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LIMIT THEOREMS FOR k-SUBADDITIVE LATTICE

GROUP-VALUED CAPACITIES

IN THE FILTER CONVERGENCE SETTING

Antonio Boccuto — Xenofon Dimitriou

ABSTRACT. We investigate some properties of lattice group-valued positive,
monotone and k-subadditive set functions, and in particular, we give some com-
parisons between regularity and continuity from above. Moreover, we prove dif-
ferent kinds of limit theorems with respect to filter convergence. Furthermore,
some open problems are posed.

1. Introduction

Limit theorems for lattice group-valued set functions have been an object
of several recent investigations. A comprehensive survey can be found in [6].
There are also several versions of theorems of this kind for finitely or countably
additive measures in the setting of filter convergence (for a related literature,
see also [5–9], [14]). In [7], some Brooks-Jewett, Nikodým and Vitali-Hahn-Saks-
-type theorems are proved for positive and finitely additive lattice group-valued
measures with respect to filter convergence, in which the pointwise convergence
of the involved measures is required, not necessarily with respect to a single
order sequence or regulator. Here, we deal with set functions, which are not
necessarily finitely additive. There have been several studies about limit theo-
rems in the non-additive context, for instance measuroids, k-triangular, quasi-
-triangular, null-additive set functions (for a literature related to these topics,
see for instance [13], [15–17], [20–23], [25], [26]).
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In this paper, we deal with the non-additive case in the setting of lattice
groups and filter convergence. We consider positive and k-subadditive set func-
tions. Some examples are the so-called “M -measures”, namely monotone set
functions m with m(∅) = 0, continuous and compatible with respect to supre-
mum and infimum, which have several applications, for example to intuitionistic
fuzzy events, which are pairs A = (μA, νA) of measurable [0, 1]-valued functions
with μA + νA ≤ 1 (see also [1], [11]). In the literature, it is often dealt with
the so-called observables, namely set functions defined on the family of all Borel
subsets of a nonempty set G with values in the space R of all intuitionistic fuzzy
sets (see also [24]). Every element of R can be identified with a pair of functions
X = (X�, 1 − X�), where X is a suitable observable. The set functions X�, X�

are examples of M -measures (see also [11]). We investigate some basic properties
of lattice group-valued k-subadditive capacities and give some comparison results
between regularity and continuity from above. Moreover, we prove different kinds
of limit theorems in the filter convergence setting, in which it is supposed that
the involved filter is diagonal. An example of a diagonal filter is a family of sub-
sets of N having asymptotic density one (see [6]). Since the involved set functions
are positive and monotone, then our techniques, which are similar to those in [7],
allow to consider only diagonal filters. The used argument is to fix a decreas-
ing/disjoint sequence of sets, to apply the Maeda-Ogasawara-Vulikh represen-
tation theorem of Dedekind complete lattice groups as subgroups of suitable
continuous extended-real valued functions (see also [3]) and to apply the results
obtained for real-valued set functions in [23] to the σ-algebra generated by the
chosen sequence. Moreover, for technical reasons, in our context we deal with
(D)-convergence, because it is possible to use the Fremlin’s lemma which allows
to replace a series of (D)-sequences with a single regulator. In [5], [6], [8], [9], [14],
some limit theorems are proved for finitely additive and not necessarily positive
lattice group-valued measures, for diagonal filters which satisfy some additional
properties. Finally, we pose some open problems.

2. Filters and lattice groups

We begin with recalling the following basic notions on filters (see also [6], [9]).

����������� 2.1	

(a) A filter F of N is a nonempty collection of subsets of N with ∅ �∈ F,
A ∩ B ∈ F whenever A, B ∈ F, such that for each A ∈ F and B ⊃ A
we get B ∈ F.

(b) A filter of N is said to be free if and only if it contains the filter Fcofin of all
cofinite subsets of N.

