
Acta Univ. Sapientiae, Informatica 8, 2 (2016) 113–170

DOI: 10.1515/ausi-2016-0007

Parallel communicating grammar systems

with context-free components are Turing

complete for any communication model

Mary Sarah Ruth WILKIN
Department of Computer Science

Bishop’s University
Sherbrooke, Quebec J1M 1Z7, Canada

email: swilkin@cs.ubishops.ca

Stefan D. BRUDA
Department of Computer Science

Bishop’s University
Sherbrooke, Quebec J1M 1Z7, Canada

email: stefan@bruda.ca

Abstract. Parallel Communicating Grammar Systems (PCGS) were in-
troduced as a language-theoretic treatment of concurrent systems. A
PCGS extends the concept of a grammar to a structure that consists
of several grammars working in parallel, communicating with each other,
and so contributing to the generation of strings. PCGS are usually more
powerful than a single grammar of the same type; PCGS with context-free
components (CF-PCGS) in particular were shown to be Turing complete.
However, this result only holds when a specific type of communication
(which we call broadcast communication, as opposed to one-step com-
munication) is used. We expand the original construction that showed
Turing completeness so that broadcast communication is eliminated at
the expense of introducing a significant number of additional, helper com-
ponent grammars. We thus show that CF-PCGS with one-step commu-
nication are also Turing complete. We introduce in the process several
techniques that may be usable in other constructions and may be capable
of removing broadcast communication in general.

Computing Classification System 1998: F.1.1, F.4.2, F.4.3
Mathematics Subject Classification 2010: 68Q45, 68Q10, 68Q42, 68Q15
Key words and phrases: formal languages, theory of computation, formal grammar, par-
allel communicating grammar system, Turing completeness

113

http://cs.ubishops.ca
http://www.ubishops.ca
mailto:swilkin@cs.ubishops.ca
https://bruda.ca
http://cs.ubishops.ca
http://www.ubishops.ca
mailto:stefan@bruda.ca

114 M. S. R. Wilkin, S. D. Bruda

1 Introduction

Parallel Communicating Grammar Systems (PCGS for short) have been in-
troduced as a language-theoretic treatment of concurrent (or more general,
multi-agent) systems [19]. A PCGS extends the concept of a grammar to a
structure that consists of several grammars working in parallel and contribut-
ing to the generation of strings.

In a PCGS one grammar component is the master of the system and the
other components are called helpers or slaves; they all participate in the deriva-
tion but may or may not have a direct impact on the generation of the final
string produced by the system. The master grammar controls the derivation
which is considered complete as soon as it produces a string of terminals re-
gardless of the state of the strings in the other components (hence the name
helper or slave component). In order for the helper components to contribute
to the derivation, communication (or query) steps are required. In essence a
communication step allows the different components in the system to share
strings with one another: A grammar proceeds with a communication step by
introducing in its string a request for a string from another grammar. Once
a communication step has been introduced, all rewriting steps are put on
hold until the communication is complete, meaning they are put on hold until
the requesting grammar(s) receive the string from the queried component(s).
Grammars communicate in one of two ways: returning or non-returning. In
a returning system, once a communication request has been completed the
queried component returns to its original axiom and continues the derivation
from there; conversely if a system is non-returning the component string re-
mains intact and the derivation continues to rewrite that string [6, 21].

Our main area of interest in this paper is the generative capacity of PCGS. It
has been shown that a PCGS with components of a certain type are generally
more powerful than single grammars of the same type; we will summarize
some results in this respect in Section 3. There have also been other attempts
to associate the generative power of PCGS with additional representations,
including parse trees [1] and coverability trees [17, 22].

We focus on PCGS with context-free components (CF-PCGS for short).
Significant findings in this area include a proof that non-returning CF-PCGS
can generate all recursively enumerable languages [14]. Combined with the fact
that non-returning systems can be simulated by returning systems [8] based on
an earlier result [15], this establishes that returning PCGS with context-free
components are also computationally complete. An alternative investigation
into the same matter consists in the development of a returning PCGS with

Parallel communicating grammar systems . . . 115

context-free components that simulates an arbitrary 2-counter machine (yet
another complete model [9]), thus proving that this kind of PCGS are Turing
complete [4]. On close examination of the derivations of this PCGS simulating
a 2-counter machine [4] we noticed that the communication steps used are
of a particular kind [20]. In this PCGS multiple components query the same
component at the same time, and they all receive the same string; only then
does the queried component returns to its axiom. Throughout the document
we will refer to this style of communication as broadcast communication (also
called immediate communication [24], though we prefer the term broadcast as
being more intuitive). Later work uses a different definition, where the queried
component returns to its axiom immediately after it is communicated [6]; we
will refer to this type of communication as one-step communication. It follows
that one querying component would receive the requested string and all the
other components querying the same component would receive the axiom. One
consequence is that the CF-PCGS simulation of a 2-counter machine [4] will
not hold with one-step communication, for indeed the proposed system will
block after the first communication step.

In this paper we wonder whether the 2-counter machine simulation can be
modified so that it works with one-step communication. The answer turns out
to be affirmative. We present in Section 5.2 a PCGS that observes the one-step
communication definition and at the same time simulates a 2-counter machine
in a similar manner with the original construction [4]. The construction turns
out to be substantially more complex. We eliminate broadcast communica-
tion using extra components (so that the original broadcast communication is
replaced with queries to individual components), which increases the overall
number of components substantially. The number of components however re-
mains bounded. We thus conclude that CF-PCGS are indeed Turing complete
regardless of the type of communication used.

This work was first published in a preliminary form as a technical report
[25].

2 Preliminaries

The symbol ε will be used to denote the empty string, and only the empty
string; ω stands for |N|. Given a string σ and a set A we denote the length of
σ by |σ|, while |σ|A stands the length of the string σ after all the symbols not
in A have been erased from it. We often write |σ|a instead of |σ|{a} for singleton
sets A = {a}. The word “iff” stands as usual for “if and only if”.

116 M. S. R. Wilkin, S. D. Bruda

A grammar [13] is a quadruple G = (Σ,N, S, R). Σ is a finite nonempty set;
the elements of this set are referred to as terminals. N is a finite nonempty set
disjoint from Σ; the elements of this set are referred to as nonterminals. S ∈ N
is a designated nonterminal referred to as the start symbol or axiom. R is a
finite set of rewriting rules, of the form A→ u where A ∈ (Σ∪N)∗N(Σ∪N)∗

and u ∈ (Σ ∪ N)∗ (A and u are strings of terminals and nonterminals but
A has at least one nonterminal). Given a grammar G, the ⇒G (yields in
one step) binary operator on strings from the alphabet W = (Σ ∪ N)∗ is
defined as follows: T1AT2 ⇒G T1uT2 iff A → u ∈ R and T1 ,T2 ∈ (Σ ∪ N)∗.
We often omit the subscript from the yields in one step operator when there
is no ambiguity. The language generated by a grammar G = (Σ,N, S, R) is
L(G) = {w ∈ Σ∗ : S ⇒∗G w}, where ⇒∗G denotes as usual the reflexive and
transitive closure of ⇒G.

Unrestricted grammars generate recursively enumerable languages (RE).
Context-sensitive grammars (where each rule A→ u satisfies |A| ≤ |u|) gener-
ate context-sensitive languages (CS). Context-free languages (CF) are gener-
ated by context-free grammars, where each rule A→ u satisfies |A| = 1. Linear
grammars (for linear languages LIN) are context-free grammars in which no
rewriting rule is allowed to have more that one non-terminal in its right hand
side. A regular grammar has only rules of the form A→ cB, A→ c, A→ ε, or
A→ B where A,B are nonterminals and c is a terminal, and generates regular
languages (REG) [10, 12].

A Parallel Communicating Grammar System (or PCGS) consists of a num-
ber of grammars that work together and communicate with each other.

Definition 1 Parallel Communicating Grammar System [6]: A PCGS
of degree n, n ≥ 1 is an (n + 3) tuple Γ = (N,K, T,G1, . . . , Gn) where N is
a nonterminal alphabet, T is a terminal alphabet, and K is the set of query
symbols, K = {Q1, Q2, . . . , Qn}. The sets N, T , K are mutually disjoint; let
VΓ = N∪K∪ T . Gi = (N∪K, T, Ri, Si), 1 ≤ i ≤ n are Chomsky grammars. The
grammars Gi, 1 ≤ i ≤ n, represent the components of the system. The indices
1, . . . , n of the symbols in K point to G1, . . . , Gn, respectively.

A derivation in a PCGS consists of a series of communication and rewriting
steps. A rewriting step is not possible if communication is requested (which
happens whenever a query symbol appears in one of the components of a
configuration).

Definition 2 Derivation in a PCGS [6]: Let Γ = (N,K, T,G1, · · · , Gn) be a
PCGS, and (xi, x2, . . . , xn) and (yi, y2, . . . , yn) be two n-tuples with xi, yi ∈ V∗Γ ,

Parallel communicating grammar systems . . . 117

1 ≤ i ≤ n. We write (xi, . . . , xn) ⇒ (yi, . . . , yn) iff one of the following two
cases holds:

1. |xi|K = 0, 1 ≤ i ≤ n, and for each i, 1 ≤ i ≤ n, we have xi ⇒Gi yi (in
the grammar Gi), or xi ∈ T∗ and xi = yi.

2. |xi|K > 0 for some 1 ≤ i ≤ n; let xi = z1Qi1z2Qi2 . . . ztQitzt+1, with
t ≥ 1 and zj ∈ (N∪Σ)∗, 1 ≤ j ≤ t+ 1. Then yi = z1xi1z2xi2 . . . ztxitzt+1
[and yij = Sij, 1 ≤ j ≤ t] whenever |xij |K = 0, 1 ≤ j ≤ t. If on the other
hand |xij |K 6= 0 for some 1 ≤ j ≤ t, then yi = xi. For all 1 ≤ k ≤ n,
yk = xk whenever yk was not specified above.

The presence of “[and yij = Sij , 1 ≤ j ≤ t]” in the definition makes the PCGS
returning. The PCGS is non-returning if the phrase is eliminated.

In other words, an n-tuple (x1, . . . , xn) yields (y1, . . . , yn) if:

1. If there is no query symbol in x1,. . . ,xn, then we have a component-wise
derivation (xi ⇒Gi yi, 1 ≤ i ≤ n, which means that one rule is used
per component Gi), unless xi is all terminals (xi ∈ T∗) in which case it
remains unchanged (yi = xi).

2. If we have query symbols then a communication step is required. When
this occurs each query symbol Qj in xi is replaced by xj, iff if xj does
not contain query symbols. In other words, a communication step in-
volves the query symbol Qj being replaced by the string xj; the result
of this replacement is referred to as Qj being satisfied (by xj). Once the
communication step is complete the grammars Gj whose strings were
communicated to xi continue processing from its axiom, unless the sys-
tem is non-returning. Communication steps always have priority over
rewriting steps; if not all query symbols are satisfied during a commu-
nication step, they will be satisfied during the next communication step
(as long as the replacement strings do not contain query symbols).

We use ⇒ for both component-wise and communication steps, but we also

use (sparingly)
Λ⇒ for communication steps whenever we want to emphasize

that a communication takes place. A sequence of interleaved rewriting and
communication steps will be denoted by ⇒∗, the reflexive and transitive closure
of ⇒.

118 M. S. R. Wilkin, S. D. Bruda

The derivation in a PCGS can be blocked in two ways [6, 16, 18, 21]:

1. if some component xi of the current n-tuple (x1, . . . , xn) contains non-
terminals but does not contain any nonterminal that can be rewritten
in Gi, or

2. if a circular query appears; in other words if Gi1 queries Qi2 , Gi2 queries
Qi3 , and so on until Gik−1 queries Qik and Gik queries Qi1 , then a deriva-
tion will not be possible since the communication step always has prior-
ity, but no communication is possible because only strings without query
symbols can be communicated.

Definition 3 Languages Generated by PCGS [6]: The language gener-
ated by a PCGS Γ is L(Γ) = {w ∈ T∗ : (S1, S2, ..., Sn) ⇒∗ (w,σ2, ..., σn), σi ∈
V∗Γ , 2 ≤ i ≤ n}.

The derivation starts from the tuple of axioms (S1, S2, ..., Sn). A number
of rewriting and/or communication steps are performed until G1 produces a
terminal string (we do not restrict the form of, or indeed care about the rest
of the components of the final configuration).

A PCGS is called centralized if only G1 can introduce query symbols, oth-
erwise it is called non-centralized. A system can be synchronized whenever a
component grammar uses exactly one rewriting rule per derivation step (un-
less the component grammar is holding a terminal string, case in which it is
allowed to wait). If a system is non-synchronized then in any step that is not
a communication step the component may chose to rewrite or wait.

The family of languages generated by a non-centralized, returning PCGS
with n components of type X (where X is an element of the Chomsky hier-
archy) will be denoted by PCn(X). The language families generated by cen-
tralized PCGS will be represented by CPCn(X). The fact that the PCGS
is non-returning will be indicated by the addition of an N, thus obtain-
ing the classes NPCn(X) and NCPCn(X). Let M be a class of PCGS, M ∈
{PC,CPC,NPC,NCPC}; then we define:

M(X) =M∗(X) =
⋃
n≥1

Mn(X)

Parallel communicating grammar systems . . . 119

3 Previous work

Numerous results regarding the generative capacity of various kinds of PCGS
exist. We focus in this paper on synchronized PCGS with context-free com-
ponents.

