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Repdigits as Euler functions of Lucas numbers

Jhon J. Bravo, Bernadette Faye, Florian Luca and Amadou Tall

Abstract

We prove some results about the structure of all Lucas numbers
whose Euler function is a repdigit in base 10. For example, we show
that if Ln is such a Lucas number, then n < 10111 is of the form p or
p2, where p3 | 10p−1 − 1.

1 Introduction

Let φ(m) be the Euler function of the positive integer m. Let {Fn}n≥0 and
{Ln}n≥0 be the sequence of Fibonacci and Lucas numbers given by F0 =
0, F1 = 1 and L0 = 2, L1 = 1 and recurrences

Fn+2 = Fn+1 + Fn and Ln+2 = Ln+1 + Ln for all n ≥ 0.

Various Diophantine equations involving the Euler function of members of
Fibonacci and Lucas numbers were investigated (see [6], [8], [9]). In [10], it
was shown that n = 11 is the largest solution of the Diophantine equation

φ(Fn) = d

(
10m − 1

9

)
d ∈ {1, . . . , 9}. (1)

Numbers as the ones appearing in the right–hand side of equation (1) are
called rep-digits in base 10, since their base 10 representation is the string
dd · · · d︸ ︷︷ ︸
m times

. Here, we look at Diophantine equation (1) with Fn replaced by Ln:

φ(Ln) = d

(
10m − 1

9

)
d ∈ {1, . . . , 9}. (2)

Key Words: Fibonacci numbers, Lucas numbers, Applications of linear forms in logarithms.
2010 Mathematics Subject Classification: Primary 11B39; Secondary 11D61.
Received: 30.01.2014
Revised: 25.07.2014
Accepted: 02.03.2015

105



REPDIGITS AS EULER FUNCTIONS OF LUCAS NUMBERS 106

Theorem 1. Assume that n > 6 is such that equation (2) holds with some d.
Then:

• d = 8;

• m is even;

• n = p or p2, where p3 | 10p−1 − 1.

• 109 < p < 10111.

2 Preliminaries

We will use the property that Lu | Lv whenever u | v and v/u is odd. One
important property that we will use over and over again is the existence of
the primitive divisors for the sequence {Ln}n≥0. To formulate it, a primitive
divisor of Ln is a prime factor p of Ln which does not divide Lm for any
1 ≤ m < n.

Lemma 2.1 (Carmichael [5]). Ln has a primitive divisor for all n 6= 6, while
L6 = 2× 32, and 2 | L3, 3 | L2.

A primitive prime factor p of Ln has the property that p ≡
(p

5

)
(mod n).

Here and in what follows, for an integer a and an odd prime p we use

(
a

p

)
for

the Legendre symbol of a with respect to p. In particular, if p is primitive for
Ln, then p ≡ 1 (mod n) if p ≡ 1, 4 (mod 5), and p ≡ −1 (mod n) if p ≡ 2, 3
(mod 5).

Finally, we will use the fact that there are no perfect powers other than
1, 4 in the Lucas sequence {Ln}n≥0. More precisely, we have the following
result.

Lemma 2.2 (Bugeaud, Luca, Mignotte and Siksek, [3] and [4]). The equation
Ln = yk with some k ≥ 1 implies that n ∈ {1, 3}. Furthermore, the only
solutions of the equation Ln = qayk for some prime q < 1087 and integers
a > 0, k ≥ 2 have n ∈ {0, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17}.

We will also need the following result about square-classes of members of
Lucas sequences due to McDaniel and Ribenboim.

Lemma 2.3 (MacDaniel and Ribenboim [12]). If LmLn = � with n > m ≥ 0,
then (m,n) = (1, 3), (0, 6) or (m, 3m) with 3 - m odd.
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3 Linear forms in logarithms

Let η be an algebraic number of degree d over Q with minimal primitive
polynomial over the integers

f(X) = a0

d∏
i=1

(X − η(i)) ∈ Z[X],

where the leading coefficient a0 is positive. The logarithmic height of η is
given by

h(η) =
1

d

(
log a0 +

d∑
i=1

log max{|η(i)|, 1}

)
.

Later in the paper we use the following theorem of Matveev [11].

Theorem 2 (Matveev [11]). Let K be a number field of degree D over Q
η1, . . . , ηt be positive real numbers of K, and b1, . . . , bt rational integers. Put

Λ = ηb11 · · · η
bt
t − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(ηi), | log ηi|, 0.16} be real numbers, for i = 1, . . . , t. Then,
assuming that Λ 6= 0, we have

|Λ| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At).

4 The Baker–Davenport lemma

In 1998, Dujella and Pethő in [7, Lemma 5(a)] gave a version of the reduction
method based on a lemma of Baker–Davenport lemma [1]. We next present
the following lemma from [2], which is an immediate variation of the result
due to Dujella and Pethő from [7], and will be the key tool used to reduce the
upper bound on the variable n when we assume that n 6∈ {p, p2} .

Lemma 4.1. Let M be a positive integer, let p/q be a convergent of the
continued fraction of the irrational γ such that q > 6M , and let A,B, µ be
some real numbers with A > 0 and B > 1. Let ε := ||µq|| −M ||γq||, where
|| · || denotes the distance from the nearest integer. If ε > 0, then there is no
solution to the inequality

0 < uγ − v + µ < AB−w,

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
.
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5 The proof of Theorem 1

5.1 The exponent of 2 in both sides of (2)

Write
Ln = 2δpα1

1 · · · pαr
r , (3)

where δ ≥ 0, r ≥ 0, p1, . . . , pr are distinct odd primes and α1, . . . , αr are
positive integers. Then

φ(Ln) = 2max{0,δ−1}pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαr−1
r (pr − 1). (4)

For a nonzero integer m we write ord2(m) for the exponent of 2 in the factor-
ization of m. Applying the ord2 function in both sides of (2) and using (4),
we get

max{0, δ − 1}+

r∑
i=1

ord2(pi − 1) = ord2(φ(Ln))

= ord2

(
d

(
10m − 1

9

))
= ord2(d). (5)

Note that ord2(d) ∈ {0, 1, 2, 3}. Note also that r ≤ 3 and since Ln is never a
multiple of 5, we have that

φ(Ln)

Ln
≥
(

1− 1

2

)(
1− 1

3

)(
1− 1

7

)
>

1

4
, (6)

so φ(Ln) > Ln/4. This shows that if n ≥ 8 satisfies equation (2), then
φ(Ln) > L8/4 > 10, so m ≥ 2.