2



LIMIT THEOREMS FOR k-SUBADDITIVE LATTICE GROUP-VALUED CAPACITIES

(c) Given a free filter F of N, we say that a subset of N is F-stationary if and
only if it has nonempty intersection with every element of F. We denote
by F∗ the family of all F -stationary subsets of N.

(d) A free filter F of N is said to be diagonal if and only if for every sequence
(An)n in F and for each I ∈ F∗ there exists a set J ⊂ I, J ∈ F∗ such that
J \An is finite for all n ∈ N (see also [6], [9]).

Remark 2.2	 Observe that the filter Fst of N consisting of all subsets of N
having asymptotic density one is diagonal (see also [6]). Moreover, if (Δn)n is
a partition of N into infinite subsets and (An)n is a sequence with An ⊂ Δn

for each n ∈ N, then the filter generated by the set
⋃∞

n=1(Δn \An) is diagonal
(see also [2]). Some other examples of diagonal and non-diagonal filters can be
found in [2], [6].

We now recall the following fundamental concepts on lattice groups (see also
[6], [12]).

����������� 2.3	

(a) A Dedekind complete lattice group R is said to be super Dedekind complete
if and only if for every nonempty set A ⊂ R bounded from above, there is
a finite or countable subset A′ having the same supremum as A.

(b) A sequence (σp)p in R is an (O)-sequence if and only if it is decreasing and∧
p∈N

σp = 0.

(c) A bounded double sequence (at,l)t,l in R is a (D)-sequence or a regulator
if and only if (at,l)l is an (O)-sequence for any t ∈ N.

(d) A lattice group R is said to be weakly σ-distributive if and only if

∧
ϕ∈NN

( ∞∨
t=1

at,ϕ(t)

)
= 0

for every (D)-sequence (at,l)t,l in R.

(e) A sequence (xn)n in R is said to be order convergent (or (O)-convergent)
to x if and only if there exists an (O)-sequence (σp)p in R such that for
every p ∈ N there is a positive integer n0 with |xn − x| ≤ σp for each
n ≥ n0, and in this case, we write (O) limn xn = x.

(f) A sequence (xn)n in R is (D)-convergent to x if and only if there is
a (D)-sequence (at,l)t,l in R such that for every ϕ ∈ N

N there exists n∗ ∈ N

with |xn − x| ≤
∨∞

t=1 at,ϕ(t) whenever n≥n∗, and we write (D) limn xn= x.

(g) We call sum of a series
∑∞

n=1 xn in R the limit (O) limn

∑n
r=1 xr, if it

exists in R.
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We now recall the Fremlin’s lemma, which has a fundamental importance
in the setting of (D)-convergence, because it allows us to replace a series of reg-
ulators with a single (D)-sequence.


���� 2.4 (see also [19, Lemma 1C], [24, Theorem 3.2.3])	 Let R be any Dede-

kind complete lattice group and let
(
a
(n)
t,l

)
t,l
, n ∈ N, be a sequence of regulators

in R. Then for every u ∈ R, u ≥ 0, there is a (D)-sequence (at,l)t,l in R with

u ∧
(

q∑
n=1

( ∞∨
t=1

a
(n)
t,ϕ(t+n)

))
≤

∞∨
t=1

at,ϕ(t) for every q ∈ N and ϕ ∈ N
N.

Remark 2.5	 Observe that in every Dedekind complete lattice group R any
(O)-convergent sequence is (D)-convergent too, while the converse is true if and
only if R is weakly σ-distributive. Moreover, using the following theorem, one
obtains that in any Dedekind complete lattice group order convergence of ar-
bitrary families implies (D)-convergence, while, if the involved lattice group is
super Dedekind complete and weakly σ-distributive, then we also have the con-
verse implication (see also [4], [12]).

The following result links (O)-sequences and regulators and will be useful
to investigate some properties of lattice group-valued measures.

