
8: Ω := Ω +mv
9: determine the set of priority moves Γ (Ω)

10: STT := ∅
11: LTT := LTT ∪ {mv}
12: Θ := 1
13: Ini := 0
14: else
15: STT := STT ∪ {mv}
16: end if
17: if ToS(Ω) < ToS(Ω∗) then
18: Ω∗ := Ω
19: end if
20: I ++
21: Ini ++
22: if ((Ω = 1) and (Ini > DT )) then
23: Θ := Θ +DR
24: end if
25: until stopping criteria satisfied
26: return Ω∗

with Θ equal to 1. Both I and Ini start from the value
zero at the beginning (Line 1); also, the short term tabu list
and the long term tabu list are empty (Line 2). The initial
solution Ω0 is used as the current solution (Line 3). For
the current solution we determine the set of priority moves
(Line 4). Then, in each iteration, a move is generated.
Moves are generated randomly. Before selecting move
mv for use in the algorithm, it is checked if mv is not in set
STT or LTT . If, as a result of move mv, a solution with
the criterion value smaller than the current one has been
generated (Line 7), the new solution becomes the current
one. Moreover, if the the algorithm is in the diversification
phase, the value of Θ is greater than 1 and worse solutions
are also acceptable (to escape from local minima). If
the move is accepted for execution, the newly generated
solution becomes the current one (Line 8), the set of
priority moves for the new solution is determined (Line
9), the short term tabu list becomes empty (Line 10), and
the move mv is added to the long term tabu list (Line 11).

Finally, the value 1 for the diversification coefficient
and the value 0 for the number of iterations with no
improvement are restored (Lines 12–13). If the selected
movemv is not beneficial (and is not performed, Line 14),
it is added to the short-term tabu list (15). If the criterion

value of the current solution is better than the criterion
value for the best solution Ω∗, we tag the current solution
as best (Lines 17–19). The number of iterations is
incremented in Line 20, and the number of solutions
without an improvement in Line 21. Line 22 is the
diversification check. If the number of iterations without
improvement is bigger than diversification threshold DT ,
the value of coefficient Θ is increased with the value of
the diversification ratio (DR). The algorithm terminates
when the stopping criteria are satisfied (iteration or time
limit, best solution found). Ω∗ is the result of the tabu
algorithm.

6. Experiments and results

In this section results of the experiments for both the
ToSO and AvSO problems are reported. The main goals
of the experiments were to evaluate the quality of the
solutions obtained with the proposed heuristic algorithms,
including tabu search, and to analyze the spectrum usage
for different data center allocation scenarios. Experiments
were conducted for four network topologies: NFS15,
EURO16, EURO28 and UBN24 (cf. Fig. 2).

The first part of the experiments focused on tuning
the tabu search algorithms for both the problems. The
aim of the tuning was to choose the best values of the
length of the long-term tabu list (TL), the diversification
threshold (DT ) and the diversification ratio (DR). NFS15
and EURO16 topologies with 5 Tb/s overall demands
in the network were examined during this part of the
experiments. In the second part of the experiments, the
quality of heuristic algorithms was studied. The optimal
solutions, obtained with the CPLEX solver (ILOG, 2016),

(a) (b)

(c) (d)

Fig. 2. Network topologies: EURO16 (a), EURO28 (b),
UBN24 (c), and NFS15 (d).
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constituted a basis for estimation. Due to the complexity
of the problems considered, optimal solutions were found
for relatively small network topologies and a small
volume of demands, two network topologies NFS15
(Fig. 2(d)) and EURO16 (Fig. 2(a)) were examined. The
overall demand in the network was set to 2 Tb/s for
the ToS optimization problem and 1 Tb/s for the AvS
optimization problem. For bigger networks and bigger
values of overall demands in the network (20 Tb/s for
NFS15, 25 Tb/s for EURO16, 50 Tb/s for EURO28 and
40 Tb/s for UBN24), tabu search results were compared
with the heuristic AF, UF and BF algorithms. Finally,
we investigated the impact of the choice of the problem
parameters on the solution for different data center
allocation scenarios.