We will also use in the later stages of the paper the Binet formula

Ln = αn + βn (n ≥ 0), (7)

where (α, β) = ((1 +
√

5)/2, (1−
√

5)/2). In particular,

Ln − 1 = αn − (1− βn) ≤ αn for all n ≥ 0. (8)

Furthermore,
αn−1 ≤ Ln < αn+1 for all n ≥ 1. (9)

5.2 The case of the digit d 6∈ {4, 8}

If ord2(d) = 0, we get that d ∈ {1, 3, 5, 7, 9}, φ(Ln) is odd, so Ln ∈ {1, 2},
therefore n = 0, 1. If ord2(d) = 1, we get that d ∈ {2, 6}, and from (5) either
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δ = 2 and r = 0, so Ln = 4, therefore n = 3, or δ ∈ {0, 1}, r = 1 and p1 ≡ 3
(mod 4). Thus, Ln = pα1

1 or Ln = 2pα1
1 . Lemma 2.2 shows that α1 = 1 except

for the case when n = 6 when L6 = 2× 32. So, for n 6= 6, we get that Ln = p1

or 2p1. Let us see that the second case is not possible. Assuming it is, we get
6 | n. Write n = 2t × 3×m, where t ≥ 1 and m is odd. Clearly, n 6= 6.

If m > 1, then L2t3m has a primitive divisor which does not divide the
number L2t3. Hence, Ln = 2p1 is not possible in this case. However, if m = 1
then t > 1, and both L2t and L2t3 have primitive divisors, so the equation
Ln = 2p1 is not possible in this case either. So, the only possible case is
Ln = p1. Thus, we get

φ(Ln) = Ln − 1 = d

(
10m − 1

9

)
and d ∈ {2, 6},

so

Ln = d

(
10m − 1

9

)
+ 1 and d ∈ {2, 6}.

When d = 2, we get that Ln ≡ 3 (mod 5). The period of the Lucas sequence
{Ln}n≥0 modulo 5 is 4. Furthermore, from Ln ≡ 3 (mod 5), we get that n ≡ 2
(mod 4). Thus, n = 2(2k + 1) for some k ≥ 0. However, this is not possible
for k ≥ 1, since for k = 1, we get that n = 6 and L6 = 2× 32, while for k > 1,
we have that Ln is divisible by both the primes 3 and at least another prime,
namely a primitive prime factor of Ln, so Ln = p1 is not possible. Thus,
k = 0, so n = 2.

When d = 6, we get that Ln ≡ 2 (mod 5). This shows that 4 | n. Write
n = 2t(2k + 1) for some t ≥ 2 and k ≥ 0. As before, if k ≥ 1, then Ln cannot
be a prime since either k = 1, so 3 | n, and then Ln > 2 is even, or k ≥ 2, and
then Ln is divisible by at least two primes, namely the primitive prime factors
of L2t and of Ln. Thus, n = 2t. Assuming m ≥ 2, and reducing both sides of
the above formula

L2
2t−1 − 2 = L2t = 6

(
10m − 1

9

)
+ 1

modulo 8, we get 7 ≡ −5 (mod 8), which is not possible. This shows that
m = 1, so t = 2, therefore n = 4.

To summarize, we have proved the following result.

Lemma 5.1. Equation (2) has no solutions with n > 6 if d 6∈ {4, 8}.

5.3 The case of Ln even

Next we treat the case δ > 0. It is well-known and easy to see by looking at
the period of {Ln}n≥0 modulo 8 that 8 - Ln for any n. Hence, we only need
to deal with the cases δ = 1 or 2.
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If δ = 2, then 3 | n and n is odd. Furthermore, relation (5) shows that
r ≤ 2. Assume first that n = 3t. We check that t = 2, 3 are not convenient.
For t ≥ 4, we have that L9, L27 and L81 are divisors of Ln and all have odd
primitive divisors which are prime factors of Ln, contradicting the fact that
r ≤ 2. Assume now that n is a multiple of some prime p ≥ 5. Then Lp and
L3p already have primitive prime factors, so n = 3p, for if not, then n > 3p,
and Ln would have (at least) one additional prime factor, namely a primitive
prime factor of Ln. Thus, n = 3p. Write

Ln = L3p = Lp(L
2
p + 3).

The two factors above are coprime, so, up to relabeling the prime factors of
Ln, we may assume that Lp = pα1

1 and L2
p + 3 = 4pα2

2 . Lemma 2.2 shows that
α1 = 1. Further, since p is odd, we get that Lp ≡ 1, 4 (mod 5), therefore the
second relation above implies that pα2

2 ≡ 1 (mod 5). If α2 is odd, we then get
that p2 ≡ 1 (mod 5). This leads to 5 | (p2 − 1) | φ(Ln) = d(10m − 1)/9 with
d ∈ {4, 8}, which is a contradiction. Thus, α2 is even, showing that

L2
p + 3 = �,

which is impossible.
If δ = 1, then 6 | n. Assume first that p | n for some prime p > 3. Write

n = 2t× 3×m. If t ≥ 2, then r ≥ 4, since Ln is then a multiple of a primitive
prime factor of L2t , a primitive prime factor of L2t3, a primitive prime factor
of L2tp and a primitive prime factor of L2t3p. So, t = 1. Then Ln is a multiple
of 3 and of the primitive prime factors of L2p and L6p, showing that n = 6p,
for if not, then n > 6p and Ln would have (at least) an additional prime factor,
namely a primitive prime factor of Ln. Thus, with n = 6p, we may write

Ln = L6p = L2p(L
2
2p − 3).