������ 2.6 (see also [4, Theorem 3.1])	 Given any Dedekind complete lat-
tice group R and any (O)-sequence (σl)l in R, the double sequence defined by
at,l := σl, t, l ∈ N, is a (D)-sequence, and for every ϕ ∈ N

N,

σl ≤
∞∨
t=1

at,ϕ(t), (1)

where l = ϕ(1). Conversely, if R is super Dedekind complete and weakly σ-dis-
tributive, then for any regulator (at,l)t,l in R there exists an (O)-sequence (σp)p
such that for each p ∈ N there is ϕp ∈ N

N with

∞∨
t=1

at,ϕp(t)≤ σp. (2)

We now recall the Maeda-Ogasawara-Vulikh theorem, which gives a represen-
tation of lattice groups as subsets of continuous extended real-valued functions
defined on suitable topological spaces (see also [3], [6], [12]). From now on, we de-
note the supremum and infimum in R by the symbols ∨ and ∧ and the pointwise
supremum and infimum by sup and inf, respectively.

������ 2.7	 Given a Dedekind complete lattice group R, there exists a com-
pact extremely disconnected topological space Ω, unique up to homeomorphisms,
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such that R can be embedded isomorphically as a subgroup of

C∞(Ω)

=
{
f ∈ R̃

Ω : f is continuous, and
{
ω : |f(ω)| = +∞

}
is nowhere dense in Ω

}
.

Moreover, if we set â to be an element of C∞(Ω) which corresponds to a ∈ R un-
der the above isomorphism, then, for any family (aλ)λ∈Λ of elements of R with
R  a0 =

∨
λ aλ (where the supremum is taken with respect to R), â0 =

∨
λ âλ

with respect to C∞(Ω), and we get â0(ω) = supλ âλ(ω) in the complement
of a meager subset of Ω. The same is true for

∧
λ aλ.

Now, we recall the concepts of order and (D)-filter convergence in the lattice
group setting.

����������� 2.8	

(a) Let F be a filter of N. A sequence (xn)n in R (OF)-converges to x ∈ R
if and only if there exists an (O)-sequence (σp)p such that

{n ∈ N : |xn − x| ≤ σp} ∈ F for any p ∈ N .

(b) A sequence (xn)n in R (DF)-converges to x ∈ R if and only if there is
a (D)-sequence (αt,r)t,r with{

n ∈ N : |xn − x| ≤
∞∨
t=1

αt,ϕ(t)

}
∈ F for all ϕ ∈ N

N.

Remarks 2.9	

(a) Observe that, whenR = R, the (OF)- and (DF)-convergence coincide with
the usual filter convergence. Moreover, when F = Fcofin, (OF)- and (DF)-
-convergence are equivalent to (O)- and (D)-convergence, respectively.

(b) In any Dedekind complete lattice group R, (OF)-convergence implies
(DF)-convergence, and, when R is super Dedekind complete and weakly
σ-distributive, the converse implication holds too (see [9, Theorem 2.3]).

The following technical lemma links order filter convergence with usual
(O)-convergence in the setting of diagonal filters and lattice groups, and will be
useful to prove our main limit theorems.


���� 2.10 (see also [6, Lemma II.2.23], [9, Lemma 2.2])	 Let R be any
Dedekind complete lattice group, let (aj,n)j,n be a double sequence in R, and
let F be a diagonal filter of N. If

(OF) lim
j∈N

aj,n= 0 for each n ∈ N (3)
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with respect to an (O)-sequence
(
σ
(n)
p

)
p
(depending on n), then for every I ∈ F∗

there exists J ∈ F∗, J ⊂ I, with (O) limj∈J aj,n = 0 for any n ∈ N with respect

to
(
σ
(n)
p

)
p
.

P r o o f. For each n ∈ N, let
(
σ
(n)
p

)
p
be an (O)-sequence associated with (3).

By hypothesis, for each n, p ∈ N we have

An,p :=
{
j ∈ N : |aj,n| ≤ σ(n)

p

}
∈ F .