The sets of demands were generated randomly
(source and destination nodes for unicast demands, client
nodes for anycast demands, demand volumes). The
volume of anycast upstream demands was chosen from the
range 40 to 400 Gbps, the volume of anycast downstream
(feedback) demands was always set to 10 Gbps, and the
volume of unicast demands was selected from the range
the 10 to 100 Gbps. Different anycast to unicast volume
ratios were used to generate demand sets.

Let AR be the anycast ratio defined as the proportion
of the volume of all anycast demands to the volume of all
unicast demands. Demand sets with six different values
of AR, were examined: 0% (no anycast traffic), 20%,
40%, 60%, 80%, and 100% (no unicast traffic). For
each value of AR three demand sets were considered.
In a majority of the experiments (with the exception of
those when the impact of the available processing power
on the solution quality was investigated) the summarized
processing power of all data centers was equal to 150% of
the power required to complete all computational tasks,
and it was uniformly distributed over all data centers.
Since the goal of optimization is to minimize the use of
the spectrum, we do not put any limits on the total number
of slices available per link. The values of S, chosen for
the computational experiments for each scenario, were
significantly higher than the largest indexes of allocated
slots. Experiments were performed on a computer
equipped with an Intel Core i5 2.67 GHz processor and
4 GB RAM.

6.1. Tuning of the tabu search algorithm. There are
three tabu search algorithm parameters whose values must
be properly selected in order to ensure a good performance
of the algorithm and a high quality of the results. They are
the length TL of the long-term tabu list, the diversification
threshold DT and the diversification ratio DR. In the
initial phase of tuning, we selected the most promising
range of values of parameters TL, DT and DR. Having
observed the best results for DR = 0.1, we decided to
use this value for all further experiments. For the ToSO

Table 1. Examined TS parameters for the ToSO problem.
Parameter Examined values Selected

value

TL 5, 8, 11, 14, 17, 20, 23, 26 20
DT 70, 100, 130, 160, 190, 220,

250, 280, 310, 340, 370, 400,
430

340

DR 0.1, 0.2, 0.3 0.1

Table 2. Examined TS parameters for the AvSO problem.
Parameter Examined values Selected

value

TL 3, 5, 8, 11, 14, 17, 20, 23 8
DT 160, 180, 200, 220, 240, 260,

280, 300
260

DR 0.1, 0.2, 0.3 0.1

problem we observed the best results for TL in the range
from 5 to 26, and for DT in the range from 70 to 430,
for the AvSO problem the best results were observed for
TL in the range 3 to 23, and for DT in the range from
160 to 300. For the main tuning phase we generated
demand sets with 5 Tb/s overall demands, one for each
AR = 0%, 20%, 40%, 60%, 80%, and 100%. For each
demand set, we examined scenarios with three sets of data
center allocation (with 1, 2, and 3 data centers) and three
sets of candidate paths (3, 10, and 30 candidate paths for
each pair of nodes). Finally, for each of the examined
networks and for both optimization problems considered,
tuning was performed for 6×3×3=54 different scenarios.
The values of the examined parameters for the ToSO
are shown in Table 1, while the values for AvSO are
listed in Table 2. Experiments were conducted for
each combination of TL and DT listed in the tables;
8×13=104 parameter sets for the ToSO problem and 64
parameter sets for the AvSO problem. Since the proposed
tabu algorithm is not deterministic, the experiments for
each parameter set were performed 10 times and the
averaged results were taken into account. Finally, for
each examined network topology 56160 experiments for
the ToSO problem and 34560 experiments for the AvSO
problem were performed. The selected best parameter sets
are presented in Tables 1 and 2, respectively.