First of all, in it immediate that the centralized variant is a particular case
of a non-centralized PCGS and so centralized PCGS are weaker than the non-
centralized ones. In particular we have CPC∗(CF) ⊆ PC∗(CF) [7]. It is not
known whether the inclusion is strict or not.

A way to increase the generative power of a system is to increase the number
of components in the system. Increasing the number of components to anything
larger than one in the RE and to some degree CS case (the CS result holds for
centralized systems only) does not increase the generative power, but when
the component grammars are weaker this is no longer the case. Indeed, both
the hierarchies CPCn(REG) and CPCn(LIN), n ≥ 1 are infinite [6].

Unsurprisingly, the context-free case is somewhere in the middle, in the sense
that the hierarchies PCn(CF) and NPCn(CF), n ≥ 1 do collapse, though not at
n = 1. Indeed, non-centralized CF-PCGS with 11 components can apparently
generate the whole class of RE languages [4]:

RE = PC11(CF) = PC∗(CF). (1)

We will discuss (and modify) this construction later, so we provide in Figure 1
the rewriting rules for the 11-component context-free PCGS that established
the result shown in Equation (1) [4].

A later paper found that a CF-PCGS with only 5 components can generate
the entire class of RE languages by creating a PCGS that has two components
that track the number of non-terminals and use the fact that for each RE
language L there exists and Extended Post Correspondence problem P [11]
such that L(P) = L. [2]:

RE = PC5(CF) = PC∗(CF). (2)

Other papers have examined the generative capacity of CF-PCGS base don
size complexity. It has been shown that every recursively enumerable language
can be generated by a returning CF-PCGS, where the number of nonterminals
in the system is less than or equal to a natural number k [3]. It has also been
shown that non-returning CF-PCGS can generate the set of recursively enu-
merable languages with 6 context free components by simulating a 2-counter
machine [5].

120 M. S. R. Wilkin, S. D. Bruda

Pm = {S→ [I], [I] → C,C→ Qa1 } ∪
{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0) ∈ R,
x ∈ Σ, c ′1, c ′2 ∈ {Z, B}, e ′1, e

′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2], < x, qF, c

′
1, c
′
2, e
′
1, e
′
2 >→ x|

(x, q, c1, c2, q
′, e1, e2,+1) ∈ R, c ′1, c ′2 ∈ {Z, B},

e ′1, e
′
2 ∈ {−1, 0,+1}, x, y ∈ Σ},

P
c1
1 = {S1 → Qm, S1 → Q

c1
4 , C→ Qm} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1] ′ → AAC, [0] ′ → AC, [−1] ′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC},

P
c1
2 = {S2 → Qm, S2 → Q

c1
4 , C→ Qm, A→ A} ∪

{[x, q, Z, c2, e1, e2] → [x, q, Z, c2, e1, e2], [I] → [I]|x ∈ Σ, q ∈ E,
c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

P
c1
3 = {S3 → Qm, S3 → Q

c1
4 , C→ Qm} ∪

{[x, q, Z, c2, e1, e2] → a, [x, q, B, c2, e1, e2] → [x, q, B, c2, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

P
c1
4 = {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 , S

(2)
4 → Q

c1
1 , A→ a}

P
c2
1 = {S1 → Qm, S1 → Q

c2
4 , C→ Qm} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

P
c2
2 = {S2 → Qm, S2 → Q

c2
4 , C→ Qm, A→ A} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2],

[I] → [I]|x ∈ Σ, q ∈ E,
c1 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

P
c2
3 = {S3 → Qm, S3 → Q

C2
4 , C→ Qm} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c1 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

P
c2
4 = {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 , S

(2)
4 → Q

c2
1 , A→ a}

Pa1
= {S→ Qm, [I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I > |x ∈ Σ,
q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

Pa2
= {S→ S3, S(1) → S(2), S(2) → S(3), , S(3) → S(4),

S(4) → Q
c1
2 Q

c1
3 Q

c2
2 Q

c2
3 S

(1)
}.

Figure 1: A CF-PCGS with broadcast communication that simulates a 2-
counter machine.

Parallel communicating grammar systems . . . 121

We will show however in Section 4 that the above results regarding returning
CF-PCGS [2, 3, 4] use broadcast communication which modifies the power of
a system when compared to one-step communication (which is implied by
the original definition). We will also show (Section 5.2) that the hierarchy
PC∗(CF) does collapse irrespective of the communication model being used
(though not necessarily at n = 11 or n = 5).

Turing completeness was also shown for non-returning systems [5, 14]. Given
that non-returning systems can be simulated by returning systems with the
help of assistance grammars holding intermediate strings [8], these results
[5, 14] also apply to returning systems (though the number of components
necessary for this to happen does not remain the same).

4 One-step versus broadcast communication

Broadcast and one-step communication were introduced informally in Sec-
tion 1. The original definition of PCGS derivations (Definition 2) implies the
one-step communication model. Indeed, we note that Item 2 of the definition
specifies that some (one) component xi = z1Qi1z2Qi2 . . . ztQitzt+1 is chosen
and rewritten to yi = z1xi1z2xi2 . . . ztxitzt+1, and then the components i1, . . . ,
it are reduced to their respective axioms (namely, yij = Sij , 1 ≤ j ≤ t).

Under the one-step communication model a configuration such as (Q3, Q3, σ)
must perform a communication step in which the third component is com-
municated to either the first or the second component (chosen nondeter-

ministically). The possible derivations are thus (Q3, Q3, σ)
Λ⇒ (σ,Q3, S3) or

(Q3, Q3, σ)
Λ⇒ (Q3, σ, S3). In the next communication step the axiom will be

communicated to the remaining component instead of the original string σ. In
all, we end up nondeterministically with either (σ, S3, S3) or (S3, σ, S3).

By contrast, in the broadcast communication model the reduction to axiom
happens only after all the queries in all the components have been satisfied. A
configuration such as (Q3, Q3, σ) will have both query symbols satisfied before
the third component is reduced to the axiom, so that the following is the only

possible derivation starting from this configuration: (Q3, Q3, σ)
Λ⇒ (σ, σ, S3).

The following definition introduces the broadcast communication model for-
mally. The definition is an adaptation of the one provided elsewhere [24]; we
note that broadcast communication was called immediate communication ear-
lier, though we believe that our terminology conveys the phenomenon better.

122 M. S. R. Wilkin, S. D. Bruda

Definition 4 Derivation with broadcast communication in a PCGS:
Let Γ = (N,K, T,G1, · · · , Gn) be a returning PCGS, and (xi, x2, . . . , xn) and
(yi, y2, . . . , yn) be two n-tuples with xi, yi ∈ V∗Γ , 1 ≤ i ≤ n. We write (xi, . . . ,
xn) ⇒ (yi, . . . , yn) iff one of the following three cases holds:

1. |xi|K = 0, 1 ≤ i ≤ n. Then for each i, 1 ≤ i ≤ n, we have xi ⇒Gi yi (in
the grammar Gi), or xi ∈ T∗ and xi = yi.

2. The following set I is not empty: with J = ∅, I contains exactly all the
indices i such that:

(a) xi = z1Qi1z2Qi2 . . . ztQitzt+1 for some t ≥ 1,
(b) |xij |K = 0, 1 ≤ j ≤ t,
(c) either zj ∈ (N∪Σ)∗, or zj ∈ (N∪Σ∪K)∗ and for any query symbol

Qm appearing in zj we have |xm|K 6= 0, and

(d) let J be replaced by J ∪ {ij : 1 ≤ j ≤ t}.

Then for all i ∈ I we have yi = z1xi1z2xi2 . . . ztxitzt+1, and afterward for
all j ∈ J we have yj = Sj. For all 1 ≤ k ≤ n, yk = xk whenever yk was
not specified above.

The definition specifies that all the queries that can be satisfied in the cur-
rent communication step will be satisfied before any reduction to the axiom
happens. Note in passing that there might be query symbols that cannot be
satisfied because the requested strings contain query symbols themselves; if
so, then those queries will not be satisfied in the current step but will be left
instead for subsequent communication steps.

Evidently, the communication model (broadcast or one step) has a direct
impact on the generative power of a PCGS. Consider for example a PCGS
Γ with the following sets of rewriting rules for the master and the two slave
components, respectively:

{S→ aS, S→ Q2, S→ Q3, S1 → b, S2 → c, S→ ε}

{S1 → bS1, S1 → Q3, S2 → c}

{S2 → cS2, S2 → Q2, S1 → b}

The following is an example of a possible derivation with broadcast commu-
nication in Γ :

(S, S1, S2) ⇒ (aS, bS1, cS2,) ⇒ (aQ2, bbS1, cQ2)
Λ⇒

(abbS1, S1, cbbS1) ⇒ (abbb, bS1, cbbb)

Parallel communicating grammar systems . . . 123

We note that in this example the second component is queried by both the
other two components. Both querying components receive copies of the same
string and then the second component returns to its axiom.

By contrast, the above derivation but this time using one-step communica-
tion would go like this:

(S, S1, S2) ⇒ (aS, bS1, cS2,) ⇒ (aQ2, bbS1, cQ2)
Λ⇒

(aS1, S1, cbbS1) ⇒ (ab, bS1, cbbb)

In this last case the third component was nondeterministically chosen to be the
initial component to receive a string from the second component (bbS1). Once
communicated, the string of the second component was reset to the respective
axiom, which was then communicated to the first component (which thus
receives S1). The derivation that used broadcast communication generated the
string abbb, whereas the derivation that followed the one-step communication
model generated ab. The different strings were obtained despite the use of the
same rewriting rules, and same rewriting steps. It is therefore clear that the
use of different styles of communication has a direct impact on the strings
generated by a PCGS that is, the languages produced by the system.

In this particular case, we can modify the original system Γ so that it works
under the one-step communication model and yet generates the same language
as the broadcast communication operation of Γ . The key will be to ensure
that communication steps are monogamous, meaning that there are no two
components that query a third component at the same time. We accomplish
this in this particular case by duplicating the second component, so that the
other components have their individual component to query. We end up with
the PCGS Γ ′ with the following sets of rewriting rules for the master and now
three slave components (indeed, notice the addition of one component with
axiom S1copy):

{S→ aS, S→ Q2, S→ Q3, S1 → b, S2 → c, S→ ε}

{S1 → bS1, S1 → Q3, S2 → c}

{S1copy → bS1copy , S1copy → Q3, S2 → c}

{S2 → cS2, S2 → Q2, S1copy → b}

The following is an example of a possible derivation in Γ ′ that emulates the
rewriting steps used in the above broadcast derivation for Γ :

(S, S1, S1copy , S2) ⇒ (aS, bS1, bS1copycS2,) ⇒ (aQ2, bbS1, bbS1copy,cQS1copy)
Λ⇒ (abbS1, S1, S1copycbbS1copy) ⇒ (abbb, bS1, bS1copy , cbbb)

124 M. S. R. Wilkin, S. D. Bruda

The resulting string abbb matches that of the string generated above using
broadcast communication.

The above technique of providing “copycat” components is not accidental
and is not particular to this example. Indeed, we will use the same technique
on a larger scale (and in combination with other modifications) later.

5 Turing completeness of CF-PCGS

We are now ready to discuss the Turing completeness of CF-PCGS. We first
note that the previous results on the matter use broadcast communication,
which is in contradiction to the original definition [6]. However, we then show
that CF-PCGS are still Turing complete under the one-step communication
model.

5.1 Broadcast communication and the Turing completeness of
CF-PCGS

The existence of two communication models is what causes us to call into
question the result shown in Equation (1) [4]. Indeed, the proof that led to
this result hinges on the use of broadcast communication, in contrast with the
original PCGS definition. This approach to communication was also used in
other related papers [2, 3], though we will focus on what was chronologically
the first result in this family [4].

A derivation in the system [4] that shows Turing completeness for CF-PCGS
(shown in Figure 1) begins with the initial configuration and then takes its
first step which results in a nondeterministic choice.

(S, S1, S2, S3, S4, S1, S2, S3, S4, S, S) ⇒
([I], u1, u2, u3, S

(1)
4 , u

′
1, u

′
2, u

′
3, S4, Qm, S

(3))

As explained in the original paper u1, u2, u3 are eitherQm orQc14 and u ′1, u
′
2, u

′
3

are either Qm or Qc24 . At this stage if any of the symbols are Qc14 or Qc24 the
system will block, so the only successful rewriting step is:

(S, S1, S2, S3, S4, S1, S2, S3, S4, S, S) ⇒
([I], Qm, Qm, Qm, S

(1)
4 , Qm, Qm, Qm, S

(1)
4 , Qm, S

(3))

We have now a communication step, which proceeds as follows [4]:

([I], Qm, Qm, Qm, S
(1)
4 , Qm, Qm, Qm, S

(1)
4 , Qm, S

(3)) ⇒
(S, [I], [I], [I], S

(1)
4 , [I], [I], [I], S

(1)
4 , [I], S

(3))

Parallel communicating grammar systems . . . 125

Notice that all occurrences of the symbol Qm are replaced with the symbol
[I], and all of the components that receive [I] have a corresponding rewriting
rule for it. Should we have used one-step communication the behavior of the
system would have been quite different. Some Qm symbol (chosen nondeter-
ministically), would be replaced with the symbol [I] from the master grammar,
and all the other components that communicate with the master would receive
the axiom S since the master will return to the axiom before any of the other
components had a chance to query it.