Further, it is easy to see that up to relabeling the prime factors of Ln, we may
assume that p1 = 3, α1 = 2, L2p = 3pα2

2 and L2
2p − 3 = 6pα3

3 . Furthermore,
since r = 3, relation (5) tells us that pi ≡ 3 (mod 4) for i = 2, 3. Reducing
equation

L2
p + 2 = L2p = 3pα2

2

modulo 4 we get 3 ≡ 3α2+1 (mod 4), so α2 is even. We thus get L2p = 3�, an
equation which has no solutions by Lemma 2.2.

So, it remains to assume that n = 2t × 3s.
Assume s ≥ 2. If also t ≥ 2, then Ln is divisible by the primitive prime

factors of L2t , L2t3 and L2t9. This shows that n = 2t × 9 and we have

Ln = L2t9 = L2t(L2
2t − 3)(L2

2t3 − 3).
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Up to relabeling the prime factors of Ln, we get L2t = pα1
1 , L2

2t − 3 = 2pα2
2 ,

L2
2t3 − 3 = pα3

3 and pi ≡ 3 (mod 4) for i = 1, 2, 3. Reducing the last relation
modulo 4, we get 1 ≡ 3α3 (mod 4), so α3 is even. We thus get L2

2t3 − 3 = �,
and this is false. Thus, t = 1. By the existence of primitive divisors Lemma
2.1, s ∈ {2, 3}, so n ∈ {18, 54} and none leads to a solution.

Assume next that s = 1. Then n = 2t × 3 and t ≥ 2. We write

Ln = L2t3 = L2t(L2
2t − 3).

Assume first that there exist i such that pi ≡ 1 (mod 4). Then r ≤ 2 by
(5). It then follows that in fact r = 2 and up to relabeling the primes we
have L2t = pα1

1 and L2
2t − 3 = 2pα2

2 . Since L2t = L2
2t−1 − 2, we get that

L2
2t−1 − 2 = pα1

1 , which reduced modulo 4 gives 3 ≡ pα1
1 (mod 4), therefore

p1 ≡ 3 (mod 4). As for the second relation, we get (L2
2t − 3)/2 = pα2

2 , which
reduced modulo 4 also gives 3 ≡ pα2

2 (mod 4), so also p2 ≡ 3 (mod 4). But
this contradicts the fact that pi ≡ 1 (mod 4) for some i ∈ {1, . . . , r}. Thus,
pi ≡ 3 (mod 4) for all i ∈ {1, . . . , r}. Reducing relation

L2
2t3 − 5F 2

2t3 = 4

modulo pi, we get that

(
−5

pi

)
= −1, and since pi ≡ 3 (mod 4), we get that(

5

pi

)
= −1 for i ∈ {1, . . . , r}. Since pi are also primitive prime factors for L2t

and/or L2t3, respectively, we get that pi ≡ −1 (mod 2t).
Suppose next that r = 2. We then get that d = 4,

L2
2t−1 − 2 = L2t = pα1

1 and L2
2t − 3 = 2pα2

2 .

Reducing the above relations modulo 8, we get that α1, α2 are odd. Thus,

4

(
10m − 1

9

)
= φ(Ln) = pα1−1

1 (p1 − 1)pα2−1
2 (p2 − 1)

≡ (−1)α1−1(−2)(−1)α2−1(−2) (mod 2t) ≡ 4 (mod 2t),

giving

10m − 1

9
≡ 1 (mod 2t−2) therefore 10m ≡ 10 (mod 2t−2),

so t ≤ 3 for m ≥ 2. Thus, n ∈ {12, 24}, and none of these values leads to a
solution of equation (2).

Assume next that r = 3. We then get that d = 8 and either

L2
2t−1 − 2 = L2t = pα1

1 pα2
2 and L2

2t − 3 = 2pα3
3 ,
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or
L2

2t−1 − 2 = L2t = pα1
1 and L2

2t − 3 = 2pα2
2 pα3

3 .

Reducing the above relations modulo 8 as we did before, we get that exactly
one of α1, α2, α3 is even and the other two are odd. Then

8

(
10m − 1

9

)
= φ(Ln) = pα1−1

1 (p1 − 1)pα2−1
2 (p2 − 1)pα3−1

3 (p3 − 1)

≡ (−1)α1+α2+α3−3(−2)3 (mod 2t) ≡ 8 (mod 2t)

giving

10m − 1

9
≡ 1 (mod 2max{0,t−3}) therefore 10m ≡ 10 (mod 2max{0,t−3}),

which implies that t ≤ 4 for m ≥ 2. The only new possibility is n = 48, which
does not fulfill (2).

So, we proved the following result.

Lemma 5.2. There is no n > 6 with Ln even such that relation (2) holds.

5.4 The case of n even

Next we look at solutions of (2) with n even. Write n = 2tm, where t ≥ 1, m
is odd and coprime to 3.

Assume first that there exists i such that pi ≡ 1 (mod 4). Without loss
of generality we assume that p1 ≡ 1 (mod 4). It then follows from (5) that
r ≤ 2, and that r = 1 if d = 4. So, if d = 4, then r = 1, Ln = pα1

1 , and by
Lemma 2.2, we get that α1 = 1. In this case, by the existence of primitive
divisors Lemma 2.1, we get that m = 1, otherwise Ln would be divisible both
by a primitive prime factor of L2t as well as by a primitive prime factor of Ln.
Hence, L2t = p1, so

L2t − 1 = φ(L2t) = 4

(
10m − 1

9

)
, therefore L2t ≡ 5 (mod 10).

