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Abstract: The paper defines and solves a Linear-Quadratic-Gaussian (LQG) 
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0. Introduction and problem formulation 

The reduction of urban traffic congestion is still an area for significant 

improvements. Due to the development of many cities the traffic congestion 

problems take more attention. Traffic congestion produces environment pollution, 

reduces the traveling efficiency, and thus causes economic losses [1, 2].  

A solution of the problem may consist into development a high-level controller 

design technique to regulate the traffic demands of complex urban traffic networks. 

This solution may seriously reduce congestion problems through the better 

utilization of the existing infrastructure [1-3]. 

A plenty of more or less sophisticated urban control strategies have been 

developed and implemented in the last decades [1, 2, 4-9]. A contemporary 

overview of the proposed approaches and programs may be found in the papers  

[1, 5, 9, 10]. The more thorough overview may be found in the papers  

[1, 2, 6, 9, 11]. 

A ‘store-and-forward-based approach’ proposed by Gazis and Potts in  

[1, 6, 12-14, 18] is an important class of coordinated traffic responsive strategies. 

Combination of store-and-forward approach with classical control (the method is 

called traffic-responsive urban control [1-4, 6, 8, 11, 14, 15, 18]) is proposed in a 

quadratic programming form, and the controller is designed as a linear-quadratic 

regulator. 
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In the same time some specific aspects of linear-quadratic optimization are not 

considered in details, which influence negatively the control process. This paper 

presents a linear-quadratic optimization problem, taking into account the special 

structure of the model. The problem is extended for the case when random 

processes exist in the traffic behavior and when the real traffic information may be 

given by noisy sensors. 

The paper outlines are the following. The first section discusses the UTN 

model when random events exist. The second section presents results of UTN 

analysis and behavior of the disturbances, which are included in the traffic model. 

The last section presents results of the application of the LQG control for a real 

UTN in Sofia. Particularly, the numerical implementation and solution of the LQG 

optimization problem is discussed.  

1. UTN state-space model design 

An urban transportation network is regarded as a set of linked junctions which are 

controlled by the traffic lights [1]. An UTN behavior in saturated mode may be 

described by the well known store-and-forward model [1, 12, 14], initially 

suggested by G a z i s  and P o t t s  [12]. This model is presented as a set of discrete 

linear state-space equations and describes the flow process in an UTN in a simple 

way. The UTN may be schematically presented according to  

Fig. 1. 

 
Fig. 1. Urban transportation network 

Following Fig. 1, the UTN contains 
srcn  external flows of vehicles sources 

src, {1, 2,..., }lf l n  which form external network demand; 
snkn  outgoing flows of 

vehicles leaving the UTN 
snk, {1, 2,..., }rh r n ; p  traffic light controlled junctions 

which are situated on a subset of the n  links of the UTN; the notations ix ,  

i = {1, 2, …, n}, correspond to the number of vehicles on each link of the network.  

In a saturated UTN in front of each junction, controlled by traffic lights, 

queues of waiting vehicles arise. For sake of simplicity, the paper considers the 

practical case when each link contains only one queue. This simplification can be 

easily avoided by increase of the model dimensions. The traffic lights change their 

phases periodically to provide each queue right of way. For the current 



 167 

developments it was assumed that for each junction the phase sequent is specified. 

This case concerns the existing traffic infrastructure. It is noted that the -thj  

junction applies jm , {1, 2,..., },j p  phases. The sequential traffic light phases 

repetition defines the duration of the traffic light cycle. This research assumes that 

the traffic cycle is constant value, equal to c  seconds. The phase notation ,r j , 

{1, 2,..., }, {1, 2,..., },
j

j p r m   means -thr  phase of -thj  junction. Each phase 

,r j  provides control for queues set ,r j , giving right of way during the 

corresponding effective green time ,

e

r jg . Each phase ,r j  is connected with the next 

one with a lost time, noted as ,r jl . During the lost time ,r jl  no traffic flows are 

possible to operate. In general the lost time ,r jl  includes the duration of the yellow 

light and pedestrian time. For each -thj  junction the mentioned times are related as  

(1)  , ,

1

jm

e

r j r j

r

g l c


  ,  1, 2,..., .j p  

The lost time ,r jl  may be assumed as constant value or proportional to the 

effective green time, , , ,

e

r j r j r jl g , where ,r j  are coefficients with values 

,0 1r j   and practically belong to ,0 0.25r j  . 