6.2. Quality of approximate solutions for small net-
works and small overall demand. The main goal of
this part of the experiments was to examine the quality
of approximate solutions based on optimal solutions
produced by the CPLEX solver. The optimal solutions
were obtained for NFS15 and EURO16, the overall
demand was set to 2 Tb/s for the ToSO problem and 1
Tb/s for the AvSO problem. The number of candidate
paths was set to 2. For both NFS15 and EURO16, the
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Table 3. Gap between optimal and approximate solutions for the AvSO problem.
CPLEX TS AF BF UF

Mean gap to optimal 0.00% 0.17% 17.8% 17.7% 12.7%
Minimum gap to optimal 0.00% 0.00% 0.00% 0.00% 0.00%
Maximum gap to optimal 0.00% 17.39% 87.14% 87.14% 87.14%

Avarage execution time [s] 468.3 26.1 0.1 0.1 0.1

Table 4. Gap between optimal and approximate solutions for the ToSO problem.
CPLEX TS AF BF UF

Mean gap to optimal 0.00% 9.39% 19.05% 18.89% 26.82%
Minimum gap to optimal 0.00% 0.00% 0.00% 0.00% 0.00%
Maximum gap to optimal 0.00% 75.00% 115.38% 115.38% 137.50%

Avarage execution time [s] 27.5 10 0.1 0.1 0.1

experiments were conducted for six values of AR, three
sets of demands for each value of AR, three different
numbers of data centers, and four sets of nodes of data
center allocation for each number of data centers (overall,
216 scenarios for each network).

The average, minimal and maximal gap between
optimal solutions and those yielded from the tabu search
algorithm and heuristic algorithms, as well as the average
computation times for the AvSO problem, are presented
in Table 3. For the CPLEX solver the time limit of two
hours was set. In most experiments the solver was able
to find an optimal solution in less than 15 minutes, but
for some scenarios (8%) no optimal solution was found in
the fixed time limit. Experiments for the tabu search (TS)
algorithm were repeated five times for each scenario. The
time limit equal to 300 s and reaching an optimal solution
were used as the stopping criteria. In most cases (97%) the
tabu search algorithm was able to find an optimal solution,
and the average gap between optimal and TS solutions
was 0.17%. The average, minimal and maximal gaps and
execution times for optimal solutions and those yielded
from the tabu search algorithm and heuristic algorithms
for the ToSO problem are presented in Table 4. For the
CPLEX solver the time limit of two hours was set. For
all scenarios optimal solutions were found. The maximal
time needed to find an optimal solution was 874 seconds
(around 15 minutes); in most experiments the solver was
able to find an optimal solution in less than 60 seconds.
Experiments for the tabu search (TS) algorithm were
repeated five times for each scenario. The time limit equal
to 10 seconds was used as a stopping criterion. In 48.94%
of the experiments the tabu search algorithm was able to
find an optimal solution, and the average gap between
optimal and TS solutions was 9.39%.

The problem considered has an off-line nature, which
means that all demands are known in advance and last
for a relatively long time. Then it is usually acceptable
to spend tens of minutes or even hours in order to
find the best possible solution. In such cases the tabu

Table 5. Average gap to best solution for the ToSO problem [%].
Network Volume AF BF UF TS

NFS15 20 Tb/s 6.59 6.56 42.72 2.06
EURO16 25 Tb/s 7.20 7.20 30.22 2.65
EURO28 50 Tb/s 6.82 6.82 40.50 1.72
UBN24 40 Tb/s 5.92 5.92 52.06 1.51

Table 6. Average gap to best solution for the AvSO prob-
lem [%].

Network Volume AF BF UF TS

NFS15 20 Tb/s 23.64 23.51 18.55 4.16
EURO16 25 Tb/s 29.64 29.63 21.84 6.14
EURO28 50 Tb/s 19.20 19.20 31.96 2.81
UBN24 40 Tb/s 21.51 25.83 35.99 4.32

search algorithm offers the best agility since it makes it
possible to regulate optimization time (using the time limit
stopping criterion) and utilize the whole available time for
improving the obtained solution as much as possible. We
may also imagine large-scale computing systems where
changes are required more frequently, and routes must
be assigned within seconds or milliseconds—then fast
heuristic approaches would be more applicable, at the
expense of higher spectrum usage.