Thus, 5 | Ln and this is not possible for any n. Suppose now that d = 8. If
t ≥ 2, then

L2
n/2 − 2 = Ln

and reducing the above relation modulo p1, we get that

(
2

p1

)
= 1. Since

p1 ≡ 1 (mod 4), we read that p1 ≡ 1 (mod 8). Relation (5) shows that r = 1
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so Ln = pα1
1 . By Lemma 2.2, we get again that α1 = 1 and by the existence

of primitive divisors Lemma 2.1, we get that m = 1. Thus,

L2t − 1 = φ(L2t) = 8

(
10m − 1

9

)
, therefore L2t ≡ 4 (mod 5),

which is impossible for t ≥ 2, since Ln ≡ 2 (mod 5) whenever n is a multiple of
4. This shows that t = 1, so m > 1. Let p ≥ 5 be a prime factor of n. Then Ln
is divisible by 3 and by the primitive prime factor of L2p, and since r ≤ 2, we
get that r = 2, and n = 2p. Thus, Ln = L2p = 3pα2

2 , and, by Lemma 2.2, we
get that α2 = 1. Reducing the above relation modulo 5, we get that 3 ≡ 3p2

(mod 5), so p2 ≡ 1 (mod 5), showing that 5 | (p2−1) | φ(Ln) = 8(10m−1)/9,
which is impossible.

This shows that in fact we have pi ≡ 3 (mod 4) for i = 1, . . . , r. Reducing

relation L2
n−5F 2

n = 4 modulo pi, we get that

(
−5

pi

)
= 1 for i = 1, . . . , r. Since

we already know that

(
−1

pi

)
= −1, we get that

(
5

pi

)
= −1 for all i = 1, . . . , r.

Since in fact pi is always a primitive divisor for L2tdi for some divisor di of m,
we get that pi ≡ −1 (mod 2t). Reducing relation

Ln = pα1
1 · · · pαr

r

modulo 4, we get 3 ≡ 3α1+···+αr (mod 4), therefore α1 + · · ·+αr is odd. Next,
reducing the relation

φ(Ln) = pα1−1
1 (p1 − 1) · · · pαr−1

r (pr − 1)

modulo 2t, we get

d

(
10m − 1

9

)
= φ(Ln) ≡ (−1)α1+···+αr−r(−2)r (mod 2t) ≡ −2r (mod 2t).

Since r ∈ {2, 3} and d = 2r, we get that

10m − 1

9
≡ −1 (mod 2max{0,t−r}), so 10m ≡ 8 (mod 2max{0,t−r}).

Thus, if m ≥ 4, then t ≤ 6. Suppose that m ≥ 4. Computing L2t for t ∈ {5, 6},
we get that each of them has a prime factor p such that p ≡ 1 (mod 5). Thus,
5 | (p− 1) | φ(Ln) = d(10m− 1)/9, which is impossible. Hence, t ∈ {1, 2, 3, 4}.
We get the relations

L2tm = L2tpα1
1 , or L2tm = L2tpα2

2 pα3
3 and t ∈ {1, 2, 3, 4}. (10)
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Assume that the left relation (10) holds for some t ∈ {1, 2, 3, 4}. Reducing
the left equation (10) modulo 5, we get that L2t ≡ L2tpα1

1 (mod 5), therefore
pα1

1 ≡ 1 (mod 5). If α1 is odd, we then get that p1 ≡ 1 (mod 5); hence,
5 | (p1 − 1) | φ(Ln) = d(10m − 1)/9 with d ∈ {4, 8}, which is impossible. If
α1 is even, we then get that Ln/L2t = pα1

1 = �, and this is impossible since
n 6= 2t × 3 by Lemma 2.3. Assume now that the right relation (10) holds for
some t ∈ {2, 3, 4}. Reducing it modulo 5, we get L2t ≡ L2tpα2

2 pα3
3 (mod 5).

Hence, pα2
2 pα3

3 ≡ 1 (mod 5). Now

8

(
10m − 1

9

)
= φ(Ln) = (L2t − 1)pα2−1

2 pα3−1
3 (p2 − 1)(p3 − 1)

≡
(
p2 − 1

p2

)(
p3 − 1

p3

)
(mod 5),

so (
p2 − 1

p2

)(
p3 − 1

p3

)
≡ 3 (mod 5).

The above relation shows that p2 and p3 are distinct modulo 5, because oth-
erwise the left–hand side above is a quadratic residue modulo 5 while 3 is not
a quadratic residue modulo 5. Thus, {p2, p3} ≡ {2, 3} (mod 5), and we get(

2− 1

2

)(
3− 1

3

)
≡ 3 (mod 5) or 1 ≡ 32 (mod 5),

a contradiction. Finally, assume that t = 1 and that the right relation (10)
holds. Reducing it modulo 4, we get 3 ≡ 3α2+α3 (mod 4), therefore α2 + α3

is even. If α2 is even, then so is α3, so we get that L2m = 3�, which is
false by Lemma 2.3. Hence, α2 and α3 are both odd. Furthermore, since m
is odd and not a multiple of 3, we get that 2m ≡ 2 (mod 4) and 2m ≡ 2, 4
(mod 6), giving 2m ≡ 2, 10 (mod 12). The period of {Ln}n≥1 modulo 8 is
12, and L2 ≡ L10 ≡ 3 (mod 8), showing that L2m ≡ 3 (mod 8). This shows
that pα2

2 pα3
3 ≡ 1 (mod 8), and since α2 and α3 are odd, we get the congruence

p2p3 ≡ 1 (mod 8). This together with the fact that pi ≡ 3 (mod 4) for i = 1, 2,
implies that p2 ≡ p3 (mod 8). Thus, (p2 − 1)/2 and (p3 − 1)/2 are congruent
modulo 4 so their product is 1 modulo 4. Now we write

φ(Ln) = (3− 1)(p2 − 1)pα2−1
2 (p3 − 1)pα3−1

3

= 8

(
(p2 − 1)

2

(p3 − 1)

2

)
pα2−1

2 pα3−1
3 = 8M,

where M ≡ 1 (mod 4). However, since in fact M = (10m − 1)/9, we get that
M ≡ 3 (mod 4) for m ≥ 2, a contradiction. So, we must have m ≤ 3, therefore
Ln < 4000, so n ≤ 17, and such values can be dealt with by hand.

Thus, we have proved the following result.
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Lemma 5.3. There is no n > 6 even such that relation (2) holds.