A junction control may be implemented by changing effective green time 

durations within the cycle c  (it is so called splits control [1]). Following relation 

(1), for each -thj  junction there are 1jm   independent control influences ,

e

r jg . Let 

denotes the dependent one by index jv  and it duration is ,j

e

v jg , where 1 j jv m  , 

(2) 

 
 , , ,

1,
,

1
1

1

j

j

j
j

m

e e

v j r j r j

r r v
v j

g c g
  

 
   

   
 ,  1, 2,..., .j p  

Let the value 
1

p

j

j

m m


 corresponds to the total number of traffic lights phases 

in the UTN. Generally, UTN has  
1

1
p

j

j

m m m p


     independent variables 

that can be changed to implement a control strategy. Let 

1

T

1,1 2,1 ,1 1,2 ,, , ... , , , ... ,
p

e e e e e e
m m pg g g g g 

 
g  denote the effective green time vector 

e mRg  and let ( )eg j  is a j-th element of the vector. 

Let ig  means a total green time appointed to -thi  queue during the cycle. 

Green time ig  consists from effective green times according to the set ,r j . For 

instance, when for i-th queue, the right of way is allowed on first and third phases 

on j-th junction, there is a relation 1, 3,

e e

i j jg g g  . Generally, 
,

1

( )
m

e

i i j

j

g g j


 , 
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where elements  ,
0,1

i j
   define if the appropriate effective green time ( )eg j  

contribute to the green time gi. The last equality can be rewritten in matrix form 

eg Gg , where  
T

1 2, , ... , ng g gg ,  ,, , 1, 2,..., ;n m
i jR i n  G G  

1, 2,..., .j m  

Let’s assume that by the linear transformation 

e

e

g e

 
  
  

g
T g

g
, the effective green 

time vector elements can be reordered such that ,e e
g g  are vectors of independent 

and dependent variables respectively. Representation (2) also may be rewritten in 

the matrix form as 1 2

e ec g M M g , 1 2,p p mR R  M M . Then collecting above,  

the following expression exists: 

(3) e c g Gg L , 

where 1 2 2 2 1,n m nR R    G G G M L G M  and matrices 1

n mR G , 2

n pR G  

correspond to block representation  1

1 2g

 GT G G . It is worth to remember for 

permutation matrices hold 
1 T

g g
 T T . 

Usually UTN control strategies apply the relative green times towards the 

cycle time or ˆ
i ig = g / c , ˆ , , 1, 2,...e e

i, j i, jg = g / c i j  . Then the equality (3) can be 

written as 

(4) ˆ ˆ e g Gg L , 

where 
T

1 2
ˆ ˆ ˆ ˆ, ,..., ng g g   g , 

1

T

1,1 2,1 ,1 1,2 ,
ˆ ˆ ˆ ˆ ˆ ˆ, , ... , , , ... ,

p

e e e e e e
m m pg g g g g 

 
g . It is 

supposed here that dependent variables ,
ˆ e

i jg  are excluded from vector ˆ e
g . 

The discrete time dynamics of vehicles for the -thi  queue for one cycle is 

given on Fig. 2. The notations in out,i iq q  are the input and output flows to the -thi  

vehicle queue; in out,i id d  are the input and output flows within -thi  link; ,i js  

denotes vehicles exchange from -thj  to -thi  queue; ,i jf  means vehicles inflow 

from -thj  source to -thi  queue; ,i jh  means vehicles outflow from -thj  queue to 

-thi  sink. Since all flows are considered for one cycle time c, all flows are 

measured by the number of vehicles during the cycle c.  

The dynamical change of -thi  queue length (number of vehicles) in -thk  

cycle can be represented by the equation 

(5) 
in out in out( 1) ( ) ( ) ( ) ( ) ( ), {1, 2,..., },i i i i i ix k x k q k q k d k d k i n        

where ( ), ( 1)i ix k x k   are the -thi  queue lengths at the beginning of -thk  and 

 1 -thk   cycle respectively. Following Fig. 2, in
iq  gives the vehicle income from 

external sources and other queues, 

src

in
, ,

1 1,

n n

i i l i j

l j j i

q f s
  

   . The same holds for 
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outflows 

snk

out
, ,

1 1,

n n

i r i e i

r e e i

q h s
  

   . For simplification of (5) instead of values 

in out,i id d  the research will use the variance dif in out
i i id d d  . 

 

Fig. 2. The flows dynamics related with i-th queue 

Let v  is a vehicles flow, [veh/sec], then vehicles amount z  appeared during 

time  , [sec], can be expressed as z v . Let outgoing flow can be split to n  

directions 

(6) 
1 1

n n

i i

i i

z z v 
 

   , 

where i  is a split (proportion) of vehicles going toward -thi  direction. The 

outgoing proportions satisfy the relationships 
1

0 1, 1
n

i i

i

 


   . It is also assumed 

that values v, i  are normally distributed random numbers with known statistic 

characteristics. Let v v v   , i i i     , where v , i  are average values and 

v , i  are the appropriate centered random numbers. 