([I], Qm, Qm, Qm, S
(1)
4 , Qm, Qm, Qm, S

(1)
4 , Qm, S

(3)) ⇒
(S, [I], S, S, S

(1)
4 , S, S, S, S

(1)
4 , S, S

(3))

We see again a notable difference in the different communication models. In-
deed, if broadcast communication steps are not used then the derivation blocks
since the returning communication step yields a configuration where all but
one of the components Pc11 , Pc12 , Pc13 , Pc14 , Pc21 , Pc22 , Pc23 , and Pc24 get a copy of
the master grammar axiom S, yet none of them have a rewriting rule for S.
Since we also know that if any of the components rewrite to Qc14 or Qc24 the
system will block, it becomes clear that broadcast communication steps are
essential for the original proof [4] to hold.

This all being said, we will discuss next how a form of this result does hold
even in the absence of broadcast communication.

5.2 CF-PCGS with one-step communication are Turing com-
plete

We are now to modify the original construction [4] and so eliminate the need for
broadcast communication. The resulting system is considerably more complex
and so our result is slightly weaker, but it shows that the result holds regardless
of the communication model used.

Overall we have the following:

Theorem 5 RE = L(PC95(CF)) = L(PC∗(CF)).

The remainder of this section is dedicated to the proof of Theorem 5. Specif-
ically, we show the inclusion RE ⊆ L(PC95(CF)). Customary proof techniques
demonstrate that L(PC∗(CF)) ⊆ RE and so L(PC95(CF)) ⊆ L(PC∗(CF)) ⊆
RE. We describe first informally a PCGS simulating an arbitrary 2-counter
machine (Section 5.2.1), then we present that PCGS in detail (Section 5.2.2),
and then we then describe how the simulation is carried out (Section 5.2.3).

126 M. S. R. Wilkin, S. D. Bruda

Let M = (Σ ∪ {Z,B}, E, R) be a 2-counter machine [9] that accepts some
language L. M has a tape alphabet Σ ∪ {Z,B}, a set of internal states E with
q0, qF ∈ E and a set of transition rules R. The 2-counter machine has a read
only input tape and two counters that are semi-infinite storage tapes. The
alphabet of the storage tapes contains two symbols Z and B, while the input
tape has the alphabet Σ ∪ {B}. The transition relation is defined as follows:
if (x, q, c1, c2, q

′, e1, e2, g) ∈ R then x ∈ Σ ∪ {B}, q, q ′ ∈ E, c1, c2 ∈ {Z,B},
e1, e2 ∈ {−1, 0,+1}, and g ∈ {0,+1}. The starting and final states of M are
denoted by q0 and qF, respectively.

Intuitively, a 2-counter machine has a read only and unidirectional input
tape as well as two read-write counter tapes (or just counters). The counters
are initialized with zero by placing the symbol Z on their leftmost cell, while
the rest of the cells contain B. A counter can be incremented or decremented
by moving the head to the right or to the left, respectively; it thus stores
an integer i by having the head moved i positions to the right of the cell
containing Z. It is an error condition to move the head to the left of Z. One
can test whether the counter holds a zero value or not by inspecting the symbol
currently under the head (which is Z for a zero and B otherwise).

A transition of the 2-counter machine (x, q, c1, c2, q
′, e1, e2, g) ∈ R is then

enabled by the current state q, the symbol currently scanned on the input
tape x, and the current status of the two counters (c1 and c2, which can
be either Z or B). The effect of such a transition is that the state of the
machine is changed to q ′; the counter k ∈ {1, 2} is decremented, unchanged,
or incremented whenever the value of ek is −1, 0, or +1, respectively; and the
input head is advanced if g = +1, and stays put if g = 0. The input string is
accepted by the machine iff the input head scans one cell to the right of the
last non-blank symbol on the input tape and the machine is in an accepting
state. L(M) be the language of exactly all the input strings accepted by M.

5.2.1 CF-PCGS simulation of a 2-counter machine: overall struc-
ture

We demonstrated in Section 4 (through the modification of the PCGS Γ to
obtain Γ ′) the “copycat” technique of duplicating a components to ensure
that all communication steps are monogamous. In a nutshell, we will apply
this technique on the CF-PCGS developed earlier [4].

We still provide a CF-PCGS that simulates an arbitrary 2-counter machine.
We use all of the components used originally, but we ensure that every gram-
mar that requests a string from the same component in the original system

Parallel communicating grammar systems . . . 127

can retrieve a similar string from it own exclusive copycat component. In
other words, our system includes copycat components (or helpers) which en-
sure that all the components can work under one-step communication without
stumbling over each other. For the most part the intermediate strings that
the copycat components hold are replicas of the original component strings,
which allows every component grammar to communicate with its own respec-
tive copycats, and so receive the same string as in the original construction
even under one-step communication.

We also need to add components to the system whose job is to fix syn-
chronization issues by resetting their matching helpers at specific points in
the derivation. This ensures that the one-step communication version of the
system remains in harmony with the broadcast communication system. Fi-
nally in order to avoid the generation of undesired strings we use blocking
to our advantage by ensuring that any inadvertent communication that does
not contribute to a successful simulation will introduce nonterminals that will
subsequently cause that derivation to block.

Concretely, we now construct the following grammar system with 95 com-
ponents:

Γ = (N,K, Σ ∪ {a},

GGMOrig , G
c1
GMS1

, Gc1GMS1H2(S4) , G
c1
GMS1H3(S4)

, Gc1GMS1(S2) , G
c1
GMS1(S3)

,

Gc1GMS2 , G
c1
GMS3

, Gc1GMPA1S1 , G
c1
GMPA1S1H2

, Gc1GMPA1S1H3 , G
c1
GMPA1S1(S2)

,

Gc1GMPA1S1(S3) , G
c1
GMPA1S2

, Gc1GMPA1S3 , G
c2
GMS1

, Gc2GMS1H2(S4) , G
c2
GMS1H3(S4)

,

Gc2GMS1(S2) , G
c2
GMS1(S3)

, Gc2GMS2 , G
c2
GMS3

, Gc2GMPA1S1 , G
c2
GMPA1S1H2

, Gc2GMPA1S1H3 ,

Gc2GMPA1S1S2 , G
c2
GMPA1S1S3

, Gc2GMPA1S2 , G
c2
GMPA1S3

, Gc11OrigS1
, Gc11S1H2(S4)

,

Gc11S1H3(S4)
, Gc1

1S1 (S2)
, Gc1

1S1 (S3)
, Gc12OrigS2

, Gc13OrigS3 , G
c1
4OrigS4

,

Gc14S1H2(S4)
, Gc14S1H3(S4)

, Gc14S2
, Gc14S3

, Gc14SpecHelp1S1S2 , G
c1
4SpecHelp2S1S3

,

Gc21OrigS1
, Gc21S1H2(S4)

, Gc21S1H3(S4)
, Gc21S1(S2)

, Gc21S1(S3)
, Gc22OrigS2

, Gc23OrigS3 ,

Gc24OrigS4 , G
c2
4S1H2(S4)

, Gc24S1H3(S4)
, Gc24S2

, Gc24S3
, Gc24SpecHelp1S1S2 , G

c2
4SpecHelp2S1S3

,

Ga1Orig, G
c1
a1GMS1

, Gc1
a1GMS1H2(S4)

, Gc1
a1GMS1H3(S4)

, Gc1
a1GMS1(S2)

,

Gc1
a1GMS1(S3)

, Gc1a1GMS2 , G
c1
a1GMS3

, Gc2a1GMS1 , G
c2
a1GMS1H2(S4)

, Gc2
a1GMS1H3(S4)

,

Gc2
a1GMS1(S2)

, Gc2
a1GMS1(S3)

, Gc2a1GMS2 , G
c2
a1GMS3

, Ga2Orig , RGMc1Pa1S1
,

RGMc1Pa1S1H2(S4)
, RGMc1Pa1S1H3(S4)

, RGMc1Pa1S1(S2)
, RGMc1Pa1S1(S3)

, RGMc1Pa1S2
,

128 M. S. R. Wilkin, S. D. Bruda

RGMc1Pa1S3
, RGMc2Pa1S1

, RGMc2Pa1S1H2(S4)
, RGMc2Pa1S1H3(S4)

, RGMc2Pa1S1(S2)
,

RGMc2Pa1S1(S3)
, RGMc2Pa1S2

, RGMc2Pa1S3
, RPc11S1H2(S4)

, RPc11S1H3(S4)
, RPc21S1H2(S4)

,

RPc21S1H3(S4)
, RPc14S1H2(S4)

, RPc14S1H3(S4)
, RPc24S1H2(S4)

, RPc24S1H3(S4)
)

Gi = (N ∪ K,Σ ∪ {a}, Pi, Si)

Ri = (N ∪ K,Σ ∪ {a}, Reseti, Si)

N = {[x, q, c1, c2, e1, e2], [e1]
′, [e2]

′, [I], [I] ′, < I >,< x, q, c1, c2, e1, e2 > |

x ∈ Σ, q ∈ E,C1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{S, S1, S2, S3, S4, S

(1)
4 , S

(2)
4 , S

(1), S(2), S(3), S(4)} ∪ {A,C}

The rewriting rules will be formally defined later. As already mentioned, this
system is a simulation of the construction using broadcast communication and
described in Figure 1. All of the component definitions from the original system
have the marker Orig in their label in order to differentiate them from the
helper grammars that were added in order to accommodate the requirements of
a one step-communication system. In what follows we use x and y as wildcards,
which can be replaced by any string. For example the grammars Gc11OrigS1

,

Gc11S1H2(S4)
, Gc11S1H3(S4)

, Gc1
1S1 (S2)

, and Gc1
1S1 (S3)

will be referred to collectively as

Gc11x .
The above system Γ uses the following labeling: The grammars Gyx with

the set of rewriting rules Pyx are the “major” components, as opposed to the
grammars Rx (with Resetx as the set of rewriting rules) which are reset gram-
mars (used to reset to axiom various components throughout the derivation).
When we refer to a component grammar we will use interchangeably its name
or the name of its set of rewriting rules. GGMOrig is the master grammar of
the system, while GGMx are copycat grammars that replicate the steps of the
master. Gc1x and Gc2x indicates that the grammar works with counter c1 or c2,
respectively. Gy1x indicate that the grammar is either the original or a replica
of grammar P1 in the original system. G2OrigS2 and G3OrigS3 indicate that the

grammar is the original P2 and P3, respectively. Gy4x and Gya1x indicate that
the grammar is either the original or a replica of grammar P4 and Pa1 in the
original system, respectively, and so on.

It is no accident that the sub- and superscripts described above suggest
a grouping of most of the 95 components in classes that correspond to the
original components. Creating copycat grammars is the most basic tool used

Parallel communicating grammar systems . . . 129

in our construction, so it is inevitable to have several grammars playing a
similar role and being all roughly equivalent to one original component.

The new master GGMOrig contains the same rewriting rules and communi-
cations steps as it had in the original construction [4]. The primary role of the
master is to maintain its relationship with the Gya1x component grammars. The
other components GyGMx are copycat grammars designed to copy the function-
ality of the master; they have been added to the system to handle queries from
Gc11x , G

c1
2x

, Gc13x , G
c1
4x

, Gc21x , G
c2
2x

, Gc23x , and Gc24x (all described later). In essence
we ensure that every component grammar Gc11x , . . . , Gc24x that can query the
master grammar in the original broadcast construction has a matching helper
grammar that will exclusively handle their communication requests.
Gc11OrigS1

contains the same rewriting rules and communication steps as the

component Pc11 in the original system [4], though labels in the rewriting rules
have been modified to ensure that the components query their corresponding
helper grammars in the other sections of the system. There are 4 new helper
grammars to ensure that Gc12 , Gc13 , and Gc14 have their own unique component
grammars to communicate with.

ComponentGc14OrigS4 (equivalent to the original Pc14) needs extra helper gram-

mars to ensure that components defined in other sections have their own
unique Gc14x component to query. Similarly, Gc21OrigS1

is similar with the origi-

nal Pc21 and needs 4 new helper grammars; Gc24OrigS4 is equivalent to Pc24 and

requires 6 additional helpers.
The original Pa1 grammar remains as it was in the original system and is

now named Pa1Orig. In order for component grammars Gc11x , G
c1
2x

, Gc13x , G
c1
4x

,
Gc21x , G

c2
2x

, Gc23x , and Gc24x to derive correctly 14 additional Ga1x helpers have
been added to the system. Their names and labels reflect the components
they will work with during a derivation.

Finally, grammarsGc12x , G
c1
3x

, Gc22x , P
c2
3x

, and Pa2x are similar to the original Pc12 ,
Pc13 , Pc22 , Pc23 , and Pa2 , respectively without any additional helper grammars
(but with the usual label changes) and serve the same role as in the original
construction.

This all being said and done, the derivation in the new system is obviously
more complex than in the original. Several undesired side derivations become
possible and need to be eliminated. One mechanism used for this purpose is
the reset grammars Rx which are used to reset several major components at
strategic moments. Which reset grammar handles which major component is
given by the subscript x. Their use is illustrated in Section 5.2.3. Another
mechanism for eliminating undesired derivations is the existence of several

130 M. S. R. Wilkin, S. D. Bruda

additional rules that did not exist in the original system and that cause various
derivations to block. These extra rules are described in Section 5.2.2.