5.5 r = 3, d = 8 and m is even

From now on, n > 6 is odd and Ln is also odd. If p is any prime factor
of Ln, then reducing the equation L2

n − 5F 2
n = −4 modulo p we get that(

5

p

)
= 1. Thus, p ≡ 1, 4 (mod 5). If p ≡ 1 (mod 5), then 5 | (p − 1) |

φ(Ln) = d(10m − 1)/9 with d ∈ {4, 8}, a contradiction. Thus, pi ≡ 4 (mod 5)
for all i = 1, . . . , r.

We next show that pi ≡ 3 (mod 4) for all i = 1, . . . , r. Assume that this
is not so and suppose that p1 ≡ 1 (mod 4). If r = 1, then Ln = pα1

1 and by
Lemma 2.2, we have α1 = 1. So,

Ln − 1 = φ(Ln) = d

(
10m − 1

9

)
so Ln = d

(
10m − 1

9

)
+ 1.

If d = 4, then Ln ≡ 5 (mod 10), so 5 | Ln, which is false. When d = 8, we
get that Ln ≡ 4 (mod 5), showing that n ≡ 3 (mod 4). However, we also
have that Ln ≡ 1 (mod 8), showing that n ≡ 1 (mod 12); in particular, n ≡ 1
(mod 4), a contradiction.

Assume now that r = 2. Then Ln = pα1
1 pα2

2 and d = 8. Then

φ(Ln) = (p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 = 8

(
10m − 1

9

)
. (11)

Reducing the above relation (11) modulo 5 we get 4α1+α2−2×32 ≡ 3 (mod 5),
which is impossible since the left–hand side of it is a quadratic residue modulo
5 while the right–hand side of it is not.

Thus, pi ≡ 3 (mod 4) for i = 1, . . . , r. Assume next that r = 2. Then
Ln = pα1

1 pα2
2 and d = 4. Then

φ(Ln) = (p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 = 4

(
10m − 1

9

)
. (12)

Reducing the above relation (12) modulo 5, we get 4α1+α2−2×32 ≡ 4 (mod 5),
therefore 4α1+α2−2 ≡ 1 (mod 5). Thus, α1 +α2 is even. If α1 is even, so is α2,
so Ln = �, and this is false by Lemma 2.2. Hence, α2 and α3 are both odd. It
now follows that Ln ≡ 3α1+α2 (mod 4), so Ln ≡ 1 (mod 4), therefore n ≡ 1
(mod 6), and also Ln ≡ 4α1+α2 (mod 5), so Ln ≡ 1 (mod 5), showing that
n ≡ 1 (mod 4). Hence, n ≡ 1 (mod 12), showing that Ln ≡ 1 (mod 8). Thus,
pα1

1 pα2
2 ≡ 1 (mod 8), and since α1 and α2 are odd and pα1−1

1 and pα2−1
2 are

congruent to 1 modulo 8 (as perfect squares), we therefore get that p1p2 ≡ 1
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(mod 8). Since also p1 ≡ p2 ≡ 3 (mod 4), we get that in fact p1 ≡ p2 (mod 8).
Thus, (p1 − 1)/2 and (p2 − 1)/2 are congruent modulo 4 so their product is 1
modulo 4. Thus,

φ(Ln) = 4

(
(p1 − 1)

2

(p2 − 1)

2

)
pα1−1

1 pα2−1
2 = 4M,

where M ≡ 1 (mod 4). Since in fact we have M = (10m − 1)/9, we get that
M ≡ 3 (mod 4) for m ≥ 2, a contradiction.

Thus, r = 3 and d = 8. To get that m is even, we write Ln = pα1
1 pα2

2 pα3
3 .

So,

φ(Ln) = (p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 (p3 − 1)pα3−1
3 = 8

(
10m − 1

9

)
, (13)

Reducing equation (13) modulo 5 we get 4α1+α2+α3−3×33 ≡ 3 (mod 5), giving
4α1+α2+α3 ≡ 1 (mod 5). Hence, α1 +α2 +α3 is even. It is not possible that all
αi are even for i = 1, 2, 3, since then we would get Ln = �, which is not possible
by Lemma 2.2. Hence, exactly one of them is even, say α3 and the other two
are odd. Then Ln ≡ 3α1+α2+α3 ≡ 1 (mod 4) and Ln ≡ 4α1+α2+α3 ≡ 1
(mod 5). Thus, n ≡ 1 (mod 6) and n ≡ 1 (mod 4), so n ≡ 1 (mod 12). This
shows that Ln ≡ 1 (mod 8). Since pα1−1

1 pα2−1
2 pα3

3 is congruent to 1 modulo 8
(as a perfect square), we get that p1p2 ≡ 1 (mod 8). Thus, p1 ≡ p2 (mod 8),
so (p1 − 1)/2 and (p2 − 1)/2 are congruent modulo 4 so their product is 1.
Then

φ(Ln) = 8

(
(p1 − 1)

2

(p2 − 1)

2

)(
p3(p3 − 1)

2

)
pα1−1

1 pα2−1
2 pα3−2

3 = 8M, (14)

where M = (10m − 1)/9 ≡ 3 (mod 4). In the above product, all odd factors
are congruent to 1 modulo 4 except possibly for p3(p3 − 1)/2. This shows
that p3(p3 − 1)/2 ≡ 3 (mod 4), which shows that p3 ≡ 3 (mod 8). Now since
p2

3 | Ln, we get that p3 | φ(Ln) = 8(10m − 1)/9. So, 10m ≡ 1 (mod p3).
Assuming that m is odd, we would get

1 =

(
10

p3

)
=

(
2

p3

)(
5

p3

)
= −1,

a contradiction. In the above, we used that p3 ≡ 3 (mod 8) and p3 ≡ 4

(mod 5) and quadratic reciprocity to conclude that

(
2

p3

)
= −1 as well as(

5

p3

)
=
(p3

5

)
= 1.