Then, the variables in (5) can be represented in form (6) as  

(7) 

  

  

  

  

 

, , , , ,

, , , , ,

, , , , ,

, , , , ,

dif

,

,

,

,

f f f f f f f
i l i l i l l l i l l i l

s s s s s s s
i j i j i j j j j i j j j i j j

h h s s h s h
r i r i r i i i i r i i i r i i

s s s s s s s
e i e i e i i i i e i i i e i i

d d
i i i

f v v c v c c

s v v g v g g

h v v g v g g

s v v g v g g

d v v c

   

   

   

   

      

      

      

      

   ,













 

where ,

f

i l , 
f

lv  are average values of splits and flow from source lf  toward -thi  

queue, , ,f f

i l lv   are deviations of these values. The similar meanings have the rest 

of values in (7). The additional notations in (7) are  
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, , , ,

f f f f f f f

i l i l l i l l i l lv v v          , , , , ,

s s s s s s s

i j i j j i j j i j jv v v          , 

, , , ,

h h s h s h s

r i r i i r i i r i iv v v          , , , , ,

s s s s s s s

e i e i i e i i e i iv v v          . 

For flows out,l if q  the split equalities should be held 

src

,

1

1
n

f
i l

i




 ,

src

,

1

0
n

f
i l

i




  , 

(8) 

snk

, ,

1 1,

1
n n

h s
r i e i

r e e i

 
  

   ,  

snk

, ,

1 1,

0
n n

h s
r i e i

r e e i

 
  

     . 

The sign of the value d

iv  defines the flow type. If d

iv  sign is positive it 

matches to a source otherwise it matches to a sink. Practically, the value d

iv  is hard 

to be estimated and usually considered as zero.  

Using relations (7) and (8) Equation (5) becomes in the form  

   

     

src

snk

, , , ,

1 1,

, , , ,

1 1,

ˆ ˆ( 1) ( )

ˆ ˆ ˆ ˆ .

n n
f f f s s s

i i i l l i l i j j j i j j

l j j i

n n
h s h s s s d d

r i i i r i i e i i i e i i i i

r e e i

x k x k c v v g g

v g g v g g v v

   

   

  

  


      





       




 

 

 

Applying the notations 

src

,

1

n
f f

i i l l

l

v 


 , 

snk

, ,

1 1,

n n
h s s s s

i r i i e i i i

r e e i

v v v  
  

 
   
 
 
  , 

(see (8)), 
src snk

, , , ,

1 1, 1 1,

ˆ ˆ ˆ ˆ( , ( )) ( )
n n n n

f s h s d
i i l i j j r i i e i i i

l j j i r e e i

w k k g g g v k   
     

        g , 

{1, 2,..., }i n  the final form of (5) becomes  

(9) , ,

1,

ˆ ˆ( 1) ( ) ( ) ( )
n

s s d

i i i j i j j i i i i i

j j i

x k x k c v g g v k w k  
 

 
       

 
 . 

In (9) the value c may be interpreted as external disturbance. The structure of 

random values ˆ( , ( ))
i

w k kg  is not trivial. As a kind of approximation, it has been 

assumed that ( )iw k are normally distributed random numbers, which don’t depend 

from the green time vector ˆ ( )kg . 

Equations (9) can be presented in matrix form as  

(10) ˆ( 1) ( ) ( ) ( )k k c k c c c k     x x Sg T D w , 

where  
T

1 2( ) ( ), ( ), ..., ( )nk x k x k x kx , and 
T

1 2( ) ( ), ( ), ..., ( )nk w k w k w k   w  are the 

state vector, and the disturbance vector respectively, 
T

1 2, , ,d d d
nv v v   D , 

 
T

1 2, , , n  T , matrix 
n nR S  is defined by the elements , ,

s s

i j i j jvS  

when i j , and ,i i i S . 

Substituting (4) in (10) gives the relation  
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ˆ( 1) ( ) ( ) ( )ek k c k c c c c k      x x SGg SL T D w . 

The analysis of this formal model will start with lack disturbance or ( ) 0k w . 

Thus following [1, 9], there may exist a nominal situation when the input of each 

queue equals to its output, ( 1) ( )k k x x . Obviously, this situation exists when the 

nominal green time vector ˆ N
g  is a unique solution of linear equation  

(11) ˆ 0,Nc c SGg N  

where   N SL T D  comprises network demand vector. Vector ˆ N
g  is usually 

associated with fixed control plan.  

The unique solution of (11) exists when  rank SG   rank mSG N . 

Practically the last condition is hard to reach. Fortunately, the usual situation is 

when the vector ˆ N
g  may be chosen as solution of optimization problem  

(12) 
1, 0

min
i

n

i

i  

  , 

where i  is a i-th component of vector ˆ N Δ SGg N . Components i  may be 

interpreted as fiction flows which are needed to reach nominal system state. The 

goal function (12) is a sum of non negative elements (this is an attempt to avoid 

existence of flows which can lead to links overflow). Then, under the solution ˆ N
g , 

which satisfies (12), it is possible to define new additional optimization problem, 

which will try to reach other targets, for instance to perform additional distribution 

of the traffic flows on non congested links. The solution ˆ N
g  is a unique one for the 

equation  ˆ N   SGg N Δ 0  and, according to the existing relation 

ˆ ˆ( ) ( )e Nk k g g u , the general state equation can be rewritten in the form 

( 1)  ( )  ( )  ( )k k k k   x x Bu Fw . The vector ˆ ˆ( ) ( ) ,e N mk k R  u g g u  is a new 

control variable (green time deviation from the nominal one). To assess this UTN 

control policy it is necessary to estimate the characteristic of the system about it 

controllability and observability of the output variables. 