6.3. Comparison of heuristics for all networks and
large overall demand. For more complex scenarios
(bigger networks, bigger demand volumes, bigger number
of candidate paths) the CPLEX solver was not able
to perform optimization. Then the experiments were
conducted with the proposed AF, BF, UF, and tabu search
(TS) algorithms. In this section we present the comparison
of solutions obtained with the heuristic algorithms for
network topologies and the overall demand volume, listed
in Table 5 for the ToSO problem and in Table 6 for the
AvSO problem. We investigated 732 scenarios for NFS15
and EURO15 networks:
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• three demand sets for each AR = 0%, 20%, 40%,
60%, 80%, and 100%,

• for non-zero AR: R = 1, 2, 3 data centers, four
sets of data center location for each number of data
centers,

• k = 2, 5, 10, 30 candidate paths for each pair of
network nodes.

For EURO28 and UBN24 networks, 244 scenarios were
investigated:

• one demand set for each AR =0%, 20%, 40%, 60%,
80%, and 100%,

• for non-zero AR : R = 2, 3, 4 data centers, four
sets of data center location for each number of data
centers,

• k = 3, 5, 10, 30 candidate paths for each pair of
network nodes.

The TS algorithm was run 10 times for each scenario,
the time limit was set to 60 seconds for NFS15 and
EURO16, and 12 minutes for EURO28 and UBN24. For
each experiment, the distance from the best result was
calculated (the best result for each scenario was yielded
from the tabu search algorithm). Average distances from
the best solution for all experiments for the ToSO problem
are presented in Table 5. As we may conclude from the
results, the proposed tabu search algorithm overcomes
other heuristics. Deteriorated divergence of TS results
was observed for a larger number of candidate paths,
especially for bigger network topologies. From the
other heuristics, AF and BF algorithms produced similar
results, while those obtained from the UF algorithm were
significantly worse. Average distances from the best
solution for all experiments for the AvSO problem are
presented in Table 6. The TS algorithm significantly
overcomes other heuristics. AF and BF algorithms yield
quite a similar solution. In contrast to the ToSO problem,
for smaller network topologies the UF algorithm yielded
better solutions than AF and BF algorithms.

6.4. Analysis of the influence of problem parameters
on the quality of solutions. For all network topologies
the influence of the number of candidate paths (k) on
the solutions was examined. We relied on experiment
scenarios, values of AR, the number of data centers and
the number of candidate paths described in the previous
section. We analyzed results for both the ToSO and
AvSO problems. All results presented in this section
were obtained with the tabu search (TS) algorithm, with
parameters chosen in the tuning process and with 60
seconds (for NFS15 and EURO16) or 12 minutes (for
EURO28 and UBN24) as time limits applied as the
stopping criterion.

(a)

(b)

(c)

(d)

Fig. 3. Influence of the number of candidate paths on ToS:
EURO16 (a), EURO28 (b), NFS15 (c) UBN24 (d).

Figure 3 depicts the influence of the number of
candidate paths on the criterion function ToS. For
NFS15, EURO16 and UBN24, we observed that a larger
number of candidate paths makes it possible to find a
better solution to the discussed problem. The highest
improvement for NFS15 and EURO16 networks was
observed where there are from two to five candidate
paths, and for the network UBN24 when there are from
three to five candidate paths. Further increasing the
number of candidate paths brings a slight improvement in
ToS. We may conclude that for small networks and the
optimization time restricted to 60 seconds, the optimal
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Fig. 4. Influence of the anycast ratio and the number of data cen-
ters on ToS for EURO16; total demand volume: 25 Tb/s.

Fig. 5. Influence of the anycast ratio and the number of data cen-
ters on ToS for UBN24; total demand volume: 40 Tb/s.

number of candidate paths is equal to 10. For EURO28
we observed a minimal impact of the number of candidate
paths on the solution. A slight improvement in ToS was
observed for k = 5, but a further increase degraded the
solution. A likely reason for this is that the tabu search
algorithm was not able to search the entire solution space
during the time limit. For bigger networks, using sets of
candidate paths containing more than five paths for each
node pair is not beneficial if the optimization time is an
important criterion. A higher number of paths increases
the time needed to solve the problem considered and the
tabu algorithm is not able to search the whole solution
area, which may have a negative impact on the quality
of solutions. We also observed a high ratio of moves
without any improvement. It may be concluded that
the TS algorithm does not scale well for the increasing
number of candidate paths in big networks.