So, we have showed the following result.
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Lemma 5.4. If n > 6 is a solution of (2), then n is odd, Ln is odd, r =
3, d = 8 and m is even. Further, Ln = pα1

1 pα2
2 pα3

3 , where pi ≡ 3 (mod 4) and
pi ≡ 4 (mod 5) for i = 1, 2, 3, p1 ≡ p2 (mod 8), p3 ≡ 3 (mod 8), α1 and α2

are odd and α3 is even.

5.6 n ∈ {p, p2} for some prime p with p3 | 10p−1 − 1

The factorizations of all Lucas numbers Ln for n ≤ 1000 are known. We used
them and Lemma 5.4 and found no solution to equation (2) with n ∈ [7, 1000].

Let p be a prime factor of n. Suppose first that n = pt for some positive
integer t. If t ≥ 4, then Ln is divisible by at least four primes, namely primitive
prime factors of Lp, Lp2 , Lp3 and Lp4 , respectively, which is false. Suppose
that t = 3. Write

Ln = Lp

(
Lp2

Lp

)(
Lp3

Lp2

)
.

The three factors above are coprime, so they are pα1
1 , pα2

2 , pα3
3 in some order.

Since α3 is even, we get that one of Lp, Lp2/Lp or Lp3/Lp2 is a square, which
is false by Lemmas 2.2 and 2.3. Hence, n ∈ {p, p2}. All primes p1, p2, p3 are
quadratic residues modulo 5. When n = p, they are primitive prime factors of
Lp. When n = p2, all of them are primitive prime factors of Lp or Lp2 with at
least one of them being a primitive prime factor of Lp2 . Thus, pi ≡ 1 (mod p)
holds for all i = 1, 2, 3 both in the cace n = p and n = p2, and when n = p2

at least one of the the above congruences holds modulo p2. This shows that
p3 | (p1 − 1)(p2 − 1)(p3 − 1) | φ(Ln) = 8(10m − 1)/9, so p3 | 10m − 1. When
n = p2, we in fact have p4 | 10m − 1. Assume now that p3 - 10p−1 − 1. Then
the congruence p3 | 10m − 1 implies p | m, while the congruence p4 | 10m − 1
implies p2 | m. Hence, when n = p, we have

2p > Lp > φ(Ln) = 8(10m − 1)/9 > (10p − 1)/9 > 10p−1

which is false for any p ≥ 3. Similarly, if n = p2, then

2p
2

> Lp2 > φ(Ln) = 8(10m − 1)/9 > (10p
2

− 1)/9 > 10p
2−1

which is false for any p ≥ 3. So, indeed when n is a power of a prime p, then
the congruence p3 | 10p−1 − 1 must hold. We record this as follows.

Lemma 5.5. If n > 6 and n = pt is solution of (2) with some t ≥ 1 and p
prime, then t ∈ {1, 2} and p3 | 10p−1 − 1.

Suppose now that n is divisible by two distinct primes p and q. By Lemma
2.1, Lp, Lq and Lpq each have primitive prime factors. This shows that n = pq,
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for if n > pq, then Ln would have (at least) one additional prime factor, which
is a contradiction. Assume p < q and

Ln = LpLq

(
Lpq
LpLq

)
.

Unless q = Lp, the three factors above are coprime. Say q 6= Lp. Then the
three factors above are pα1

1 , pα2
2 and pα3

3 in some order. By Lemmas 2.2 and
up to relabeling the primes p1 and p2, we may assume that α1 = α2 = 1, so
Lp = p1, Lq = p2 and Lpq/(LpLq) = pα3

3 . On the other hand, if q = Lp, then
q2‖Lpq. This shows then that up to relabeling the primes we may assume that
α2 = 1, α3 = 2, Lp = p3, Lq = p2, Lpq/(LpLq) = p3p

α1
1 . However, in this

case p3 ≡ 3 (mod 8), showing that p ≡ 5 (mod 8). In particular, we also have
p ≡ 1 (mod 4), so p3 = Lp ≡ 1 (mod 5), and this is not possible. So, this case
cannot appear.

Write m = 2m0. Then

(p1 − 1)(p2 − 1)(p3 − 1)pα3−1
3 = φ(Ln) =

8(10m0 − 1)(10m0 + 1)

9
.

If m0 is even, then pα3−1
3 | 10m0 − 1 because p3 ≡ 3 (mod 4), so p3 cannot

divide 10m0 +1 = (10m0/2)2 +1. If m0 is odd, then pα3−1
3 | 10m0 +1, because if

not we would have that p3 | 10m0 − 1, so 10m0 ≡ 1 (mod p3), and since m0 is

odd we would get

(
10

p3

)
= 1, which is false since

(
2

p3

)
= −1 and

(
5

p3

)
= 1.

Thus, we get, using (8), that

αp+qp3 > (Lp − 1)(Lq − 1)p3 = p1p2p3 > (p1 − 1)(p2 − 1)(p3 − 1)

≥ 8(10m0 − 1)

9
>

8

10
× 10m0 . (15)

On the other hand, by inequality (6), we have

10m >
8(10m − 1)

9
= φ(Ln) >

Ln
4
,

so that

10m0 >

√
Ln
2

>
αpq/2−0.5

2
, (16)

where we used the inequality (9). From (15) and (16), we get

p3 >
8

20
√
α
αpq/2−p−q =

8

20α4.5
α(p−2)(q−2) >

α(p−2)(q−2)

25
.
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Once checks that the inequality

α(p−2)(q−2)/2

25
> αq+1 (17)

is valid for all pairs of primes 5 ≤ p < q with pq > 100. Indeed, the above
inequality (17) is implied by

(p− 2)(q − 2)/2− (q + 1)− 7 > 0, or (q − 2)(p− 4) > 20. (18)

If p ≥ 7, then q > p ≥ 11 and the above inequality (18) is clear, whereas if
p = 5, then q ≥ 23 and the inequality (18) is again clear.

We thus get that

p3 >
α(p−2)(q−2)

25
> αq+1 > Lq = p2 > Lp = p1.