Let all vehicle queues are observable and their measurements give the vectors 

( ), ( )k ky v , where ( )ky  mean queue lengths and ( )kv  mean of the measurement 

noise. Then measurement equation may be written as ( )  ( )  ( )k k k y x v .  

Then, as controllable output variables may be chosen ( ) ( )k kz x . Under lack 

of disturbances a value ( ) ( 1) ( ) ( )k k k k   z x x Bu  may be interpreted as 

expected junction flows. This value can be included also as controllable output 

variable for the UTN but for the sake of simplicity it is omitted here.  

Taking the considerations for system observability the final UTN model is 

represented as a discrete-time linear state-space model in the form 

(13) 

0( 1)  ( )  ( )  ( ), (0) ,

( )  ( )  ( ),

( ) ( ),  

k k k k

k k k

k k

    


 
 

x

v

x Ax Bu Fw x

y Cx

z x
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where 

(14) , , , ,n m

n n nc R c    A I B SG F I C I  

where nI  is n n  identity matrix, 0x  is estimation of initial vector.  

2. Analysis of the UTN model 

The UTN model (13), (14) describes the traffic flows in saturated mode, i.e. when 

queues are long enough for planned control reaction. Formally it means that an 

inequality ( 1) ( ) ( ) k k k  x x Bu  should be always held. In the same time the 

model does not consider the congestion situation. If 
T

1 2, , ..., nx x x   x  denotes 

capacities of queues, the admissible states of the system require the satisfaction of 

upper bound constraints, then 0 ( )k x x . The control influences should be also 

constrained and the relative values ˆ ( )e kg  must belong to ˆ0 ( ) 1e k g  and for the 

control influences it takes values ˆ ˆ( ) 1N Nk   g u g . 

The random disturbance processes ( ) nk Rw , ( ) nk Rv  are assumed to be 

uncorrelated to each other and they are Gaussian centered stationary white noises 

with known covariance matrices  

(15)  T( ) ( ) 0,E k k  w w W   T( ) ( ) 0.E k k  v v V  

They explicitly influence the vehicles queue length, according to (9). Thus the 

covariance matrix W in (15) has positive diagonal elements. Matrix W also may 

have cross correlated components. For instance if there is a direct path from -thi  to 

-thj  queue, then processes iw  and jw  are correlated because the component ,

s

i j  

is included in both values iw , jw  with different sign. Hence the  ,i j  and  ,j i  

elements of covariance matrix W tend to be negative. Also correlations may exist 

between processes iw  and jw  when -thl  and -thj  links are the alternative links 

from another -thi  link, if equality (8) hold. These cases hold if the traffic flow is 

divided not proportionally over a link and the overflow to one direction means 

underflow to another one direction. The positive definition of the covariance matrix 

W insists this matrix to have relatively significant positive diagonal elements. For 

the case when W is not positive defined it will be proved that the estimation 

problem has no solution. 

The controllability and observability of the system (13) are assessed according 

to the values of matrices A, B, C. The pair  ,A B  is controllable if the matrix 

1, , ... , nB AB A B   V  has full rank, rank( ) nV . The pair  ,A C  is observable 

if the matrix 1; ; ... ; nC CA CA    U  has also full rank, rank( )U n . The right 

part of matrices V, U mean matrices concatenation by columns and rows 

respectively.  
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The analysis of the observability of the pair  ,A C  and the controllability of 

pair  ,A B  is performed by analyzing the additional pair ( , )A N , where N  is a 

result of the factorization T 2c  W FWF W
T

NN . Since A  is an identity 

matrix, the rank of observability and controllability matrices equal to rank of 

appropriate matrices ,C N , B . Hence, the pair ( , )A N  could be stabilized if matrix 

0W . The observability of pair  ,A C  depends on rank of matrix C. Generally C 

may be r n  real matrix. Matrix C has full rank, rank( ) nC , when r n , and 

matrix C has n  linearly independent rows. Technically this relation requires that 

the number of sensors to measure the queue lengths should be bigger than the 

number of queues and each queue has to be measured at least with one sensor. For 

the case if nC I   the pair  ,A C  is always observable.  

In the case of controllability of matrix pair  ,A B , it depends from the 

rank(B). Since the number of queues n  is bigger than the number of independent 

green times m, the pair  ,A B  is uncontrollable. This conclusion corresponds to 

the real observation of a network, which is permanently fed with inflows of 

vehicles. This means that there is no such control policy, which can reduce the 

vehicles amount in the network till zero valued queues lengths. 