The impact of the value of the AR coefficient and
the number of data centers on solutions for ToSO and
AvSO was analyzed. For scenarios with one data center
we observed a strong influence of the anycast ratio on
the ToS criterion. Results for EURO16 (Fig. 4) show
that the width of the spectrum required for AR = 100%
doubled in comparison with AR = 0%. For two and three

Fig. 6. Influence of the anycast ratio and the number of data cen-
ters on AvS for EURO16; total demand volume: 25 Tb/s.

Fig. 7. Influence of the anycast ratio and number of data centers
on AvS for EURO28; total demand volume: 50 Tb/s.

data centers the required spectrum width is significantly
lower than for single data center scenarios. Moreover,
for larger values of AR we observed that increasing the
number of data centers from two to three results in a small
improvement in the objective value. Taking into account
the cost of establishment and maintenance of additional
data centers, we assume that two data centers for small
network topologies might be a consensual choice. We
also observed that for small networks (EURO16, NFS15)
the values of objectives were minimal for scenarios with
no anycast traffic (user to data center), despite the same
overall demand volume in all experiments. For bigger
networks (results for UBN24 are presented in Fig. 5), we
observed a high impact of the number of data centers on
the objective, especially for AR ≥ 60%. For AR =
100%, the total spectrum required for the distributed
computing system composed of four data centers is half
the spectrum width required for a two-data-center system.
It is also worth noticing that for EURO28 and scenarios
with only unicast traffic (AR = 0), the system requires
more spectrum resources than for a higher ratio of anycast
traffic (if more than 2 data centers were used).

Experiments for the AvSO problem (Figs. 6–8) show
that the average width of the spectrum decreases when
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Fig. 8. Influence of the anycast ratio and the number of data cen-
ters on AvS for UBN24; total demand volume: 40 Tb/s.

increasing the value of the anycast ratio. Also, the
number of data centers has a significant impact on AvS.
For EURO16 the highest difference in the value of AvS
was observed between scenarios with one and two data
centers, for EURO28 and UBN24 between two and three
data centers. A slighter improvement in AvS may be
obtained when increasing the number of data centers from
two to three for small networks and from three to four
(for bigger ones). The observed dependencies may be
helpful in making decisions about the optimal number
of data centers that should be placed in the EON-based
large-scale computing system in order to achieve the most
spectrum efficient and cost efficient solution.

Let the processing power ratio (PPR) be the ratio
of the summated available processing power of all
data centers to the power required to complete all
computational tasks. The impact of the available
processing power on ToS for EUR28 is presented in Fig. 9.
Experiments were carried out for AR = 70%, the overall
demand volume equal to 50 Tb/s, and the processing
power uniformly distributed over all data centers. It was
observed that the required width of the spectrum rapidly
increases when the amount of spare processing power falls
below 30%. On the other hand, expanding the processing
power over 170% of PPR does not significantly improve
the solution. We also noticed during the experiments that
the TS algorithm scales quite well when increasing the
processing power of data centers.

6.5. Case study. Data center location in large-scale
computing systems may impact both spectrum usage and
ownership cost. One of the important kinds of operation
efforts is the cost of energy used in data centers. In this
section we present an analysis of different data center
location strategies. Experiments were performed with the
TS algorithm for the EURO28 topology, based on the
European wide area network. Scenarios with two and
four data centers were investigated; the details of data
center location for each scenario are listed in Table 7.

Fig. 9. Influence of the available processing power on ToS for
EURO28.