As F is diagonal, for any I ∈ F∗ there is J ∈ F∗, J ⊂ I, such that for every n,
p ∈ N the set J \An,p is finite. We have

Bn,p :=
{
j ∈ J : |aj,n| �≤ σ(n)

p

}
= J \An,p,

and hence Bn,p is finite too. So, for each n, p ∈ N there is j ∈ N (without loss

of generality j ∈ J) with |aj,n| ≤ σ
(n)
p whenever j ∈ J , j ≥ j. Thus, we get the

assertion. �

Remark 2.11	 Note that the set J in Lemma 2.10 depends only on I and not
on n.

3. Lattice group-valued capacities

We now recall the basic concepts and some main properties of lattice group-
-valued capacities (see also [22], [23]). From now on, R denotes a Dedekind com-
plete lattice group, G is an infinite set, Σ is a σ-algebra of subsets of G, and k
is a fixed positive integer.

����������� 3.1	

(a) A capacity m : Σ → R is a set function increasing with respect to the in-
clusion and such that m(∅) = 0.

(b) A capacity m is said to be k-subadditive on Σ if and only if

m(A ∪ B) ≤ m(A) + km(B) whenever A,B ∈ Σ, A ∩B = ∅. (4)

(c) When R=R, a 1-subadditive capacity is called also a submeasure (see also
[5], [16]–[18]).

The following result holds.
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����������� 3.2	 A capacity m is k-subadditive on Σ if and only if for every
n ∈ N, n ≥ 2, and for each E1, E2, . . . , En ∈ Σ we get

m

(
n⋃

q=1

Eq

)
≤ m(E1) + k

n∑
q=2

m(Eq). (5)

P r o o f. We prove the “only if” part only, since the “if” part is trivial.

We first prove (5) when n = 2. If E1, E2 ∈ Σ, from (4) and monotonicity
of m, we get

m(E1 ∪E2) = m
(
E1 ∪ (E2 \E1)

)
≤ m(E1) + km(E2 \ E1)

≤ m(E1) + km(E2). (6)

In the general case, taking into account (6), proceeding by induction, supposed
that (5) holds for n− 1, we obtain

m

(
n⋃

q=1

Eq

)
= m

((
n−1⋃
q=1

Eq

)
∪En

)
≤ m

(
n−1⋃
q=1

Eq

)
+ km(En)

≤ m(E1) + k

n−1∑
q=2

m(Eq) + km(En) = m(E1) + k

n∑
q=2

m(Eq).

�
����������� 3.3	

(a) We say that a capacity m is continuous from above at ∅ if and only if

(O) lim
n

m(Hn) =
∧
n

m(Hn) = 0

whenever (Hn)n is a decreasing sequence in Σ with
⋂∞

n=1Hn= ∅.
(b) The capacities mj : Σ → R, j ∈ N, are said to be uniformly continuous

from above at ∅ if and only if

(O) lim
n

⎛⎝∨
j

mj(Hn)

⎞⎠=
∧
n

⎛⎝∨
j

mj(Hn)

⎞⎠= 0

for each decreasing sequence (Hn)n of elements of Σ with
⋂∞

n=1 Hn = ∅.
(c) A capacity m is k-σ-subadditive on Σ if and only if

m

( ∞⋃
n=1

En

)
≤ m(E1) + k

∞∑
n=2

m(En) (7)

for any sequence (En)n from Σ.

The following property will be useful in the sequel.
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����������� 3.4	 Let m : Σ → R be a k-subadditive capacity continuous from
above at ∅. Then, m is k-σ-subadditive.