5.2.2 CF-PCGS simulation of a 2-counter machine: rewriting rules

We now describe the rewriting rules of the component grammars. We use the
symbols Ql as usual to identify communication requests, but for clarity the
label l will no longer be purely numerical. Most components are modifications
of components in the original 11-component construction, as outlined in the
previous section, but we also add new rules to some components. To emphasize
these additions we group the newly introduced rules into separate sets that are
underlined. In most cases the new rules have label(s) modified to match the
components they are designed to work with; in some cases the rewriting rule
themselves are changed. Those components that do not have an equivalent in
the original construction have all their rules in an underlined set.

PGMOrig = {S→ [I], [I] → C,C→ Qa1} ∪
{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, e ′1, e ′2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 5 helper grammars simulate rules from the new master but each
component is designed to work with different components in Pc11 , including the
Pc11OrigS1

grammar and its four newly defined helpers. The components below

work with the Pc11 grammars as the single grammar version would have in the
original construction but the labels of the query symbols have been modified
to reflect the labels of their matching component grammar.

Pc1GMS1 = {S→ [I], [I] → C} ∪ {C→ Qc1a1Pa1S1
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪

Parallel communicating grammar systems . . . 131

{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′,

e1, e2,+1) ∈ R, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following two grammars have new communication steps S→ QC1
a1Pa1S1H2(S4)

and S → QC1
a1Pa1S1H3(S4)

, respectively. In a successful derivation these compo-

nents will rewrite to this communication request in Step 13 of the deriva-
tion. If this rewriting rule is used in any other step the derivation will block;
more precisely if this rule is nondeterministically chosen in Step 1 it results
in a circular query and the derivation will block immediately. If it is used in
Step 3 it will receive the string < I > which will rewrite to [x, q, Z, Z, e1, e2]
or x[y, q, Z, Z, e1, e2]. We however have no rewriting rule for either of these
strings and so we will block. Finally, if these rules are used in Step 9 the com-
ponents will receive the string u[x ′, q, Z, Z, e1, e2], for which no rewriting rules
exist so once more the system will block.

Pc1GMS1H2(S4) = {S→ [I], [I] → C} ∪

{C→ Qc1
a1Pa1S1H2(S4)

, S→ Qc1
a1Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|x ∈ Σ, c ′1, c ′2 ∈

{Z,B}, (x, q, c1, c2, q
′, e1, e2, 0) ∈ R, e ′1, e ′2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMS1H3(S4) = {S→ [I], [I] → C} ∪

{C→ Qc1
a1Pa1S1H3(S4)

, S→ Qc1
a1Pa1S1H3(S4)

} ∪

132 M. S. R. Wilkin, S. D. Bruda

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪
{< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMS1(S2) = {S→ [I], [I] → C} ∪ {C→ Qc1
a1Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMS1(S3) = {S→ [I], [I] → C} ∪ {C→ Qc1
a1Pa1S1(S3)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

We only need one Pc12 component and one Pc13 component. These will simu-
late rules from the master grammar and will work directly with Pc12OrigS2 and

Parallel communicating grammar systems . . . 133

Pc13OrigS3 , respectively. The labels in the communication rules have been modi-

fied to ensure that the correct component grammars are queried.

Pc1GMS2 = {S→ [I], [I] → C} ∪ {C→ Qc1a1Pa1S2
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMS3 = {S→ [I], [I] → C} ∪ {C→ Qc1a1Pa1S3
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e

′
2 ∈

{−1, 0,+1}} ∪ {< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 7 helper grammars imitate Pa1 . The first 5 work with Pc11Orig and

four of its helpers, while the remaining 2 work with Pc12Orig and Pc13Orig . The

new rule allows the grammars to reset their string by querying new helper
components (defined later).

Pc1GMPA1S1 = {S→ [I], [I] → C} ∪ {C→ QResetGM
Pa1

c1
S1

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈
Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

134 M. S. R. Wilkin, S. D. Bruda

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S1H2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x,
y ∈ Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S1H3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|

(x, q, c1, c2, q
′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B},

e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S1(S2) = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

Parallel communicating grammar systems . . . 135

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S1(S3) = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S1(S3)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S2

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈
Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc1GMPA1S3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c1
Pa1S3

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈
Σ} ∪ {< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

136 M. S. R. Wilkin, S. D. Bruda

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 5 helpers simulate rules from the new master. Each grammar
below is designed to work with a different component in the Pc21 family, in-
cluding Pc21OrigS1

and its 4 helpers. The first works directly with Pc21Orig as it did

originally, but communication labels have been modified to ensure that each
component queries the right grammar.

Pc2GMS1 = {S→ [I], [I] → C} ∪ {C→ Qc2a1Pa1S1
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2, 0)

∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Note that the following two grammars have a new communication step S →
Qc2
a1Pa1S1H2(S4)

and S → Qc2
a1Pa1S1H3(S4)

respectively. In a successful derivation

this communication step will be used in Step 13 of the derivation. If this rule
is introduced in any other step the system will block. More specifically if this
rule is used in Step 1 it results in a circular query and blocks; if it is used in
Step 3 it will receive the string < I > which will rewrite to [x, q, Z, Z, e1, e2]
or x[y, q, Z, Z, e1, e2] for which no rewriting rule exists; finally if it is used
in Step 9 the Pc2GMS1H2(S4) or Pc2GMS1H3(S4) component will receive the string

u[x ′, q, Z, Z, e1, e2], for which it has no rewriting rule.

Pc2GMS1H2(S4) = {S→ [I], [I] → C} ∪

{C→ Qc2
a1Pa1S1H2(S4)

, S→ Qc2
a1Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

Parallel communicating grammar systems . . . 137

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMS1H3(S4) = {S→ [I], [I] → C} ∪

{C→ Qc2
a1Pa1S1H3(S4)

, S→ Qc2
a1Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMS1(S2) = {S→ [I], [I] → C} ∪ {C→ Qc2
a1Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMS1(S3) = {S→ [I], [I] → C} ∪ {C→ Qc2
a1Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

138 M. S. R. Wilkin, S. D. Bruda

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

There is only one Pc22 as in the original system and the below master helper
works directly with it. The query labels are modified to ensure that the correct
component grammars are queried during the derivation.

Pc2GMS2 = {S→ [I], [I] → C} ∪ {C→ Qc2a1Pa1S2
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{< x, q, c ′1, c

′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2,

0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Similarly, there is only one Pc23 , as in the original system and the below
master helper will work directly with it. The labels of the query symbols have
been modified in order to ensure that the correct component grammars are
queried during the derivation.

Pc2GMS3 = {S→ [I], [I] → C} ∪ {C→ Qc2a1Pa1S3
} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1, e2,

0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

The following 7 grammars work with the Pc2a1 components; the first 5 work with
the Pc21 helper grammars, and the other 2 work with Pc22OrigS2

and Pc23OrigS3
hold-

ing intermediate strings to ensure successful derivations. A new rule has been

Parallel communicating grammar systems . . . 139

added to these grammar components which allows them to reset themselves
by querying their matching reset component (defined later).

Pc2GMPA1S1 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1,

e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S1H2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1H2(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′, e1,

e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S1H3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1H3(S4)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

140 M. S. R. Wilkin, S. D. Bruda

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S1S2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1(S2)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2,

q ′, e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S1S3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S1(S3)

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S2 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S2

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

Parallel communicating grammar systems . . . 141

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc2GMPA1S3 = {S→ [I], [I] → C} ∪ {C→ QReset
GM

c2
Pa1S3

} ∪

{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R,
x, y ∈ Σ} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ [x, q ′, c1, c2, e1, e2]|(x, q, c1, c2, q

′,

e1, e2, 0) ∈ R, x ∈ Σ, c ′1, c ′2 ∈ {Z,B}, e ′1, e
′
2 ∈ {−1, 0,+1}} ∪

{< x, q, c ′1, c
′
2, e
′
1, e
′
2 >→ x[y, q ′, c1, c2, e1, e2],

< x, qF, c
′
1, c
′
2, e
′
1, e
′
2 >→ x|(x, q, c1, c2, q

′, e1, e2,+1) ∈ R,
c ′1, c

′
2 ∈ {Z,B}, e ′1, e

′
2 ∈ {−1, 0,+1}, x, y ∈ Σ}

Pc11OrigS1
contains the same rewriting rules and communication steps as the

component Pc11 in the original system [4] with suitable modifications for labels.

Pc11OrigS1
= {S1 → Qc1GMS1

, S1 → Qc14S1original
, C→ Qc1GMS1

} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1] ′ → AAC, [0] ′ → AC,

[−1] ′ → C|x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

The following two Pc11 helper grammars work with their respective helper gram-
mars as defined in their rewriting rules; their definition contains a rule C→W,
which will be used in Step 13 during successful derivations. If this rule is used
at any other step the system will block (just like in the similar situations
discussed earlier).

Pc11S1H2(S4)
= {S1 → Qc1GMS1H2(S4)

, S1 → Qc1
4S1H2(S4)

, C→ QGMS1H2(S4)
,

C→W} ∪
{[x, q, c1, c2, e1, e2] → [e1]

′, [+1] ′ → AAC, [0] ′ → AC,

[−1] ′ → C|x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1} ∪
{[I] → [I] ′, [I] ′ → AC}

Pc11S1H3(S4)
= {S1 → Qc1GMS1H3(S4)

, S1 → Qc1
4S1H3(S4)

, C→ QGMS1H3(S4)
,

142 M. S. R. Wilkin, S. D. Bruda

C→W} ∪
{[x, q, c1, c2, e1, e2] → [e1]

′, [+1] ′ → AAC, [0] ′ → AC,

[−1] ′ → C|x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1} ∪
{[I] → [I] ′, [I] ′ → AC}

The following two Pc11 helpers will ensure the proper derivation of Pc12OrigS2
and Pc13OrigS3

. They work by communicating with their corresponding helper

grammars and their designated special helper in the Pc14 section.

Pc1
1S1 (S2)

= {S1 → Qc1GMS1(S2)
, S1 → Qc14SpecHelp1S1S2 , C→ QGMS1(S2)

,

S4 → S
(1)
4 , S

(1)
4 → QPc11S1H2(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1] ′ → AAC, [0] ′ → AC, [−1] ′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

Pc1
1S1 (S3)

= {S1 → Qc1GMS1(S3)
, S1 → Qc14SpecHelp2S1S3 , C→ Qc1GMS1(S3)

,

S4 → S
(1)
4 , S

(1)
4 → QPc11S1H3(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e1]
′, [+1] ′ → AAC, [0] ′ → AC, [−1] ′ → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

Component grammar Pc12 has been renamed and labels have been modified
to ensure that it works with its matching helper components, but is otherwise
unchanged from the original definition.

Pc12OrigS2
= {S2 → Qc1GMS2 , S2 → Qc14S2 , C→ Qc1GMS2 , A→ A} ∪

{[x, q, Z, c2, e1, e2] → [x, q, Z, c2, e1, e2], [I] → [I]|x ∈ Σ, q ∈ E,
c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component grammar Pc13 is again similar to the original definition (with
suitable label changes) and it does not need any helper grammars.

Pc13OrigS3 = {S3 → Qc1GMS3 , S3 → Qc14S3 , C→ Qc1GMS3} ∪

Parallel communicating grammar systems . . . 143

{[x, q, Z, c2, e1, e2] → a, [x, q, B, c2, e1, e2] → [x, q, B, c2, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component Pc14OrigS4 has the same rules as in the original system save for the

usual re-labeling.

Pc14OrigS4
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1P1S1} ∪ {A→ a}

A new nondeterministic step has been added to the following two helpers in

the P4 section, specifically: S
(2)
4 → S

(2)
4 . This rule was added to avoid a circular

query in Step 12 of the derivation. This being said this rule could be used

whenever the non terminal S
(2)
4 appears, but if it is used in any other step

there is a chance that the matching P1 component queries it and receives S
(2)
4 ,

but since P1 does not contain a rewriting rule for S
(2)
4 the derivation would

block. The only successful use of this rewriting rule is in Step 12.

Pc14S1H2(S4)
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1

P1S1H2(S4)
, S

(2)
4 → S

(2)
4 } ∪

{A→ a}

Pc14S1H3(S4)
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1

P1S1H3(S4)
, S

(2)
4 → S

(2)
4 } ∪

{A→ a}

Pc14S2
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1P1S2} ∪ {A→ a}

Pc14S3
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc1P1S3} ∪ {A→ a}

Pc14SpecHelp1S1S2 = P
c1
4SpecHelp2S1S3

= {S4 → S4}

Pc21OrigS1
is similar to the original Pc21 . It also need 4 new helper grammars.

Pc21OrigS1
= {S1 → Qc2GMS1 , S1 → Qc2P4S1 , C→ Qc2GMS1} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

The following two Pc21 helpers have a new rule added to them that will be used
in Step 13 of the derivation: C→W. If this rule is used at any other step the
system will block for the same reason as above.

Pc21S1H2(S4)
= {S1 → Qc2GMS1H2(S4)

, S1 → Qc2
P4S1H2(S4)

, C→ Qc2GMS1H2(S4)
,

144 M. S. R. Wilkin, S. D. Bruda

C→W} ∪
{[x, q, c1, c2, e1, e2] → [e2]

′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪ {[I] → [I] ′,

[I] ′ → AC}

Pc21S1H3(S4)
= {S1 → Qc2GMS1H3(S4)

, S1 → Qc2
P4S1H3(S4)

, C→ Qc2GMS1H3(S4)
,

C→W} ∪
{[x, q, c1, c2, e1, e2] → [e2]

′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

The following two Pc21 helper grammars are components that will help ensure
the proper derivation of Pc22OrigS2

and Pc23OrigS3
by holding intermediate strings

throughout the derivation.