We exploit the two relations

0 < 1− φ(Ln)

Ln
= 1−

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
<

3

p1
<

5

αp
;

1− (Lp − 1)φ(Ln)

LpLn
= 1−

(
1− 1

p2

)(
1− 1

p3

)
<

2

p2
<

4

αq
. (19)

In the above, we used the inequality

1− (1− x1) · · · (1− xr) ≤ x1 + · · ·+ xr

valid for all real numbers xi ∈ (0, 1) for i = 1, . . . , r, which can be easily proved
by induction on r. Since n is odd, we have Ln = αn − α−n. Then

1 +
2

α2n
>

1

1− α−2n
> 1,

so
1

αn
+

2

α3n
>

1

Ln
>

1

αn
,

or

8× 10m

9αn
+

16× 10m

9α3n
− 8

9Ln
>

8(10m − 1)

9Ln
=
φ(Ln)

Ln
>

8× 10m

9αn
− 8

9Ln
. (20)

The first inequality (19) and (20) show that∣∣1− (8/9)× 10m × α−n
∣∣ < 3

p1
+

8

9Ln
+

16× 10m

9α3n
. (21)
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Now

8× 10m−1 <
8(10m − 1)

9
= φ(Ln) < Ln < αn+1, so 10m <

10α

8
αn,

showing that
16× 10m

9α3n
<

20α

9α2n
<

0.5

αn
for n > 1000.

Since also
8

9Ln
<

8α

9αn
<

1.5

αn
,

we get that
16× 10m

9α3n
+

8

9Ln
<

0.5

αn
+

1.5

αn
<

2

αn
.

Since also p1 < L
1/3
n < α(n+1)/3, we get that (21) becomes∣∣1− (8/9)× 10m × α−n

∣∣ < 3

p1
+

2

αn
<

4

p1
=

4

Lp
<

4α

αp
<

7

αp
, (22)

where the middle inequality is implied by αn > 2α(n+1)/3 > 13p1, which holds
for n > 1000.

The same argument based on (20) shows that∣∣∣∣1− (8(Lp − 1)

9Lp

)
× 10m × α−n

∣∣∣∣ < 4

αq
+

2

αn
<

5

αq
. (23)

We are in a situation to apply Theorem 2 to the left–hand sides of (22) and
(23). The expressions there are nonzero, since any one of these expressions
being zero means αn ∈ Q for some positive integer n, which is false. We
always take K = Q(

√
5) for which D = 2. We take t = 3, α1 = α, α2 = 10,

so we can take A1 = logα = 2h(α1) and A2 = 2 log 10. For (22), we take
α3 = 8/9, and A3 = 2 log 9 = 2h(α3). For (23), we take α3 = 8(Lp − 1)/9Lp,
so we can take A3 = 2p > h(α3). This last inequality holds because h(α3) ≤
log(9Lp) < (p + 1) logα + log 9 < p for all p ≥ 7, while for p = 5 we have
h(α3) = log 99 < 5. We take α1 = −n, α2 = m, α3 = 1. Since

2n > Ln > φ(Ln) > 8× 10m−1

it follows that n > m. So, B = n. Now Theorem 2 implies that a lower bound
on the left–hand side of (22) is

exp
(
−1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + log n)(logα)(2 log 10)(2 log 9)

)
,
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so inequality (22) implies

p logα− log 7 < 9.5× 1012(1 + log n),

which implies
p < 2× 1013(1 + log n). (24)

Now Theorem 2 implies that the right–hand side of inequality (23) is at least
as large as

exp
(
−1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + log n)(logα)(2 log 10)(2p)

)
leading to

q logα− log 4 < 4.3× 1012(1 + log n)p.

Using (24), we get

q < 9× 1012(1 + log n)p < 2× 1026(1 + log n)2.

Using again (24), we get

n = pq < 4× 1039(1 + log n)2,

leading to
n < 5× 1043. (25)

Now we need to reduce the bound. We return to (22). Put

Λ = m log 10− n logα+ log(8/9).

Then (22) implies that

|eΛ − 1| < 7

αp
. (26)

Assuming p ≥ 7, we get that the right–hand side of (26) is < 1/2. Analyzing
the cases Λ > 0 and Λ < 0 and using the fact that 1 + x < ex holds for all
positive real numbers x, we get that

|Λ| < 14

αp
.

Assume say that Λ > 0. Dividing across by logα, we get

0 < m

(
log 10

logα

)
− n+

(
log(8/9)

logα

)
<

30

αp
.

We are now ready to apply Lemma 4.1 with the obvious parameters

γ =
log 10

logα
, µ =

log(8/9)

logα
, A = 30, B = α.
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Since m < n, we can take M = 1045 by (25). Applying Lemma 4.1, performing
the calculations and treating also the case when Λ < 0, we get that p < 250.
Now we go to inequality (23) and for p ∈ [5, 250], we consider

Λp = m log 10− n logα+ log

(
8(Lp − 1)

9Lp

)
.

Then inequality (23) becomes ∣∣eΛp − 1
∣∣ < 5

αq
. (27)

Since q ≥ 7, the right–hand side is smaller than 1/2. We thus get that

|Λp| <
10

αq
.

We proceed in the same way as we proceeded with Λ by applying Lemma 4.1
to Λp and distinguishing the cases in which Λp > 0 and Λp < 0, respectively.
In all cases, we get that q < 250. Thus, 5 ≤ p < q < 250. Note however
that we must have either p2 | 10p−1 − 1 or q2 | 10q−1 − 1. Indeed, the
point is that since all three prime factors of Ln are quadratic residues modulo
5, and they are primitive prime factors of Lp, Lq and Lpq, respectively, it
follows that p1 ≡ 1 (mod p), p2 ≡ 1 (mod q) and p3 ≡ 1 (mod pq). Thus,
(pq)2 | (p1 − 1)(p2 − 1)(p3 − 1) | φ(Ln) = 8(10m − 1)/9, which in turn shows
that (pq)2 | 10m − 1. Assume that neither p2 | 10p−1 − 1 nor q2 | 10q−1 − 1.
Then relation (pq)2 | 10m − 1 implies that pq | m. Thus, m ≥ pq, leading to

2pq > Ln > φ(Ln) =
8(10m − 1)

9
> 10m−1 ≥ 10pq−1,

a contradiction. So, indeed either p2 | 10p−1 − 1 or q2 | 10q−1 − 1. However,
a computation with Mathematica revealed that there is no prime r such that
r2 | 10r−1 − 1 in the interval [5, 250]. In fact, the first such r > 3 is r = 487,
but L487 is not prime!