Let the number of controllable dimension of the system (13) is 

rank( ) .m m n  B  If matrix B  has rank m m  it is evident that there is no 

control (a set of effective green times) that can control the traffic. This situation is 

not admissible and such behavior of the system should be excluded. For the 

developments below it has been assumed that the matrix B  has full rank and 

m m .  

3. Linear-quadratic-Gaussian design of UTN 

3.1. Overview of LQG design 

For a given discrete system (13) with the noises ( ),  ( )k kw v  covariance matrices 

(15) the LQG optimization design finds control ( )ku  which leads to minimum of 

quadratic cost function  

(16) T T
0

0

( , ) ( ) ( ) ( ) ( ) min
k

J E k k k k




  
   

  
u x x Px u Ru . 

If the system (13) is controllable the performance criteria (16) does not depend 

from the initial condition 0x .  

The control influence ( )ku  is found in a feedback form  

(17) ˆ( ) ( )xk ku K x , 

where the feedback gain matrix equal to  
1

T T
x



 K B XB R B XA  and X is a 

stabilizing solution of the Discrete-time Algebraic Riccati Equation (DARE) 
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(18) T T T 1 T( )   X A XA P A XB B XB R B XA . 

Vector ˆ ( )kx in (17) is an estimation of the real state ( )kx  and 

ˆ( ) ( ) ( )e k k k x x  means an estimation error vector. The estimated vector ˆ ( )kx  

may be derived as solution of the Kalman estimator state equation 

(19)   0
ˆ ˆ ˆ ˆ ˆ( 1)  ( )  ( )  ( ) ( ) , (0)yk k k k k     x Ax Bu K y Cx x x , 

where an estimator gain matrix yK  is given by 
T T 1( )y

 K AYC CYC V  and 

Y is derived as a solution of DARE in the form 

(20) T T T 1 T( ) ,   Y AYA W AYC CYC V CYA   

where TW FWF . Equation (19)is an optimal steady-state Kalman estimator [16] 

which constructs a state estimate ˆ ( )kx  that minimizes the mean square error 

 T( ) ( )E e k e k  in the time limit k  .  

For the given problem the following conditions should be satisfied: 

The pair (A, B) must be stabilizable.  

The pair (A, C) must be detectable. 

The pair ( , )A N must be stabilizable, where N  corresponds to factorization 

TW NN .  

3.2. Numerical simulation of UTN LQG design 

The numerical simulation considers an area which is a real urban transportation 

network in Sofia, Bulgaria and is situated along “Yosif Gurko” Street, and crossed 

by “Vasil Levski” and “Evlogi and Hristo Georgiev” boulevards, Fig. 3. 

 

Fig. 3. The Sofia UTN area 

The trafic flows on this UTN area are given on Fig. 4. 
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Fig. 4. Traffic flows diagram  

This UTN consists of six external sources nsrc = 6; five vehicles sinks nsnk = 5; 

there are three traffic light controlled junctions 3p  , and nine links and 

corresponding vehicle queues, 9n  . The junctions are numbered from one to three 

with a digit in a rectangle. Every junction controls two traffic lights phases and in 

total there are six effective green times ,

e

r jg  control influences (index r corresponds 

to the number of phase, j correspond to the number of junction, r = 1, 2; j = 1, 2, 3). 

The network has 34 paths for vehicle motion from one direction to another. They 

are marked by symbols  1 – 9,  –a y , written in rounds. The cycle time for all 

junctions is assumed a constant value c = 60 s. Table 1 represents the relations in 

sets ,r j  and defines which queues have right of way on j-th junction at r-th phase 

during an appropriate effective green time ,

e

r jg .  

Table 1. Right of way sets ,r j  

  j 

r 
Junction 1 Junction 2 Junction 3 

Phase 1 {1, 2} {5, 6} {9} 

Phase 2 {3, 4} {7} {8} 

According to Table 1 the green time vector has components 

(21)  
TT

1 2 9 1,1 1,1 2,1 2,1 1,2 1,2 2,2 1,3 2,3, ,..., , , , , , , , , .e e e e e e e e eg g g g g g g g g g g g    g  

Let 1,1 1,2 2,3, ,e e eg g g  are chosen as independent variables and, according to (2) the 

dependent variables are as follows:  

 
 
 

1,1

2,1 1,1

2,1 2,1

11

1 1

e eg c g


 


 

 
, 
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 
 
 

1,2

2,2 1,2

2,2 2,2

11
,

1 1

e eg c g


 


 

 
 

 
 
 

2,3

1,3 2,3

1,3 1,3

11

1 1

e eg c g


 


 

 
. 