Pc21S1(S2)
= {S1 → Qc2GMS1(S2)

, S1 → Qc24SpecHelp1S1S2 , C→ Qc2GMS1(S2)
,

S4 → S
(1)
4 , S

(1)
4 → QPc21S1H2(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

Pc21S1(S3)
= {S1 → Qc2GMS1(S3)

, S1 → Qc24SpecHelp2S1S3 , C→ Qc2GMS1(S3)
,

S4 → S
(1)
4 , S

(1)
4 → QPc21S1H3(S4)

} ∪

{[x, q, c1, c2, e1, e2] → [e2]
′, [+1] ′ → AAC, [0] → AC, [−1] → C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I] → [I] ′, [I] ′ → AC}

Component grammar Pc22 is the same as in the original system, except that it
has been renamed and the communication rewriting rules have been modified
to match the correct helper components.

Pc22OrigS2
= {S2 → Qc2GMS2 , S2 → Qc2P4S2 , C→ Qc2GMS2} ∪ {A→ A} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2],

Parallel communicating grammar systems . . . 145

[I] → [I]| x ∈ Σ, q ∈ E, c1 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component grammar Pc23 contains similar rules with the original construc-
tion. Similarly to Pc22OrigS2

it does not require any helper grammars, but the

labels have been changed as before.

Pc23OrigS3 = {S3 → Qc2GMS3 , S3 → Qc2P4S2 , C→ Qc2GMS3} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2]

[I] → [I]|x ∈ Σ, q ∈ E, c1 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Component Pc24OrigS4 , requires 6 additional components to ensure a successful

derivation. The name of the grammar has been modified and the rules in
the grammar have had their labeling updated to match the respective helper
grammars.

Pc24OrigS4 = {S4 → S
(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc2P1S1} ∪ {A→ a}

A new nondeterministic step has been added to the following two helpers for

the original P4 component. The rule S
(2)
4 → S

(2)
4 was added specifically to

avoid a circular query in Step 12 of the derivation, but this rule could be used

whenever the non terminal S
(2)
4 appears. If it is used in any other step there

is a chance that the matching P1 component requests its string and receives

S
(2)
4 . Thankfully the matching P1 component does not have a corresponding

rewriting rule and thus the derivation will block. In a successful derivation this
rule will thus be used only in Step 12.

Pc24S1H2(S4)
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪

{S
(2)
4 → Qc2

P1S1H2(S4)
, S

(2)
4 → S

(2)
4 } ∪ {A→ a}

Pc24S1H3(S4)
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪

{S
(2)
4 → Qc2

P1S1H3(S4)
, S

(2)
4 → S

(2)
4 } ∪ {A→ a}

Pc24S2
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc2P1S2} ∪ {A→ a}

Pc24S3
= {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 } ∪ {S

(2)
4 → Qc2P1S3} ∪ {A→ a}

Pc24SpecHelp1S1S2 = P
c2
4SpecHelp2S1S3

= {S4 → S4}

146 M. S. R. Wilkin, S. D. Bruda

The original Pa1 grammar remains as it was in the original system and needs
14 additional helpers.

Pa1Orig = {S→ QGMOrig} ∪
{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I > |

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1a1GMS1 = {S→ Qc1GMPA1S1 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→< I > |

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1H2(S4)

= {S→ Qc1
GMPA1S1H2(S4)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1H3(S4)

= {S→ Qc1
GMPA1S1H3(S4)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1(S2)

= {S→ Qc1
GMS1(S2)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
a1GMS1(S3)

= {S→ Qc1
GMS1(S3)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→

Parallel communicating grammar systems . . . 147

< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1a1GMS2 = {S→ Qc1GMPA1S2 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc1a1GMS3 = {S→ Qc1GMPA1S3 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2a1GMS1 = {S→ Qc2GMPA1S1 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1H2(S4)

= {S→ Qc2
GMPA1S1H2(S4)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1H3(S4)

= {S→ Qc2
GMPA1S1H3(S4)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1(S2)

= {S→ Qc2
GMS1(S2)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→

148 M. S. R. Wilkin, S. D. Bruda

< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
a1GMS1(S3)

= {S→ Qc2
GMS1(S3)

, C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2a1GMS2 = {S→ Qc2GMPA1S2 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

Pc2a1GMS3 = {S→ Qc2GMPA1S3 , C→ C} ∪

{[I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,
< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >,< I >→
< I > |x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}}

The original component grammar Pa2 remains unchanged and works as it
did in the original system, but we will refer to it as Pa2Orig in order to remain
consistent with the naming of the other original components in the system.
The communication rule has also been modified to reflect the new names of
the component grammars.

Pa2Orig = {S→ S3, S(1) → S(2), S(2) → S(3), S(3) → S(4)} ∪
{S(4) → Qc1P2OrigS2

Qc1P3OrigS3
Qc2P2OrigS2

Qc2P3OrigS3
S(1)}.

Now we define the grammars that are used to reset the Pa1 helpers. They will
send the non-terminal < I > to their matching component grammar, which
will allow their derivation to restart. These components and their rewriting
rules are not part of the original system.

ResetGMc1Pa1S1
= ResetGMc1Pa1S1H2(S4)

= ResetGMc1Pa1S1H3(S4)
=

ResetGMc1Pa1S1(S2)
= ResetGMc1Pa1S1(S3)

= ResetGMc1Pa1S2
=

Parallel communicating grammar systems . . . 149

ResetGMc1Pa1S3
= ResetGMc2Pa1S1

= ResetGMc2Pa1S1H2(S4)
=

ResetGMc2Pa1S1H3(S4)
= ResetGMc2Pa1S1(S2)

= ResetGMc2Pa1S1(S3)
=

ResetGMc2Pa1S2
= ResetGMc2Pa1S3

= {S→< I >,< I >→< I >}
The components below will be used to reset Pc11S1H2(S4)

, Pc11S1H3(S4)
, Pc21S1H2(S4)

, and

Pc21S1H3(S4)
in Step 13 of the derivation. This reset allows queried components to

be reset to their axioms which in turn allows the derivation to restart. These
components were not part of the original system definition.

Us = { U→ U1, U1 → U2, U2 → U3, U3 → U4, U4 → U5, U6 → U7 }

ResetPc11S1H2(S4)
= Us ∪ {U7 → QPc11S1H2(S4)

U4}

ResetPc11S1H3(S4)
= Us ∪ {U7 → QPc11S1H3(S4)

U4}

ResetPc21S1H2(S4)
= Us ∪ {U7 → QPc11S1H2(S4)

U4}

ResetPc21S1H3(S4)
= Us ∪ {U7 → QPc11S1H3(S4)

U4}

The following, new grammars will be used to reset Pc14S1H2(S4)
, Pc14S1H3(S4)

, Pc24S1H2(S4)
,

and Pc24S1H3(S4)
in Step 14 of a successful derivation. The reset components al-

lows the system to restart the derivation process.

Ts = {T → T1, T1 → T2, T2 → T3, T3 → T4, T4 → T5, T6 → T7}

ResetPc14S1H2(S4)
= Ts ∪ {T7 → QPc14S1H2(S4)

T4}

ResetPc14S1H3(S4)
= Ts ∪ {T7 → QPc14S1H3(S4)

T4}

ResetPc24S1H2(S4)
= Ts ∪ {T7 → QPc24S1H2(S4)

T4}

ResetPc24S1H3(S4)
= Ts ∪ {T7 → QPc24S1H3(S4)

T4}

5.2.3 The CF-PCGS simulation of the 2-counter machine

In order for our construction to be valid it is enough for the grammars that
represent the original components to terminate the derivation with the same

150 M. S. R. Wilkin, S. D. Bruda

strings as in the original 11-component derivation. The components defined
as “original” will work with the 2-counter machine M simulating the steps
of M in their derivation. The system will change its configuration according
to the state of M and to the value of the string derived so far in the master
component (which will correspond at the end of the derivation with an input
accepted by M). Throughout the derivation strings of terminals will appear
in some components but will have no further role in the derivation; such oc-
currences have been silently replaced with generic symbols not appearing in
the description of the grammars or 2-counter machines (mostly α and β).

The master grammar will control the derivation. The string [x, q, c1, c2, e1, e2]
present in the master component, where x ∈ Σ, q ∈ E, c1, c2 ∈ {Z,B},
e1, e2 ∈ {−1, 0,+1} means that the 2-counter machine M is in state q, the
input head proceeds to scan x onto the input tape and c1, c2 on the two
storage (counter) tapes, respectively, and then the heads of the storage tapes
are moved according to values in e1, and e2. The number of A symbols in
the strings of the c1, c2 component grammars keep track of the value of the
counters of M, meaning that these numbers should always match the value
stored in the counters of M or else the system will block.

We used the “original” grammar system components Pc1i , Pc2i , 1 ≤ i ≤ 4 to
simulate the changes in the counters, as done in the original system [4]. All of
the other component grammars included in our construction enable the orig-
inal components to work correctly using one-step communication throughout
the derivation. This design ensures an exclusive communication relationship
between the the helper components that generate the same strings as the
grammar components they are copying which ensures the correct string gets
communicated to their corresponding original component at the right step.
This ensure that the 2-counter machine works as it did in the original con-
struction [4] because all of the strings generated in the original components
are the same.

The PCGS Γ first introduces [I] in the master grammar, then a number of
rewriting steps occur in a sequence that initializes Γ by setting the counters
to 0. Once these steps are completed Γ can then simulate the first transition
of M by rewriting [I] to u[x ′, q, Z, Z, e1, e2] where (x, q0, Z, Z, q, e1, e2, g) is a
rule of M. Here u = x if g = +1 and u = ε, x ′ = x if g = 0. In the case that
the input head moves (g = +1), the master grammar generates x followed
by [x ′, q, Z, Z, e1, e2] which shows that M is now scanning a new symbol. If
the input head does not move, the master grammar does not generate any
terminals and the string [x ′, q, Z, Z, e1, e2] indicates that M is still scanning
the same symbol. At this point Pc12 , Pc13 , Pc22 , and Pc23 verify the values stored

Parallel communicating grammar systems . . . 151

in the counters of M, and modify the values according to e1 and e2. Γ can
then determine if it can enter state q by verifying and updating the counters
before moving forward. In order to simulate the next step the master grammar
rewrites [x, q, c1, c2, e1, e2] to [x ′, q ′, c ′1, c

′
2, e
′
1, e
′
2], u ∈ {x, ε}, if M has a rule

(x, q, c ′1, c
′
2, q
′, e ′1, e

′
2, g). Here u = x if g = +1, and u = ε, x ′ = x if g = 0. Γ

then validates if c ′1, and c ′2 have been scanned on the counter tapes and then
updates these tapes to reflect the values in e ′1,and e ′2. If the input head moved
(g = +1), the symbol x is added to the string of the master component, and
so on.

We now present the process outlined above in more details. For the remain-
der of this section we use the a two-column layout to represent the configura-
tions of Γ . As mentioned earlier the 11 original grammars have the word “Orig”
in their names. We number the steps of the derivation so that we can refer to
them in a convenient manner. Such a numbering is shown parenthetically on
top of the =⇒ operator.

The initial configuration of Γ (having the respective axiom in each com-
ponent) is rewritten as follows. There are nondeterministic rewriting choices
in several components as shown in Figure 2. Here u1, u2, u3, represent the
original Pc11 , Pc12 , Pc13 components and their copycat grammars; they can either
rewrite to query components that simulate the rules in the master grammar
or they can rewrite to query a helper component in the Pc14 section. u ′1, u

′
2, u

′
3,

represent the original Pc21 , Pc22 , Pc23 components and their modified copy gram-
mars; they can either rewrite to query helper grammars that contain rules
similar to the master grammar or they can rewrite to query helpers in the
Pc24 group. In this case if any of the components rewrite to query the Pc14 or
Pc24 helpers the system will block because none of the components requesting
strings from Pc14 or Pc24 have a rewriting rule for S4. Therefore, the only first
step that will lead to a successful derivation is the one shown in Figure 3. We
then continue as shown in Figures 4 and 5.

Now we have yet another nondeterministic rewriting choice in several com-
ponents; please refer to Figure 6. Here u1, u2, u3, represent the original and
helper components for Pc11 , Pc12 , Pc13 ; they can rewrite and query their collabo-
rating grammars that mimic either the rules in the master or Pc14 components.
u ′1, u

′
2, u

′
3, represent the original and helper components for Pc21 , Pc22 , Pc23 ; they

can rewrite and query their matching component that simulate the master or
Pc24 rules. The master grammar and all of the helper components have only one
rewriting choice, to query their corresponding Pa1 component, or to rewrite
to the non-terminal C. Pc11 , Pc12 , Pc13 , Pc21 , Pc22 , and Pc23 , could have rewritten
to query their corresponding component grammars in the master grammar

152 M. S. R. Wilkin, S. D. Bruda



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S1 S1
S1 S1
S1 S2
S3 S4
S4 S4
S4 S4
S4 S4
S1 S1
S1 S1
S1 S2
S3 S4
S4 S4
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
U U
U U
T T
T T



(1)
=⇒



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
u1 u1
u1 u1
u1 u2

u3 S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
u ′
1 u ′

1
u ′
1 u ′

1
u ′
1 u ′

2

u ′
3 S

(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMOrig

Q
c1
GMPa1

S1

Q
c1
GMPa1

S1H2(S4)
Q

c1
GMPa1

S1H3(S4)

Q
c1
GMPa1

S1(S2)
Q

c1
GMPa1

S1(S3)

Q
c1
GMPa1

S2

Q
c1
GMPa1

S3

Q
c2
GMPa1

S1

Q
c2
GMPa1

S1H2(S4)

Q
c2
GMPa1

S1H3(S4)
Q

c2
GMPa1

S1(S2)

Q
c2
GMPa1

S1(S3)
Q

c2
GMPa1

S2

Q
c2
GMPa1

S3

S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U1 U1
U1 U1
T1 T1
T1 T1


Figure 2: PCGS simulation of a 2-counter machine: Step 1 (nondeterministic).