For the first two of them (s1 2DC, s2 2DC for two data
centers and s1 4DC, s2 4DC for four data centers) the
potentially most beneficial locations were chosen. Data
centers were located in the nodes in the center of wide
area networks, with a high number of neighboring nodes.
For the remaining scenarios, the nodes located in the cities
with the lowest energy prices were chosen. The aim of
the study was to discover whether cost efficient allocation
of data centers over the European network involves the
highest utilization of spectrum resources.

In our study, AR = 60% and the overall demand
volume equal to 50 Tb/s were set. The AvS optimization
problem was investigated. The results of experiments are
shown in Fig. 10; spectrum utilization was juxtaposed
with the mean price of energy used in data centers. Let
r = 1, . . . , R be data centers in a large-scale computing
system. Let wr be the number of instructions executed in
data center r (in GIPS) and vr be the price of energy in
data center r (in EUR/MWh). The mean price of energy
(MPE) for the obtained solutions was calculated as

MPE =

R∑
r=1

wrvr

R∑
r=1

wr

. (12)

As expected, the allocation of data centers in central nodes
makes it possible to save spectrum resources. For 2
data center scenarios (Fig. 10(a)), location strategies s1
and s2 make it possible to allocate all demands using,
on average, 363 and 341 slices, respectively, while with
cost efficient locations spectrum utilization increases up
to 453 (scenario s3) and 452 (scenario s4). The benefit
is a considerably lower cost of energy, the mean price is
equal to 64 EUR/MWh for scenarios s3 and s4, and 89
EUR/MWh for scenario s2 and up to 113 EUR/MWh for
s1. Similar dependencies were observed while studying
results of experiments with four data centers (Fig. 10(b)).
For scenarios s1 and s2 lower spectrum utilization was
observed, while scenarios s3 and s4 ensure a remarkable
reduction in energy cost.
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Table 7. Case study scenarios.
Scenario Number of

data centers
Data center locations

s1 2DC 2 London, Rome
s2 2DC 2 Berlin, Brussels
s3 2DC 2 Paris, Belgrade
s4 2DC 2 Strassbourg, Belgrade
s1 4DC 4 London, Rome, Munich,

Hamburg
s2 4DC 4 London, Berlin, Milan, Bu-

dapest
s3 4DC 4 Amsterdam, Belgrade, Bor-

deaux, Lyon
s4 4DC 4 Amsterdam, Belgrade,

Strassbourg, Paris

(a)

(b)

Fig. 10. Case study: two data centers (a), four data centers (b).

7. Conclusion

In the paper the problem of optimization of unicast
and anycast traffic in an elastic optical network-based
large-scale computing systems has been considered. The
original spectrum optimization problem that consists in
computational tasks allocation among data centers, route
selection and spectrum allocation in an EON has been
formulated. Two indicators of spectrum usage were
analyzed as objectives in the optimization process. The
optimization problem is new, as it assumes limits on the

computational power of data centers, and the possibility
of dividing tasks into subtasks for execution on many
data centers. The problem considered is NP-hard, being
more general than the RSA problem. We have proposed
an ILP formulation which allows us to find an optimal
solution with CPLEX solver for less complex scenarios,
three heuristic greedy algorithms and a meta-heuristic
algorithm based on the tabu search method. The main
novelty of the proposed tabu search algorithm is the
method of assigning priority moves for each tabu solution.

Intensive computer experiments have been
conducted with the proposed algorithms for both
objectives. We have examined 4 network topologies and
over 6,000 scenarios, and have conducted over 200,000
experiments with the tabu search algorithm. Results
of the experiments show that the proposed tabu search
algorithm significantly outperforms simple heuristics
and in a significant number of scenarios (for small
networks) is able to produce an optimal solution to the
problem considered, while for the remaining examined
scenarios the average gaps from the optimum do not
exceed 10%. It has also been observed that the values
of problem parameters: the number of data centers,
the available processing power and the anycast ratio
have a considerable impact on the spectrum usage in
the EON-based large-scale computing system. The
dependencies analyzed in the paper may be helpful
to make decisions about the optimal number and
power of data centers as well as decisions concerning
optimal balancing between spectrum usage and cost of
computation.
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