Junctions 2, 3 are crossed by pedestrian routs and for coefficients ,r j  it has 

been assumed values, which corresponds to the pedestrian intensity to appropriate 

routs 1,2 2,2 1,3 2,3 0.15       , 1,1  2,1 0.05  . Then the relation (21) can be 

rewritten in form (3) where 
T

1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 1 1

  
 

 
 
  

G , 
T

1,1 1,2 2,3, ,e e e eg g g   g , 

 
T

1 1 2 20 0 0 0 0L , 1 20.95, 0.86  . 

The UTN on morning and evening peaks is oversaturated and this traffic area 

needs optimization. The traffic conditions were collected partially by natural 

observing and by using AIMSUN microscopic traffic flow simulator. The UTN 

observing was evaluated on evening-peak at 6:00 P.M., 8:00 P.M. For this period 

long vehicle queues persist. The AIMSUN simulations were done under fixed-time 

signal control settings. The simulation results confirmed the observations and 

showed that under fixed-time control, long vehicle queues are created at the links. 

In Table 2 the green times for the different paths are presented. 

The estimated traffic data were used for the definition of the UTN model as a 

discrete-time linear state-space model (13), (14). The system variables and 

parameters are defined by 

(22)      
T T T

1 2 9 1 2 3 1 2 9, ,..., , , , , , ,...,x x x u u u w w w  x u w , 

(23)

T
18.84 16.17 45.43 52.7 9.27 0 0 0 0

0 6.49 0 0 20.12 9.13 15.12 1.22 0

0 0 0 0 0 6.39 0 3.06 33.28

  
 

  
 
  

B  

(24)    
T T

1 2 9 1 2 9, ,..., , , ,...,y y y v v v y v , 9 9, 60  A C I F I ,  

The network flow demand vector is estimated to  

 
T

0.109 0.037 0.26 0.307 0.113 0.001 0.105 0.033 0.25    N   

veh/s. The nominal green times vector gN is found as a solution of problem 

(12) and  
T

0.35 0.5 0.5N g s. The fiction flows vector is assumed  

(25)  
T

0 0 0 0 0 0.02 0 0 0.02  Δ . 

The numerical solution of LQG traffic optimization problem requires an 

effective algorithm for solving the problem DARE in (18) and (20). Each DARE 

problem is defined by quadruple of matrices and for (18) these matrices are 

, , ,A B P R  . If existing, the stabilizing solution X  of (18) can be denoted as 
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Ric( , , , )X A B P R . Respectively for DARE (20) the solution is noted as 

T TRic( , , , )Y A C W V . 

Table 2. Path parameters 

Path 1 2 3 4 5 6 7 8 9 

Type 1,1f  5,1s  3,1h  dif
2d  1,2h  2,2h  3,2h  3,3f  2,3h  

Average split 0.26 0.63 0.11 0 0.24 0.09 0.01 0.38 0.53 

Average flow 0.42 0.42 0.42 0.8 0.8 0.8 0.8 1.21 1.21 

Path a b c d e f g h i 

Type 5,3s  4,2f  3,4h  1,4h  2,1h  dif
5d  8,5s  4,5h  dif

6d  

Average split 0.09 1 0.89 0.02 0.01 0 0.06 0.07 0 

Average flow 1.21 0.53 0.97 0.97 0.42 0.59 0.59 0.59 0.16 

Path j k l m n o p q r 

Type 2,6s  4,6h  8,6s  7,4f  4,7h  2,7s  8,7s  dif
8d  5,8h  

Average split 0.89 0.04 0 1 0.8 0.15 0.05 0 0.97 

Average flow 0.16 0.16 0.16 0.09 0.25 0.25 0.25 0.05 0.05 

Path s t u v w x y – – 

Type 6,8s  9,5f  5,9h  6,9s  5,5h  2,6f  5,6f  – – 

Average split 0.03 0.43 0.81 0.19 0.44 0.38 0.62 – – 

Average flow 0.05 0.59 0.55 0.55 0.59 0.01 0.01 – – 

 

For a real case the UTN may be significantly large and the dimensions of the 

optimization problem will increase. Such large problem requires an effective and 

fast algorithm for solving the LQG optimization problem. For real time control 

process, the LQG optimization problem must be solved repetitively by means to 

implement intelligent urban transportation control policy, which corresponds to real 

traffic conditions. 

For the case of real time LQG problem solution it is proposed here a 

representation for fast solution of the DARE matrix equations. The representation is 

derived on the special data of the traffic control problem which allows reduce of the 

computational workload for solving DARE. The particular case of the quadruple 

, , ,nA I B P R  results in DARE solution  

(26) 
1

1

0

1

2

n
k

n n k

k




 



 
  

 
X P I A . 

where 

1

1 T1

4
n n



 
   

 
A I I BR B P ; 0 1 1 0...m m m m          , 0 1  , 

0,1,..., 1m n  ; 
1 2
, ,...,

n
    are coefficients of polynomial 

0

( ) det( )
n

n i

n i

i

x x x  



  I A  and  
1

0

1
( ) ( )r r rh z g z d 


  , 

2z   , 

0,1,..., 1r n  . The subintegral functions ( )
( )

r

r

x
g x

x
 , 

1

( )
( )

n r

rh



 

 

  can be 

computed with effective recurrent formulas as 1( ) ( )r rg x xg x , 1, 2,..., 1r n  , 
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0

1
( )

( )
g x

x
 ; ( )   is a polynomial with flipped to polynomial ( )x  coefficients, 

such that 
1

( ) ( )
n

x
x

   , 
1

x
  . 