Parallel communicating grammar systems . . . 153



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S1 S1
S1 S1
S1 S2
S3 S4
S4 S4
S4 S4
S4 S4
S1 S1
S1 S1
S1 S2
S3 S4
S4 S4
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
U U
U U
T T
T T



(1)
=⇒



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

Q
c1
GMS1

Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

Q
c1
GMS1

S2

Q
c1
GMS1S3

Q
c1
GMS2

Q
c1
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
Q

c2
GMS1

Q
c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

Q
c2
GMS1

S2

Q
c2
GMS1S3

Q
c2
GMS2

Q
c2
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMOrig

Q
c1
GMPa1

S1

Q
c1
GMPa1

S1H2(S4)
Q

c1
GMPa1

S1H3(S4)

Q
c1
GMPa1

S1(S2)
Q

c1
GMPa1

S1(S3)

Q
c1
GMPa1

S2

Q
c1
GMPa1

S3

Q
c2
GMPa1

S1

Q
c2
GMPa1

S1H2(S4)

Q
c2
GMPa1

S1H3(S4)
Q

c2
GMPa1

S1(S2)

Q
c2
GMPa1

S1(S3)
Q

c2
GMPa1

S2

Q
c2
GMPa1

S3

S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U1 U1
U1 U1
T1 T1
T1 T1


Figure 3: PCGS simulation of a 2-counter machine: Step 1.

154 M. S. R. Wilkin, S. D. Bruda



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

Q
c1
GMS1

Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

Q
c1
GMS1

S2

Q
c1
GMS1S3

Q
c1
GMS2

Q
c1
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
Q

c2
GMS1

Q
c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

Q
c2
GMS1

S2

Q
c2
GMS1S3

Q
c2
GMS2

Q
c2
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMOrig

Q
c1
GMPa1

S1

Q
c1
GMPa1

S1H2(S4)
Q

c1
GMPa1

S1H3(S4)

Q
c1
GMPa1

S1(S2)
Q

c1
GMPa1

S1(S3)

Q
c1
GMPa1

S2

Q
c1
GMPa1

S3

Q
c2
GMPa1

S1

Q
c2
GMPa1

S1H2(S4)

Q
c2
GMPa1

S1H3(S4)
Q

c2
GMPa1

S1(S2)

Q
c2
GMPa1

S1(S3)
Q

c2
GMPa1

S2

Q
c2
GMPa1

S3

S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U1 U1
U1 U1
T1 T1
T1 T1



(2)
=⇒



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
[I] [I]
[I] [I]
[I] [I]

[I] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
[I] [I]
[I] [I]
[I] [I]

[I] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
[I]

[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

[I] S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U1 U1
U1 U1
T1 T1
T1 T1



(3)
=⇒



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] ′ [I] ′

[I] ′ [I] ′

[I] ′ [I]

[I] S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
[I] ′ [I] ′

[I] ′ [I] ′

[I] ′ [I]

[I] S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > S(4)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U2 U2
U2 U2
T2 T2
T2 T2



Figure 4: PCGS simulation of a 2-counter machine: Steps 2 and 3.

Parallel communicating grammar systems . . . 155



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] ′ [I] ′

[I] ′ [I] ′

[I] ′ [I]

[I] S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
[I] ′ [I] ′

[I] ′ [I] ′

[I] ′ [I]

[I] S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > S(4)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U2 U2
U2 U2
T2 T2
T2 T2



(4)
=⇒



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
AC AC
AC AC
AC [I]

[I] Q
c1
GMS1

Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

Q
c1
GMS2

Q
c1
GMS3

S4 S4
AC AC
AC AC
AC [I]

[I] Q
c2
GMS1

Q
c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

Q
c2
GMS2

Q
c2
GMS3

S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > Q
c1
S2
Q

c1
S3
Q

c2
S3
Q

c2
S3
S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U3 U3
U3 U3
T3 T3
T3 T3



(5)
=⇒



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
S1 S1
S1 S1
S1 S2
S3 AC
AC AC
AC AC
S4 S4
S1 S1
S1 S1
S1 S2
S3 AC
AC AC
AC AC
S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > [I][I][I][I]S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U3 U3
U3 U3
T3 T3
T3 T3



Figure 5: PCGS simulation of a 2-counter machine: Steps 4 and 5.

156 M. S. R. Wilkin, S. D. Bruda

helpers or could have rewritten to query Pc14 or Pc24 . The former choice would
result in a blocked derivation due to the introduction of circular queries. This
step makes use of reset queries; this ensures that all copy cat grammars that
are mimicking the functionality of the master grammar remain synchronized
with one another. Again, it is critical that all helper components that are
copying the tasks of the original system generate the same string at the same
time. The only possible step that will lead to a successful derivation is the one
in Figure 6.

It is at this point that Γ can start to simulate the 2-counter machine M. The
configuration described above represents the initial state of M with 0 stored
in both counters. If M has a rule (x, q0, Z, Z, q, e1, e2, g), and so can enter
the state q by reading input x and the counter symbols are both Z, then the
master grammar can chose to introduce the string u[x ′, q, Z, Z, e1, e2]. If the
input head of M changes to g = +1, then u = x and a new symbol x ′ gets
scanned onto the input tape, but if the input head does not move (g = 0),
then u = ε, x ′ = x, and the symbol x is scanned on the input tape. We thus
continue the derivation as shown in Figures 7 and 8.

The original Pc11 , Pc14 , Pc21 , and Pc24 , components modify the number of A
symbols in their respective strings according to e1 and e2. P

c1
1 and Pc21 introduce

AAC, AC, C whenever e1 and e2 are, +1, 0, or −1, respectively, while Pc14 and
Pc24 remove an A. The system thus adjusts the counters and if they decrement
below 0 the derivation blocks.

The original grammars Pc12 , Pc13 , Pc22 , and Pc23 verify the number of A sym-
bols in their respective strings to see if they agree with c1, c2. Γ now starts
to validate the value stored in the first counter (the second counter will be
verified in exactly the same way). If c1 = Z, then we have the following string
α[x ′, q, Z, c2, e1, e2] in Pc12 , Pc13 , which means the number of A symbols in α is 0.
If this is not true the system blocks because in the next step Pc13 would rewrite
[x ′, q, Z, c2, e1, e2] to a (a terminal symbol), and it does not have a rewriting
rule for A. If c1 = B then we have the following string α[x ′, q, B, c2, e1, e2],
where the there is at least one A in the string α. If there is no A then the
system will block because Pc22 does not have an applicable rewriting rule for
any other non-terminal.

In the following step (Figure 10) we use the new rule S1 → Q4SpecHelp1 so
its role in Pc11S1(S2)

, Pc11S1(S3)
Pc21S1(S2)

, and Pc21S1(S3)
components becomes apparent.

This step ensures that Pc12S2original , P
c1
2S3original

, Pc22S2original , P
c3
2S3original

receive

the correct strings in Step 14.
Similar to the first step in the derivation in Step 13 the P1, P2, and P3

Parallel communicating grammar systems . . . 157



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
S1 S1
S1 S1
S1 S2
S3 AC
AC AC
AC AC
S4 S4
S1 S1
S1 S1
S1 S2
S3 AC
AC AC
AC AC
S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > [I][I][I][I]S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U3 U3
U3 U3
T3 T3
T3 T3



(6)
=⇒



QPa1
Orig

Q
c1
Pa1

S1
Q

c1
Pa1

S1H2(S4)

Q
c1
Pa1

S1H3(S4)
Q

c1
Pa1

S1(S2)

Q
c1
Pa1

S1(S3)
Q

c1
Pa1

S2

Q
c1
Pa1

S3
Q

Reset
c1
GMPa1

S1

Q
Reset

c1
GMPa1

S1H2(S4)

Q
Reset

c1
GMPa1

S1H3(S4)

Q
Reset

c1
GMPa1

S1(S2)

Q
Reset

c1
GMPa1

S1(S3)

Q
Reset

c1
GMPa1

S2

Q
Reset

c1
GMPa1

S3

Q
c2
Pa1

S1
Q

c2
Pa1

S1H2(S4)

Q
c2
Pa1

S1H3(S4)
Q

c2
Pa1

S1(S2)

Q
c2
Pa1

S1(S3)
Q

c2
Pa1

S2

Q
c2
Pa1

S3
Q

Reset
c2
GMPa1

S1

Q
Reset

c2
GMPa1

S1H2(S4)

Q
Reset

c2
GMPa1

S1H3(S4)

Q
Reset

c2
GMPa1

S1(S2)

Q
Reset

c2
GMPa1

S1(S3)

Q
Reset

c2
GMPa1

S2

QReset
GM

c2
Pa1

S3

u1 u1
u1 u1
u1 u2
u3 aC
aC aC
aC aC
S4 S4
u ′
1 u ′

1
u ′
1 u ′

1
u ′
1 u ′

2
u ′
3 aC
aC aC
aC aC
S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > [I][I][I][I]S(2)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U4 U4
U4 U4
T4 T4
T4 T4


Figure 6: PCGS simulation of a 2-counter machine: Step 6.

158 M. S. R. Wilkin, S. D. Bruda



QPa1
Orig

Q
c1
Pa1

S1
Q

c1
Pa1

S1H2(S4)

Q
c1
Pa1

S1H3(S4)
Q

c1
Pa1

S1(S2)

Q
c1
Pa1

S1(S3)
Q

c1
Pa1

S2

Q
c1
Pa1

S3
Q

Reset
c1
GMPa1

S1

Q
c1
ResetGMPa1

S1H2(S4)

Q
c1
ResetGMPa1

S1H3(S4)

Q
Reset

c1
GMPa1

S1(S2)

Q
Reset

c1
GMPa1

S1(S3)

Q
Reset

c1
GMPa1

S2

Q
Reset

c1
GMPa1

S3

Q
c2
Pa1

S1
Q

c2
Pa1

S1H2(S4)

Q
c2
Pa1

S1H3(S4)
Q

c2
Pa1

S1(S2)

Q
c2
Pa1

S1(S3)
Q

c2
Pa1

S2

Q
c2
Pa1

S3
Q

Reset
c2
GMPa1

S1

Q
Reset

c2
GMPa1

S1H2(S4)

Q
Reset

c2
GMPa1

S1H3(S4)

Q
Reset

c2
GMPa1

S1(S2)

Q
Reset

c2
GMPa1

S1(S3)

Q
Reset

c2
GMPa1

S2

Q
Reset

c2
GMPa1

S3

u1 u1
u1 u1
u1 u2
u3 aC
aC aC
aC aC
S4 S4
u ′
1 u ′

1
u ′
1 u ′

1
u ′
1 u ′

2
u ′
3 aC
aC aC
aC aC
S4 S4
< I >

< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

< I > [I][I][I][I]S(2)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U4 U4
U4 U4
T4 T4
T4 T4



(7)
=⇒



< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
aC aC
aC S4
S4 aC
aC S4
S4 S4
S4 S4
S4 S4
aC aC
aC S4
S4 aC
aC S4
S4 S4
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S

S [I][I][I][I]S(2)

S S
S S
S S
S S
S S
S S
S S
U4 U4
U4 U4
T4 T4
T4 T4



Figure 7: PCGS simulation of a 2-counter machine: Step 7.

Parallel communicating grammar systems . . . 159



< I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
aC aC
aC S4
S4 aC
aC S4
S4 S4
S4 S4
S4 S4
aC aC
aC S4
S4 aC
aC S4
S4 S4
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S

S [I][I][I][I]S(2)

S S
S S
S S
S S
S S
S S
S S
U4 U4
U4 U4
T4 T4
T4 T4



(8)
=⇒



u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]

aQ
c1
GMS1

aQ
c1
GMS1H2(S4)

aQ
c1
GMS1H3(S4)

S
(1)
4

S
(1)
4

aQ
c1
GMS2

aQ
c1
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
aQ

c2
GMS1

aQ
c2
GMS1H2(S4)

aQ
c2
GMS1H3(S4)

S
(1)
4

S
(1)
4

aQ
c2
GMS2

aQ
c2
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMoriginal

Q
c1
GMS1(Pa1

Helper)

Q
c1
GMS1H2(S4)(Pa1

Helper)
Q

c1
GMS1H3(S4)(Pa1

Helper)

Q
c1
GMS1(S2)(Pa1

Helper)
Q

c1
GMS1(S3)(Pa1

Helper)

Q
c1
GMS2(Pa1

Helper)
Q

c1
GMS3(Pa1

Helper)

Q
c2
GMS1(Pa1

Helper)
Q

c2
GMS1H2(S4)(Pa1

Helper)

Q
c2
GMS1H3(S4)(Pa1

Helper)
Q

c2
GMS1(S2)(Pa1

Helper)

Q
c2
GMS1(S3)(Pa1

Helper)
Q

c2
GMS2(Pa1

Helper)

Q
c2
GMS1(S3)(Pa1

Helper)
[I][I][I][I]S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U5 U5
U5 U5
T5 T5
T5 T5


Figure 8: PCGS simulation of a 2-counter machine: Step 8.