This contradiction shows that indeed when n > 6, we cannot have n = pq.
Hence, n ∈ {p, p2} and p3 | 10p−1 − 1. We record this as follows.

Lemma 5.6. Equation (2) has no solution n > 6 which is not of the form
n = p or p2 for some prime p such that p3 | 10p−1 − 1.

5.7 Bounding n

Finally, we bound n. We assume again that n > 1000. Equation (3) becomes

Ln = pα1
1 pα2

2 pα3
3 .
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Throughout this last section, we assume that p1 < p2 < p3. First, we bound
p1, p2 and p3 in terms of n. Using the first relation of (19), we have that

0 < 1− φ(Ln)

Ln
= 1−

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
<

3

p1
. (28)

By the argument used at estimates (20)–(22), we get that

|1− (8/9)× 10m × α−n| < 3

p1
+

2

αn
<

4

p1
, (29)

where the last inequality holds because p1 ≤ Ln/(p2p3) < Ln/(7×11) < αn/2.
We apply Theorem 2 to the left-hand side of (29) The expression there

is nonzero by a previous argument. We take again K = Q(
√

5) for which
D = 2. We take t = 3, α1 = 8/9, α2 = 10 and α3 = α. Thus, we can take
A1 = log 9 = 2h(α1) , A2 = 2 log 10 and A3 = 2 logα = 2h(α3). We also take
b1 = 1, b2 = m, b3 = −n. We already saw that B = n. Now Theorem 2
implies that a lower bound on the left–hand side of (29) is at least

exp
(
−1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + log n)23(logα)(log 10)(log 9)

)
,

so inequality (22) implies

log p1 − log 4 < 1.89× 1013(1 + log n),

Then we get
log p1 < 1.9× 1013(1 + log n). (30)

We use the same argument to bound p2. We have

0 < 1−
(
p1 − 1

p1

)
φ(Ln)

Ln
=

(
1− 1

p2

)(
1− 1

p3

)
<

2

p2
.

Thus, we get that:∣∣∣∣1− (8(p1 − 1)

9p1

)
× 10mα−n

∣∣∣∣ < 2

p2
+

2

αn
<

3

p2
, (31)

where the last inequality follows again because p2 ≤ Ln/(p1p3) < αn/2.
We apply Theorem 2 to the left–hand side of (31). We take t = 3, α1 =

8(p1 − 1)/(9p1), α2 = 10 and α3 = α, so we take A1 = 2 log(9p1) ≥ 2h(α1),
A2 = 2 log 10 and A3 = 2 logα. Again b1 = −1, b2 = m, b3 = −n and B = n.
Now Theorem 2 implies that a lower bound on the left–hand side of (31) is

exp
(
−1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + log n)23(logα) log 10 log(9p1)

)
.
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Using estimate (30), inequality (32) implies

log p2 − log 2 < 1.8× 1026(1 + log n)2. (32)

Using a similar argument, we get

log p3 − log 2 < 1.8× 1039(1 + log n)3. (33)

Now can bound n. Equation (3), gives that :

αn + βn = pα1
1 pα2

2 pα3
3 .

Thus,

|pα1
1 pα2

2 pα3
3 α−n − 1| = 1

α2n
(34)

We can apply Theorem 2, with t = 4, α1 = p1, α2 = p2, α3 = p3, and α4 = α.
We take A1 = 2 log p1 = 2h(α1), A2 = 2 log p2, A3 = 2 log p3 = 2h(α3) and
A4 = 2 logα. We take B = n. Then Theorem 2 implies that a lower bound
on the left–hand side of (34) is

exp

(
−1.4× 307 × 44.5 × 22 × (1 + log 2)(1 + log n)24(logα)

3∏
i=1

(log pi)

)
.

Using (34) and inequalities (29), (32), (33), we get

n < 8× 1093(1 + log n)7, so n < 10111.

This gives the upper bound. As for the lower bound, a quick check with
Mathematica revealed that the only primes p < 2×109 such that p2 | 10p−1−1
are p ∈ {3, 487, 56598313} and none of these has in fact the stronger property
that p3 | 10p−1 − 1.

Acknowledgements. We thank the referee for a careful reading of the
paper and for comments and suggestions which improved its quality. Part of
this work was written during a visit of F. L. at the AIMS-Senegal in January
of 2014. He thanks the people of this institution for their hospitality. J. J. B.
was partially supported by Universidad del Cauca.

References

[1] A. Baker and H. Davenport, “The equations 3x2 − 2 = y2 and 8x2 − 7 =
z2”, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.



REPDIGITS AS EULER FUNCTIONS OF LUCAS NUMBERS 125

[2] J. J. Bravo and F. Luca, “On a conjecture about repdigits in k–
generalized Fibonacci sequences”, Publ. Math. Debrecen, 82 (2013), 623–
639.

[3] Y. Bugeaud, M. Mignotte and S. Siksek, “Classical and modular ap-
proaches to exponential Diophantine equations. I. Fibonacci and Lucas
perfect powers”, Ann. of Math. (2) 163 (2006), 969–1018.

[4] Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek, “Almost powers in the
Lucas sequence”, J. N. T. Bordeaux 20 (2008), 555–600.

[5] R. D. Carmichael, “On the numerical factors of the arithmetic forms
αn ± βn”, Ann. Math. (2) 15 (1913), 30–70.

[6] M. T. Damir, B. Faye, F. Luca and A. Tall, “Members of Lucas sequences
whose Euler function is a power of 2”, Fibonacci Quarterly , to appear.
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Km 2 route de Joal (Centre IRD Mbour),
BP: 64566 Dakar-Fann, Sénégal.
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