P r o o f. First of all, we prove (7) when (En)n is a disjoint sequence of elements
of Σ. Since m is continuous from above at ∅, we get

(O) lim
n

m

( ∞⋃
q=n+1

Eq

)
=
∧
n

m

( ∞⋃
q=n+1

Eq

)
= 0. (8)

Taking (5) into account, for every n ≥ 2 we have

m

( ∞⋃
q=1

Eq

)
≤ m

(
n⋃

q=1

Eq

)
+ km

( ∞⋃
q=n+1

Eq

)

≤ m(E1) + k

n∑
q=2

m(Eq) + km

( ∞⋃
q=n+1

Eq

)
. (9)

Letting n tend to +∞, taking (8) into account, and using monotonicity at the
right place, from (9) we obtain (7), at least when the En’s are pairwise disjoint.
In the general case, let (En)n be any sequence of elements of Σ and put A1 := E1,

An := En \
(⋃n−1

q=1 Eq

)
. It is not difficult to check that

⋃∞
n=1An =

⋃∞
n=1En and

the An’s are pairwise disjoint. Thus we get

m

( ∞⋃
n=1

En

)
= m

( ∞⋃
n=1

An

)
≤ m(A1) + k

∞∑
n=2

m(An) ≤ m(E1) + k

∞∑
n=2

m(En).

�

����������� 3.5	

(a) A capacity m : Σ → R is (s)-bounded on Σ if and only if there exists
an (O)-sequence (σp)p such that for each p ∈ N and for every disjoint se-
quence (Ch)h in Σ there is a positive integer h0 with m(Ch) ≤ σp whenever
h ≥ h0.

(b) We say that the capacities mj : Σ → R are uniformly (s)-bounded on Σ if
and only if there is an (O)-sequence (σp)p such that for every p ∈ N and
for any disjoint sequence (Ch)h in Σ there exists h0 ∈ N with mj(Ch) ≤ σp

for all j ∈ N and h ≥ h0.

(c) The sequence of capacities mj : Σ → R, j ∈ N, is said to be equibounded
on Σ if and only if there is u ∈ R with mj(A) ≤ u for each A ∈ Σ and
j ∈ N.

���������� 3.6	 A topology τ on Σ is a Fréchet-Nikodým topology if and only
if the functions (A,B) �→ AΔB and (A,B) �→ A∩B from Σ×Σ (endowed with
the product topology) to Σ are continuous, and for any τ -neighborhood V of ∅
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in Σ there exists a τ -neighborhood U of ∅ in Σ such that, if E ∈ Σ is contained
in some suitable element of U , then E ∈ V (see also [18]).

Remark 3.7	 Observe that a topology τ on Σ is a Fréchet-Nikodým topology
if and only if there exists a family of submeasures Z := {ηi : i ∈ Λ}, such that
a basis of τ -neighborhoods of ∅ in Σ is given by

D :=
{
Uε,J :=

{
A ∈ Σ : ηi(A) < ε for all i ∈ J

}
: ε ∈ R

+, J ⊂ Λ is finite
}

(see also [5], [18]).

����������� 3.8	

(a) Let τ be a Fréchet-Nikodým topology on Σ. A capacity m : Σ → R is said
to be τ -continuous on Σ if and only if for each decreasing sequence (Hn)n
in Σ, with τ -lim

n
Hn = ∅, we get

(O) lim
n

m(Hn) =
∧
n

m(Hn) = 0.

(b) Let G, H ⊂ Σ be two lattices, such that G is closed under countable unions,
and the complement of every element of H belongs to G. We say that
a capacity m : Σ → R is G-H-regular if and only if it satisfies the following
condition:

(R1) for every E ∈ Σ there are two sequences (Fn)n in H and (Gn)n in G, with

Fn ⊂ Fn+1 ⊂ E ⊂ Gn+1 ⊂ Gn for any n, (10)

and (O) limn m(Gn \ Fn) =
∧

n m(Gn \ Fn) = 0.

(c) We say that the capacities mj : Σ → R, j ∈ N, are G-H-uniformly regular
if and only if for any E ∈ Σ there exist two sequences (Fn)n in H and
(Gn)n in G satisfying (10) and with

(O) lim
n

⎛⎝∨
j

mj(Gn \ Fn)

⎞⎠=
∧
n

⎛⎝∨
j

mj(Gn \ Fn)

⎞⎠= 0 .