160 M. S. R. Wilkin, S. D. Bruda



u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]

aQ
c1
GMS1

aQ
c1
GMS1H2(S4)

aQ
c1
GMS1H3(S4)

S
(1)
4

S
(1)
4

aQ
c1
GMS2

aQ
c1
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
aQ

c2
GMS1

aQ
c2
GMS1H2(S4)

aQ
c2
GMS1H3(S4)

S
(1)
4

S
(1)
4

aQ
c2
GMS2

aQ
c2
GMS3

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
QGMoriginal

Q
c1
GMS1(Pa1

Helper)

Q
c1
GMS1H2(S4)(Pa1

Helper)
Q

c1
GMS1H3(S4)(Pa1

Helper)

Q
c1
GMS1(S2)(Pa1

Helper)
Q

c1
GMS1(S3)(Pa1

Helper)

Q
c1
GMS2(Pa1

Helper)
Q

c1
GMS3(Pa1

Helper)

Q
c2
GMS1(Pa1

Helper)
Q

c2
GMS1H2(S4)(Pa1

Helper)

Q
c2
GMS1H3(S4)(Pa1

Helper)
Q

c2
GMS1(S2)(Pa1

Helper)

Q
c2
GMS1(S3)(Pa1

Helper)
Q

c2
GMS2(Pa1

Helper)

Q
c2
GMS1(S3)(Pa1

Helper)
[I][I][I][I]S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U5 U5
U5 U5
T5 T5
T5 T5



(9)
=⇒



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S

au[x ′, q, Z, Z, e1, e2]au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
au[x ′, q, Z, Z, e1, e2]au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
u[x ′, q, Z, Z, e1, e2]

u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]

u[x ′, q, Z, Z, e1, e2] [I][I][I][I]S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U5 U5
U5 U5
T5 T5
T5 T5



Figure 9: PCGS simulation of a 2-counter machine: Step 9.

Parallel communicating grammar systems . . . 161



S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S

au[x ′, q, Z, Z, e1, e2] au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
au[x ′, q, Z, Z, e1, e2] au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

au[x ′, q, Z, Z, e1, e2]

au[x ′, q, Z, Z, e1, e2] S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S
(1)
4

S4 S4
u[x ′, q, Z, Z, e1, e2]

u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]
u[x ′, q, Z, Z, e1, e2] u[x ′, q, Z, Z, e1, e2]

u[x ′, q, Z, Z, e1, e2] [I][I][I][I]S(3)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U5 U5
U5 U5
T5 T5
T5 T5



(10)
=⇒



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

au[e1] ′ au[e1] ′

au[e1] ′ Q
c1
S1H2(S4)

Q
c1
S1H3(S4)

au[x ′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
au[e2] ′ au[e2] ′

au[e2] ′ Q
c2
S1H2(S4)

Q
c2
S1H3(S4)

au[x ′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > [I][I][I][I]S(4)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U6 U6
U6 U6
T6 T6
T6 T6


Figure 10: PCGS simulation of a 2-counter machine: Step 10.

162 M. S. R. Wilkin, S. D. Bruda



[I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]
[I] [I]

au[e1] ′ S1
S1 au[e1] ′

au[e1] ′ au[x ′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
au[e2] ′ S1
S1 au[e2] ′

au[e2] ′ au[x ′, q, Z, Z, e1, e2]

aua S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S
(2)
4

S4 S4
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > [I][I][I][I]S(4)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U6 U6
U6 U6
T6 T6
T6 T6



(11)
=⇒



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C

αC Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

αC

αC au[x ′, q, Z, Z, e1, e2]

aua Q
c1
S1

S4(2) S4(2)

Q
c1
S1(S2)

Q
c1
S1(S3)

S4 S4
βC Q

c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

βC

βC au[x ′, q, Z, Z, e1, e2]

aua Q
c2
S1

S4(2) S4(2)

Q
c2
S1(S2)

Q
S1(S3)c2

S4 S4
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > γQ

c1
S2
Q

c1
S3
Q

c2
S2
Q

c2
S3
S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U7 U7
U7 U7
T7 T7
T7 T7


Figure 11: PCGS simulation of a 2-counter machine: Step 11.

Parallel communicating grammar systems . . . 163



C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C

αC Q
c1
GMS1H2(S4)

Q
c1
GMS1H3(S4)

αC

αC au[x ′, q, Z, Z, e1, e2]

aua Q
c1
S1

S4(2) S4(2)

Q
c1
S1(S2)

Q
c1
S1(S3)

S4 S4
βC Q

c2
GMS1H2(S4)

Q
c2
GMS1H3(S4)

βC

βC au[x ′, q, Z, Z, e1, e2]

aua Q
c2
S1

S4(2) S4(2)

Q
c2
S1(S2)

Q
c2
S1(S3)

S4 S4
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > γQ

c1
S2
Q

c1
S3
Q

c2
S2
Q

c2
S3
S(1)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U7 U7
U7 U7
T7 T7
T7 T7



(12)
=⇒



C
C S
S C
C C
C C
C C
C C
C S
S C
C C
C C
C C
C C
C C
C C
S1 C
C S1
S1 S2
S3 αC
S4(2) S4(2)
αC αC
S4 S4
S1 C
C S1
S1 S2
S3 βC
S4(2) S4(2)
βC βC
S4 S4

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > γ ′S(1)
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U7 U7
U7 U7
T7 T7
T7 T7



Figure 12: PCGS simulation of a 2-counter machine: Step 12.

164 M. S. R. Wilkin, S. D. Bruda



C
C S
S C
C C
C C
C C
C C
C S
S C
C C
C C
C C
C C
C C
C C
S1 C
C S1
S1 S2
S3 αC
S4(2) §4(2)
αC αC
S4 S4
S1 C
C S1
S1 S2
S3 βC
S4(2) S4(2)
βC βC
S4 S4

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 >u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > γ ′S(1)
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
U7 U7
U7 U7
T7 T7
T7 T7



(13)
=⇒



QPa1

Q
c1
Pa1

S1
[I]

[I] Q
c1
Pa1

S1(S2)

QPa1
S1(S3) Q

c1
Pa1

S2

Q
c1
Pa1

S3
Q

Reset
c1
GMPa1

S1

Q
Reset

c1
GMPa1

S1H2(S4)

Q
Reset

c1
GMPa1

S1H3(S4)

Q
Reset

C1
GMPa1

S1(S2)

Q
Reset

c1
GMPa1

S1(S3)

QReset
GM

c1
Pa1S2

Q
Reset

c1
GMPa1

S3

Q
c2
Pa1

S1
W

W Q
c2
Pa1

S1(S2)

Q
c2
Pa1

S1(S3)
QA1C2S2

Q
c2
Pa1

S3
Q

c2
ResetGMPa1

S1

Q
Reset

c2
GMPa1

S1H2(S4)

Q
Reset

c2
GMPa1

S1H3(S4)

Q
Reset

c2
GMPa1

S1(S2)

Q
Reset

c2
GMPa1

S1(S3)

Q
Reset

c2
GMPa1

S2

Q
Reset

c2
GMPa1

S3

Q
c1
S4S1

W

W Q
c1
S4P4SpecHelp1S1S2

Q
c1
S4P4SpecHelp2S1S3

Q
c1
S4S2

Q
c1
S4S3

αC

S4(2) S4(2)
αC αC
S4 S4

Q
c2
S4S1

W

W Q
c2
S4P4SpecHelp1S1S2

Q
c2
S4P4SpecHelp2S1S3

Q
c2
S4S2

Q
c2
S4S3

βC

S4(2) S4(2)
βC βC
S4 S4

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > γ ′S(2)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

Q
c1
S1S1H2(S4)

U4 Q
c1
S1S1H3(S4)

U4

Q
c2
S1S1H2(S4)

U4 Q
c2
S1S1H3(S4)

U4

Q
c1
S4S1H2(S4)

T4 Q
c1
S4S1H3(S4)

T4

Q
c2
S4S1H2(S4)

T4 Q
c2
S4S1H3(S4)

T4


Figure 13: PCGS simulation of a 2-counter machine: Step 13.

Parallel communicating grammar systems . . . 165

original and helper components have a nondeterministic choice. They could
rewrite to either the original, or helper forms of Qm, or Qc14 and Qc24 . If any of
these symbols is not Qm, then the system will block after the communication
step. The reset grammars now rewrite to request strings from there matching
helper grammars that simulate rules in the master grammar. During the next
step the query will reset the components that have GMPa1 in their labels (see
Figure 14).

The following step (Figure 11) is a communication step. It allows two of
the Pc11 and Pc21 helper grammars that are holding intermediate strings to
communicate with the components that will be used for the derivation of the
original Pc12 , Pc13 ,Pc22 , and Pc23 components. In the above step two of the Pc14 ,
and two of the Pc24 helpers use the new rewriting rule S2 → S2 in order to avoid
the introduction of a circular query. We continue as in Figures 12 and 13.

If αC and βC contain the same number of A symbols as stored in the
counters ofM, and ifM is in the accepting state (q = qF), then the system can
either rewrite to a terminal string by using the rule < x ′, qF, Z, Z, e1, e2 >→ x ′

in Gm, or continue; otherwise the system has no chance but to continue the
derivation. If the system continues the derivation then the input head ofM will
move to the right, and the symbol x ′ will be left behind. Then x ′ will become
part of the string generated by Γ by using the rule: < x ′, q, Z, Z, e1, e2 >→
x[y, q ′, c ′1, c

′
2, e
′
1, e
′
2]. If the scanned symbol does not change the input head

will not move, and Gm can then use the following rule: < x ′, q, Z, Z, e1, e2 >→
[x ′, q ′, c ′1, c

′
2, e
′
1, e
′
2]. The tuple (x, i, j) will represent the current state of the

storage tapes of M, where i and j are integers that correspond to the number
of A in the counters; these numbers will continue to increment and decrement
according to the values of e1 and e2. The system will continue to loop and
compare the number of A symbols in its counters to those in the grammar
system indefinitely or can chose to stop (when permitted) as described above.
We conclude that every successful computation ofM has a matching successful
derivation in Γ , and vice versa.

Note finally that this construction will not accept the empty string even if
this string is in L(M). In such a case Γ can be modified to accept the empty
string simply by adding the rule S→ ε to its master grammar.

6 Conclusion

PCGS offer an inherently concurrent model for describing formal languages.
It is precisely because of this inherent parallelism that one of our longer term

166 M. S. R. Wilkin, S. D. Bruda



QPa1

Q
c1
Pa1

S1
Q

c1
Pa1

S1H2(S4)

Q
c1
Pa1

S1H3(S4)
Q

c1
Pa1

S1(S2)

Q
c1
Pa1

S1(S3)
Q

c1
Pa1

S2

Q
c1
Pa1

S3
Q

Reset
c1
GMPa1

S1

Q
Reset

c1
GMPa1

S1H2(S4)

Q
Reset

c1
GMPa1

S1H3(S4)

Q
Reset

c1
GMPa1

S1(S2)

Q
Reset

c1
GMPa1

S1(S3)

Q
Reset

c1
GMPa1

S2

Q
Reset

C1
GMPa1

S3

Q
c2
Pa1

S1
Q

c2
Pa1

S1H2(S4)

Q
c2
Pa1

S1H3(S4)
Q

c2
Pa1

S1(S2)

Q
c2
Pa1

S1(S3)
Q

c2
Pa1

S2

Q
c2
Pa1

S3
Q

Reset
c2
GMPa1

S1

Q
Reset

c2
GMPa1

S1H2(S4)

Q
Reset

c2
GMPa1

S1H3(S4)

Q
Reset

c2
GMPa1

S1(S2)

Q
Reset

c2
GMPa1

S1(S3)

Q
Reset

c2
GMPa1

S2

Q
Reset

C2
GMPa1

S3

Q
c1
S4S1

W

W Q
c1
S4P4SpecHelp1S1S2

Q
c1
S4P4SpecHelp2S1S3

Q
c1
S4S2

Q
c1
S4S3

αC

S4(2) S4(2)
αC αC
S4 S4

Q
c2
S4S1

W

W Q
c2
S4P4SpecHelp1S1S2

Q
c2
S4P4SpecHelp2S1S3

Q
c2
S4S2

Q
c2
S4S3

βC

S4(2) S4(2)
βC βC
S4 S4

u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > γ ′S(2)

< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >

Q
c1
S1H2(S4)

U4 Q
c1
S1H3(S4)

U4

Q
c2
S1S1H2(S4)

U4 Q
c2
S1H3(S4)

U4

Q
c1
S4S1H2(S4)

T4 Q
c1
P4S1H3(S4)

T4

Q
c2
P4S1H2(S4)

T4 Q
c2
P4S1H3(S4)

T4



(14)
=⇒



u < x ′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > u < x

′, q, Z, Z, e1, e2 >
u < x ′, q, Z, Z, e1, e2 > < I >

< I > < I >
< I > < I >
< I > < I >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > u < x
′, q, Z, Z, e1, e2 >

u < x ′, q, Z, Z, e1, e2 > < I >
< I > < I >
< I > < I >
< I > < I >

α ′C S1
S1 S4
S4 α ′C
α ′C S4
S4(2) S4(2)
S4 S4
S4 S4
βC [I]
[I] S4
S4 βC
βC S4
S4(2) S4(2)
S4 S4
S4 S4
S

S
S S
S S
S S
S S
S S
S S

S γ ′S(2)
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
< I > < I >
WU4 WU4
WU4 WU4

S
(2)
4

T4 S
(2)
4

T4

S
(2)
4

T4 S
(2)
4

T4



Figure 14: PCGS simulation of a 2-counter machine: Step 14.