If the system matrix A  is an identity one, the required conditions for stability 

and detectability of the system, given in the end of section 0 become sufficient 

conditions, proved in section 0.  

Since the UTN system (13), (14) is not controllable there is no such control 

law that can make the system asymptotically stable. For that case it is recommended 

[17] to decompose the original system (13), (14) to m  dimensions controllable 

subsystem, and  n m  dimensions uncontrollable subsystem. 

According to [17], such decomposition may be implemented by linear 

transformation of state vector 

c

u

 
  

  

x
x Q

x
 with orthogonal matrix  1 T,  Q Q Q . 

Such transformation provides new representation of matrix 
c 

  
 

B
B Q

0
, c m mR B . 

The system is decomposed to two subsystems with formal descriptions  

(27) ( 1)  ( )  ( )  ( )c c c ck k k k   x x B u w ,  

( 1)  ( )   ( )u u uk k k  x x w , T

c

u

 
 

  

w
Q Fw

w
. 

Now, for the controllable subsystem (27) it stabilizing control law is in the 

feedback form  

(28) ( )  ( )c c

xk ku K x . 

This feedback control can be numerically found and implemented for the 

original system (13), (14). From practical reasons it worths to rearrange the 

sequence of the system states in (13), (14) by means the control policy to serve with 

priority the most important vehicle queues. Particularly for this research it has been 

chosen to serve first the links that are close to overflow. The level of the overflow is 

evaluated by the relative value 
(0)i i

i

x x

x


. Then, as next level of the 

rearrangement, it is reasonable to serve states that correspond to big values of the 

fiction positive flows i  (these states are tend to become overflowed).  

Formally, the reordering of the vector elements is the result of vector 

multiplication with some permutation matrix, nx Mx . The appropriate 

permutation should be also performed for matrix B . For the formal descriptions to 

keep simplicity for the notations matrix B  will be used, but one have to consider 

that the real content is MTB, or 
TB M B . 

Let the initial state of traffic UTN model (13), (22)-(24) is estimated to 

 
T

0 5 16 35 35 14 6 25 4 30x . Applying the rearrangement strategy 
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the permutation matrix M  is equal to 9 9  identity matrix with reordered columns 

 4, 3, 9, 7, 2, 5, 6, 1, 8 .  

Then, by using a standard QR decomposition procedure the new form of 

matrix 
c 

  
 

B
B Q

0
 is found, c m mR B . The corresponding subsystem (27) 

contains  

74.46 3.91 0

 0 27.30 2.002

0 0 33.97

c

 
 

 
 
  

B . 

The solution of an optimal control problem, defined with (27) and 

performance index 

T T

0

( ) ( ) ( ) ( ) ( ) minc c c

k

J E k k k k




  
   

  
u x P x u Ru , 

  3
3 , 10 diag 10 0.9 1c  P I R  gives feedback matrix  

(29) 

0.0069 0.0007 0

0.001 0.021 0.0009

0 0.0003 0.018

c

x

  
 

 
 
  

K . 

Assuming system response as the total values of the vehicles in the UTM, 

1

( ) ( )
n

i

i

y k x k


 , the evaluated feedback control (28), (29) implemented to the 

original system (13), (22)-(24) gives system response which is presented in Fig. 5 

(in blue dashed line). The black solid line describes the system response with 

absence of fiction flow (25). The number of samples means the number of traffic 

light cycle, applied on the network. 
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Fig. 5. Vehicles in the queues 

For these both cases the reduction of total vehicles amount in the queues 

equals to 35% and 42% respectively in comparison with the lack of control and 

fixed time phase durations (currently established). The illustrations of control 

influences are given in Fig. 6. As it is seen, control values satisfy upper valued 

constraints. 
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Fig. 6. Control law 

Further the control policy has been complicated by introducing noise in the 

system estimation and measurements. For that case an additional optimal filtering 

problem is solved. Taking into account the particular topology of the UTM it has 

been assumed that the queue lengths on sixth and the eighth network links are 

measured without noise (due to the short lengths of these links). Thus the random 

components 6 8,v v  have zero standard deviation. For the estimation and 

measurement processes ( )kw , ( )kv  it was defined the following covariance 

matrices 

2

9 0 0 0 2.4 0 0 0 0

0 16 0 0 0 1.2 3.2 0 0

0 0 36 0 4.8 0 0 0 0

0 0 0 36 0 0 0 0 0
1

2.4 0 4.8 0 16 0 0 1.2 0

0 1.2 0 0 0 2.25 0 0.45 1.2

0 3.2 0 0 0 0 16 1.2 0

0 0 0 0 1.2 0.45 1.2 2.25 0

0 0 0 0 0 1.2 0 0 16

c

 
 

 
 
 
 
 
    
 

   
  
 

   
 

 

W , 

  diag 4 9 16 16 9 0 4 0 4V . 