The following result holds.

����������� 3.9 (see also [8, Proposition 3.5])	 Let mj : Σ → R, j ∈ N,
be a sequence of G-H-regular capacities. Then we get:

(R2) for every E ∈ Σ there are two sequences (Fn)n in H and (Gn)n in G
fulfilling (10) and with

(O) lim
n

mj(Gn \ Fn) =
∧
n

mj(Gn \ Fn) = 0 for every j ∈ N .

9
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Now, we give a comparison result between lattice group-valued continuous
from above at ∅ and G-H-regular capacities, extending [6, Theorem II.3.1] and
[10, Theorem 2.2], which were formulated for σ-additive and G-H-regular mea-
sures. For technical reasons, we use the tool of (D)-convergence since we deal
with series of regulators, and so, it is possible to apply Lemma 2.4.

������ 3.10	 Let R be a Dedekind complete weakly σ-distributive lattice
group, (G, d) a compact metric space, Σ the σ-algebra of all Borel sets of G,
and let G and H be the lattices of all open and all compact subsets of G, respec-
tively. Then every k-subadditive G-H-regular capacity m : Σ → R is continuous
from above at ∅.

Conversely, if R is also super Dedekind complete, then every k-subadditive
capacity m : Σ → R, continuous from above at ∅ is G-H-regular.

P r o o f. We begin with the first part. Arbitrarily choose a decreasing sequence
(Hn)n in Σ with

⋂∞
n=1Hn = ∅. By G-H-regularity of m and Theorem 2.6, (1),

for each n ∈ N, in correspondence with Hn, there is a (D)-sequence
(
a
(n)
t,l

)
t,l
,

such that the (O)-limit in (R1) is a (D)-limit with respect to it. Arbitrarily
choose ϕ ∈ N

N: then there are Dn ∈ H and Un ∈ G (depending on n and ϕ)
with Dn ⊂ Hn ⊂ Un and

m(Un \Dn) ≤
∞∨
t=1

a
(n)
t,ϕ(t+n), m(Un \Dn) ≤ m(G) for each n ∈ N . (11)

In correspondence with u := m(G), by virtue of Lemma 2.4, there is a regulator
(at,l)t,l with

u ∧
(

q∑
n=1

( ∞∨
t=1

a
(n)
t,ϕ(t+n)

))
≤

∞∨
t=1

at,ϕ(t) for all q ∈ N and ϕ ∈ N
N. (12)

Set Cq =
⋂q

n=1Dn, q ∈ N: then Cq ∈ H, Cq ⊂ Dq ⊂ Hq for any q, the sequence
(Cq)q is decreasing and

⋂∞
q=1 Cq = ∅. Since the sets Cq are compact, the finite

intersection property gives existence to an integer n such that Cq = ∅ for each
q ≥ n. Thanks to k-subadditivity of m, Proposition 3.2, (11) and (12), we have

m(Hq)− m(Cq) = m(Hq) ≤ u ∧
(
m

(
q⋃

n=1

(Hn \Dn)

))
≤

k

(
u ∧

(
q∑

n=1

m(Hn \Dn)

))
≤ k

(
u ∧

(
q∑

n=1

m(Un \Dn)

))
≤ k

∞∨
t=1

at,ϕ(t) (13)

for any q ≥ n, where ϕ is as in (11) (note that n depends on ϕ). This finishes
the proof of the first part.
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We now turn to the last assertion. Set

T :=

{
A ∈ Σ: there is a (D)-sequence (at,l)t,l such that for every ϕ ∈ N

N

there are D ∈ G, F ∈ H with F ⊂ A ⊂ D and m(D \ F ) ≤
∞∨
t=1

at,ϕ(t)

}
. (14)

Observe that H ⊂ T . Indeed, arbitrarily choose W ∈ H, and for every h ∈ N

set Dh :=
{
x ∈ G : d(x,W ) < 1/h

}
, Wh := Dh \ W . The sequence (Wh)h is

decreasing, and
⋂∞

h=1Wh = ∅. By continuity from above at ∅ of m and Theo-
rem 2.6, (1), we find a regulator (at,l)t,l, such that for any ϕ ∈ N

N there exists
k0 ∈ N, with

m(Dk0
\W ) ≤

∞∨
t=1

at,ϕ(t).