Parallel communicating grammar systems . . . 167

interest is to exploit this model in general (and CF-PCGS in particular) in
formal methods. Before this can even begin however several formal language
questions need to be addressed. One of them is the generative power.

We first examined one system designed earlier (using broadcast communi-
cation) to show Turing completeness [4]. We explained that such an inter-
pretation of communication modifies the power of the PCGS and hence this
simulation does not work if one-step communication is used (Section 4). We
then proceeded to design a system that uses a similar approach, except that we
created an arrangement that would allow one component to be queried by one
and only one grammar during each communication step, thus eliminating the
need for broadcast communication. In order to do this we created a number
of helpers that act as support systems for the original component grammars;
the role of the helpers was to create and hold intermediate strings until they
were requested from their corresponding original grammar. In order to get the
construction to work we used a number of different strategies, as follows:

1. A number of copycat components were created. They contain rules simi-
lar to the original components. These components derive the same strings
during the same steps as the original components, which allows for each
of the original grammars to request the same string at the same time
without the need to query the same component.

2. We introduced reset components, whose purpose is to reset some of the
copycat grammars at precise steps in the derivation in order to fix syn-
chronization issues.

3. We used waiting rules to ensure that communication steps would only
be triggered at certain points in the derivation.

4. We used selective rewriting rules in conjunction with blocking, thus al-
lows certain rewriting rules to be successful only at specific steps and
ensures that no undesired strings are created.

Using these techniques we were able to construct a CF-PCGS capable of
simulating an arbitrary 2-counter machine, and so show that CF-PCGS are
indeed Turing complete using either style of communication (Theorem 5).
Admittedly our construction is not as compact or elegant as the ones used in
similar proofs [2, 3, 4], but it has the advantage of being correct according to
the one-step communication model.

True, the result established in this paper is already known. Indeed, one other
path of showing Turing completeness of returning CF-PCGS exists: one can

168 M. S. R. Wilkin, S. D. Bruda

take one of the constructions that show completeness of non-returning CF-
PCGS [5, 14] and then convert such a construction into a returning CF-PCGS
(a single construction for this conversion is known [8]).

Even so, our result has several advantages. For one thing we are doing it
more efficiently. Note first that the conversion from non-returning to returning
CF-PCGS [8] increases the number of components from n to 4n2−3n+1 [23].
One of the results showing Turing completeness of non-returning CF-PCGS
[14] uses a construction with an arbitrary number of components, so that
it proves that RE = L(PC∗(CF)) instead of our RE = L(PC95(CF)). The
other proof of Turing completeness for non-returning CF-PCGS [5] provides
a PCGS with 6 components, which is equivalent to 4× 62 − (3 ∗ 6) + 1 = 127
components for the returning case, so this shows RE = L(PC127(CF)) versus
our RE = L(PC95(CF)). In both cases our result is tighter.

It is apparent that broadcast communication allows for a more compact
CF-PCGS for certain languages. Indeed, one could compare our 2-counter
machine simulation (featuring as many as 95 components) with the broadcast
communication-enabled simulation [4] (with only 11 components). A further
study on simulating non-returning CF-PCGS using the returning variant [23]
also determined that the use of broadcast communication (called this time
“homogenous queries”) results in a PCGS with fewer components (though
this time the number of components remain of the same order of magnitude in
the general case). We now effectively showed that this (reducing the number
of components) is the sole advantage of broadcast communication, which does
not otherwise increase the power of CF-PCGS. It would be interesting to see
whether our construction can be made even more concise, which we believe
to be the case. Indeed, applying the techniques from this paper to another
proof using broadcast communication [2] (and resulting in a system with only
5 components) is very likely to result in a smaller PCGS. We believe that our
construction is general and so can be applied in this way with relative ease.

Indeed, the discussion above suggests that the techniques used in our ap-
proach are applicable not only to our construction but in a more general
environment. That is, they appear to be useful for eliminating broadcast com-
munication in general. Whether this is indeed the case and if so in what cir-
cumstances is an interesting open question.

Parallel communicating grammar systems . . . 169

References

[1] S. D. Bruda, M. S. R. Wilkin, Parse trees for context-free parallel communicat-
ing grammar systems, Proc. 13th International Conference on Automation and
Information (ICAI 12), Iasi, Romania, June 2012, pp. 144–149. ⇒114

[2] E. Csuhaj-Varjú, G. Paun, G. Vaszil, PC grammar systems with five context-free
components generate all recursively enumerable languages, Theoretical Computer
Science 299 (2003) 785–794. ⇒119, 121, 124, 167, 168

[3] E. Csuhaj-Varjú, On size complexity of context-free returning parallel communi-
cating grammar systems, in: Where Mathematics, Computer Scients, Linguistics
and Biology Meet, (ed. C. Martin-Vide and V. Mitrana), Springer, 2001, pp. 37–
49. ⇒119, 121, 124, 167

[4] E. Csuhaj-Varjú, G. Vaszil, On the computational completeness of context-free
parallel communicating grammar systems, Theoretical Computer Science, 215
(1999) 349–358. ⇒115, 119, 121, 124, 125, 126, 129, 141, 150, 167, 168

[5] E. Csuhaj-Varjú, G. Vaszil, On the size complexity of non-returning context-
free PC grammar systems, Proc. 11th International Workshop on Descriptional
Complexity of Formal Systems (DCFS 2009), Magdeburg, Germany, 2009, pp.
91–100. ⇒119, 121, 168

[6] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, G. Păun, Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation, Gordon and Breach, 1994.⇒114, 115, 116, 118, 119, 124

[7] J. Dassow, G. Păun, G. Rozenberg, Grammar systems, in: Handbook of Formal
Languages – Volume 2. Linear Modeling: Background and Applications, Springer,
1997, pp. 155–213. ⇒119

[8] S. Dumitrescu, Nonreturning PC grammar systems can be simulated by return-
ing systems, Theoretical Computer Science, 165 (1996) 463–474. ⇒ 114, 121,
168

[9] P. C. Fischer, Turing machines with restricted memory access, Information and
Computation, 9 (1966) 364–379. ⇒115, 126

[10] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Macmillan Higher Education, 1979. ⇒116

[11] V. Geffert, Context-free-like forms for the phrase-structure grammars, Mathe-
matical Foundations of Computer Science, Lecture Notes in Computer Science,
324 (1988) 309–317. ⇒119

[12] G. Katsirelos, S. Maneth, N. Narodytska, T. Walsh, Restricted global grammar
contraints, Proc. Principles and Practice of Constraint Programming (CP 2009),
Lecture Notes in Computer Science, 5732 (2009) 501–508. ⇒116

[13] H. R. Lewis, C. H. Papadimitriou, Elements of the Theory of Computation,
Prentice Hall, 2nd edition, 1998. ⇒116

[14] N. Mandache, On the computational power of context-free PC grammar systems,
Theoretical Computer Science, 237 (2000) 135–148. ⇒114, 121, 168

https://bruda.ca
http://people.inf.elte.hu/csuhaj/
http://www.imar.ro/~gpaun/
https://arato.inf.unideb.hu/vaszil.gyorgy/
http://dx.doi.org/10.1016/S0304-3975(02)00852-6
http://www.journals.elsevier.com/theoretical-computer-science/
http://www.journals.elsevier.com/theoretical-computer-science/
http://people.inf.elte.hu/csuhaj/
http://www.springer.com/la/book/9780792366935
http://www.springer.com/la/book/9780792366935
http://people.inf.elte.hu/csuhaj/
https://arato.inf.unideb.hu/vaszil.gyorgy/
http://dx.doi.org/10.1016/S0304-3975(98)00193-5
http://www.journals.elsevier.com/theoretical-computer-science/
http://people.inf.elte.hu/csuhaj/
https://arato.inf.unideb.hu/vaszil.gyorgy/
http://theo.cs.ovgu.de/dcfs2009/
http://theo.cs.ovgu.de/dcfs2009/
http://people.inf.elte.hu/csuhaj/
http://theo.cs.ovgu.de/dassow_eng.html
http://www.imar.ro/~gpaun/
http://theo.cs.ovgu.de/dassow_eng.html
http://www.imar.ro/~gpaun/
http://www.springer.com/la/book/9783540606482
http://www.springer.com/la/book/9783540606482
http://www.ece.mcmaster.ca/~sorina/
http://dx.doi.org/10.1016/0304-3975(95)00258-8
http://www.journals.elsevier.com/theoretical-computer-science/
http://www.journals.elsevier.com/information-and-computation
http://www.journals.elsevier.com/information-and-computation
https://en.wikipedia.org/wiki/Michael_Garey
https://en.wikipedia.org/wiki/David_S._Johnson
http://link.springer.com/book/10.1007/BFb0017126
http://link.springer.com/book/10.1007/BFb0017126
http://link.springer.com/bookseries/558
http://www7.inra.fr/mia/T/katsirelos/
http://homepages.inf.ed.ac.uk/smaneth/
http://www.cse.unsw.edu.au/~tw/
http://www.springer.com/us/book/9783642042430
http://link.springer.com/bookseries/558
http://lewis.seas.harvard.edu/
https://www.cs.berkeley.edu/~christos/
http://imar.ro/~mandache/
http://dx.doi.org/10.1016/S0304-3975(98)00159-5
http://www.journals.elsevier.com/theoretical-computer-science/

170 M. S. R. Wilkin, S. D. Bruda

[15] V. Mihalache, On parallel communicating grammar systems with context-free
components, in: Mathematical Linguistics and Related Topics, The Publishing
House of the Romanian Academy of Science, 1994, pp. 258–270. ⇒114

[16] V. Mihalache, On the generative capacity of parallel communicating grammer
systems with regular components, Technical report, Turku Centre for Computer
Science, Turku, Finland, 1996. ⇒118

[17] V. Mihalache, On the expressiveness of coverability trees for PC grammar sys-
tems, in Grammatical Models of Multi-Agent Systems (Topics in Computer
Mathematics), Gordon and Breach, 1999. ⇒114

[18] D. Pardubska, M. Platek, Parallel communicating grammar systems and analy-
sis by reduction by restarting automata, Technical report, Deptartment of Com-
puter Science, Comenius University, Bratislava, Slovakia, 2008. ⇒118

[19] G. Păun, L. Sântean, Parallel communicating grammar systems: the regular case,
Analele Universitatii din Bucuresti, Seria Matematica-Informatica, 2 (1989) 55–
63. ⇒114

[20] G. Păun, L. Sântean, Further remarks on parallel communicating grammar sys-
tems, International Journal of Computer Mathematics, 34 (1990) 187–203. ⇒
115

[21] L. Sântean, Parallel communicating grammar systems, Bulletion of the EATCS
(Formal Language Theory Column), 1, 1990. ⇒114, 118

[22] F. L. Tiplea, C. Ene, C. M. Ionescu, O. Procopiuc, Some decision problems for
parallel communicating grammar systems. Theoretical Computer Science, 134
(1994) 365–385. ⇒114

[23] G. Vaszil, On simulating non-returning PC grammar systems with returning
systems, Theoretical Computer Science, 209 (1997) 319–329. ⇒168

[24] G. Vaszil, Various communications in PC grammar systems, Acta Cybernetica,
13 (1997) 173–196. ⇒115, 121

[25] M. S. R. Wilkin, S. D. Bruda, Parallel communicating grammar systems with
context-free components are Turing complete for any communication model,
Technical Report 2014-003, Department of Computer Science, Bishop’s Univer-
sity, 2014. ⇒115

Received: October 10, 2016 • Revised: November 3, 2016

http://www.dcs.fmph.uniba.sk/~pardubska/
http://ktiml.mff.cuni.cz/~platek/
http://www.dcs.fmph.uniba.sk/~Epardubska/publikacie/PCGS-RA-ForLing08-final.pdf
http://www.dcs.fmph.uniba.sk/~Epardubska/publikacie/PCGS-RA-ForLing08-final.pdf
http://www.imar.ro/~gpaun/
http://www.csd.uwo.ca/~lila/
http://www.imar.ro/~gpaun/
http://www.csd.uwo.ca/~lila/
http://www.tandfonline.com/doi/abs/10.1080/00207169008803876
http://www.tandfonline.com/doi/abs/10.1080/00207169008803876
http://www.tandfonline.com/loi/gcom20
http://www.csd.uwo.ca/~lila/
http://profs.info.uaic.ro/~fltiplea/
http://www-verimag.imag.fr/~ene/
http://dx.doi.org/10.1016/0304-3975(94)90243-7
http://dx.doi.org/10.1016/0304-3975(94)90243-7
http://www.journals.elsevier.com/theoretical-computer-science/
https://arato.inf.unideb.hu/vaszil.gyorgy/
http://dx.doi.org/10.1016/S0304-3975(97)00120-5
http://www.journals.elsevier.com/theoretical-computer-science/
https://arato.inf.unideb.hu/vaszil.gyorgy/
https://www.inf.u-szeged.hu/actacybernetica/edb/vol13n2/Vaszil_1997_ActaCybernetica.xml
https://www.inf.u-szeged.hu/kutatas/acta-cybernetica
https://bruda.ca
http://www.ubishops.ca/wp-content/uploads/bucstr-2014-003.pdf
http://cs.ubishops.ca/research