Matrix V  is not positive defined and respectively the estimation problem is 

singular. To make the problem nonsingular it has been excluded the sixth and 

eighth state vector components from the UTN model. Applying Kalman filtering 

reduction technique [16], the new reduced-order system has a corresponding state 
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vector  
T

1 2 3 4 5 7 9x x x x x x xx  which has to be estimated. Using the 

particular form of matrices 7 A C I  the modifies covariance matrices are 

obtained  

9 0 0 0 2.4 0 0

0 16 0 0 0 3.2 0

0 0 36 0 4.8 0 0

0 0 0 36 0 0 0

2.4 0 4.8 0 16 0 0

0 3.2 0 0 0 16 0

0 0 0 0 0 0 16

 
 


 
 
 

  
  
 

 
 
 

W , 

  diag 4 9 16 16 9 4 4V . 

The solution of the Kalman estimator problem gives gain matrix 

0.74 0 0.0018 0 0.021 0 0

0 0.70 0 0 0 0.042 0

0.0073 0 0.74 0 0.042 0 0

0 0 0 0.75 0 0 0

0.047 0 0.023 0 0.7 0 0

0 0.018 0 0 0 0.82 0

0 0 0 0 0 0 0.82

y

  
 


 
  
 

  
  
 

 
 
 

K . 

On Fig. 7 are presented the numerical results for the estimated queue lengths 

measurements under fixed time control strategy. The notation ( )v

ie k  represents the 

measurement error and ( )ie k  is the estimated error of the filtered data for the 

vehicle queues.  

The results on Fig. 7 illustrate that the noise level has been considerably 

reduced by applying the filtering strategy. The standard deviations of error vector 
T

1 2 3 4 5 7 9
v v v v v v v ve e e e e e e   e  are {1.99, 2.99, 3.99, 4.00, 2.99, 1.99, 1.99} 

while the standard deviations of estimation error vector 

 
T

1 2 3 4 5 7 9e e e e e e ee  are {1.54, 2.22, 3.08, 3.1, 2.21, 1.67, 1.67}. 

These values are quit low, which proves the efficiency of the filtering optimization. 

The improvement of estimation process in comparison with the lack of optimization 

and filtering traffic control is  23, 26, 23, 23, 26, 16, 16  percentages 

respectively.  
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Fig. 7. Values of measured and estimated data 

 

Finally, according to separation technique [16], the solution of LQG problem 

is a combination of solutions of optimal observer design and optimal linear state 

feedback control design. The implementation of the feedback control law (28), (29), 
T ˆc x Q x , derived by separation, compared with the original system (13), (22)-(24) 

gives approximately the same result, illustrated on Fig. 5.  

4. Conclusion 

This research formalizes a traffic-responsive urban control in the form of linear-

quadratic regulator. It has been defined a LQG optimization problem of UTN with 

explicit description of random processes in the system behavior. Some results are 

achieved, which increase the application domain of the classical control to store-

and-forward model but with explicit inclusion of random processes for state 

estimation and measurements.  

Particular solutions have been tested, when the initial model is not stable and 

additional one in form (12) is introduced. This allows obtaining stable discrete-time 
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linear state-space problem solution. An extension for the case of design of state 

estimator is presented for the case of not controllable unstable dimension of the 

system(13).  

The LQG control problem has been modified using the special structure of 

UTN. This modification results in numerical implementation of fast algorithms for 

solving the initial LQG optimization problem using relation (26) .  

The formal UTM model and control policies were numerically tested on real 

network from Sofia city. The obtained results give benefit to the implementation of 

the LQG optimization in comparison to the fixed time plan of traffic control, which 

is currently established.  

For completeness of this research some perspectives and problems are 

mentioned here, which need additional considerations. Currently the separation of 

the original system (13), (14) to controllable and uncontrollable subsystems 

theoretically may not give the minimum of system performance index (16). But 

nevertheless such separation, the solution of a linear-quadratic control problem 

always gives optimal solutions via terms of controllable subsystem performance 

index. 

A perspective direction for future extension of this approach is also the 

assumption for dependences between the external disturbance ( )iw k  and the 

control values of green time vector ˆ ( )kg . Such assumption can influence the 

precise estimation of the expected junction flows ( )kz , which are not currently 

optimized by the LQG problem. These considerations need additional developments 

because there are potentials for improving the presented traffic response control 

policy with the application of LQG control. 
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