As Dk0
∈ G, W ∈ H and W ⊂ Dk0

, then W ∈ T .
We now prove that T is a σ-algebra. It is not difficult to check that if A ∈ T ,

then G \ A ∈ T . Let now (An)n be a disjoint sequence of elements of T , with
A :=

⋃∞
n=1 An. We claim that A ∈ T .

For each n ∈ N there exist a (D)-sequence
(
a
(n)
t,l

)
t,l

and two sets Dn ∈ G,
Fn ∈ H, with Fn ⊂ An ⊂ Dn and

m(Dn \ Fn) ≤
∞∨
t=1

a
(n)
t,ϕ(t+n).

Let u := m(G). Thanks to the Fremlin’s lemma, there exists a regulator (at,l)t,l
in R, with

u ∧
(

q∑
n=1

( ∞∨
t=1

a
(n)
t,ϕ(t+n)

))
≤

∞∨
t=1

at,ϕ(t)

for each q ∈ N and ϕ ∈ N
N.

Since the sequence (Fn)n is disjoint, by continuity from above at ∅ of m and
Theorem 2.6, (1), there exists a regulator (bt,l)t,l such that for any ϕ ∈ N

N there
is a positive integer n0 with

m

(( ∞⋃
n=1

Fn

)
\
(

n0⋃
n=1

Fn

))
= m

( ∞⋃
n=n0+1

Fn

)
≤

∞∨
t=1

bt,ϕ(t) .

Set ct,l := 2 k (at,l + bt,l), t, l ∈ N,

D :=

∞⋃
n=1

Dn and F :=

n0⋃
n=1

Fn.

11
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Observe that (ct,l)t,l is a (D)-sequence, F ⊂A⊂D, D ∈ G, F ∈ H, and taking
k-σ-subadditivity of m into account, thanks to Proposition 3.4, we get

m(D \ F ) ≤ m

(
D \

( ∞⋃
n=1

Fn

))
+ km

(( ∞⋃
n=1

Fn

)
\ F

)

≤ m

( ∞⋃
n=1

(Dn \ Fn)

)
+ k

∞∨
t=1

bt,ϕ(t)

≤ k

∞∑
n=1

m(Dn \ Fn) + k

∞∨
t=1

bt,ϕ(t)

≤ k

∞∨
t=1

at,ϕ(t) + k

∞∨
t=1

bt,ϕ(t)

≤
∞∨
t=1

ct,ϕ(t).

From this it follows that A ∈ T , that is the claim. Therefore, T is a σ-algebra.
Since T ⊃ H, then T = Σ.

Now, arbitrarily pick A ∈ Σ. Since Σ = T , there exists a (D)-sequence
(at,l)t,l satisfying (14). Since R is super Dedekind complete and weakly σ-dis-
tributive, by Theorem 2.6, (2), in correspondence with (at,l)t,l, we find a se-
quence (ϕn)n in N

N and an (O)-sequence (bn)n such that, for each n ∈ N,∨∞
t=1 at,ϕn(t) ≤ bn, and thus, there exist D∗

n∈G, F ∗
n ∈H, with F ∗

n ⊂A⊂D∗
n and

m(D∗
n \ F ∗

n)≤ bn. Put Dn :=
⋂n

r=1D
∗
r , Fn :=

⋃n
r=1 F

∗
r . We get Fn ⊂ Fn+1 ⊂

A ⊂ Dn+1 ⊂ Dn, Dn ∈ G, Fn ∈ H, m(Dn \ Fn) ≤ m(D∗
n \ F ∗

n) ≤ bn, and
so,

∧
n m(Dn \ Fn) = (O) limn m(Dn \ Fn) = 0. Thus, m is G-H-regular on Σ.

This proves the last part. �

Remarks 3.11	

(a) Observe that, arguing similarly as above, it is possible to prove that, under
the same hypotheses as in Theorem 3.10, given an equibounded sequence
mj : Σ → R, j ∈ N of k-subadditive capacities, the mj’s are uniformly
G-H-regular if and only if they are uniformly continuous from above at ∅.

(b) Note that, in general, even when R = R, the concepts of regularity and
continuity from above at ∅ are not equivalent. Indeed, if G = H = Σ, then
every capacity is obviously G-H-regular, but not necessarily continuous
from above at ∅. Conversely, if G = H = {∅, G}, and m : Σ → R is any
capacity continuous from above at ∅, and such that m(∅) = 0, m(G) = 1
and there are E ∈ Σ and a ∈ (0, 1) with m(E) = a, then it is easy to see
that m is not G-H-regular.

12
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4. The main results

Before proving our main limit theorems, we recall the following result proved
by E. P a p, which we will use in our setting.

������ 4.1 ([22, Theorem 1], [23, Theorem 11.10])	 Let mj : Σ → R, j ∈ N,
be a sequence of (s)-bounded k-subadditive set functions such that

mj(A)− kmj(B) ≤ mj(A ∪ B) (15)

whenever A,B ∈ Σ, A ∩ B = ∅, and j ∈ N (such set functions are called
k-triangular). Suppose that for every E ∈ Σ, in R there exists the limit
m0(E) := limj mj(E) for each E ∈ Σ, and that m0 is (s)-bounded.

Then, the set functions mj : Σ → R, j ∈ R, are uniformly (s)-bounded.

The following proposition will be useful in the sequel.

����������� 4.2	 Let R be any Dedekind complete lattice group, F a free filter
of N, and let mj : Σ → R, j ∈ N, be a sequence of set functions, such that the
limit m0(E) := (OF) limj mj(E) exists in R for every E ∈ Σ.

If mj is a capacity for every j, then m0 is also a capacity. If mj is k-subad-
ditive for any j, then m0 is k-subadditive too.

P r o o f. First of all, it is easy to check that if mj(∅) = 0 for every j ∈ N, then
m0(∅) = 0.

Now, fix arbitrarily A, B ∈ Σ, and let
(
σ
(A)
p

)
p
,
(
σ
(B)
p

)
p
,
(
σ
(A∪B)
p

)
p
be three

(O)-sequences related to (OF)-convergence of (mj)j to m0 at the sets A, B,

A ∪ B, respectively. Choose arbitrarily p ∈ N. In correspondence with p, there
are three elements FA, FB , FA∪B of F with

|mj(A)−m0(A)| ≤ σ(A)
p ,

|mj(B)−m0(B)| ≤ σ(B)
p ,

|mj(A ∪ B)−m0(A ∪ B)| ≤ σ(A∪B)
p whenever j ∈ FA ∩ FB ∩ FA∪B .

Note that FA ∩FB and FA ∩FB ∩FA∩B belong to F. Let j∗ = minFA ∩FB and
j0 = minFA ∩FB ∩FA∩B . If A ⊂ B and all the mj’s are monotone, then we get

m0(A) ≤ σ(A)
p +mj∗(A) ≤ σ(A)

p +mj∗(B) ≤ σ(A)
p +m0(B) + σ(B)

p .

By arbitrariness of p we get m0(A) ≤ m0(B) and hence monotonicity of m0,
thanks to arbitrariness of A and B.

13
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Now, let A ∩B = ∅ and suppose that the mj’s are k-subadditive. We have

m0(A ∪B) ≤ σ(A∪B)
p +mj0(A ∪B)

≤ σ(A∪B)
p +mj0(A) + kmj0(B)

≤ σ(A∪B)
p +m0(A) + km0(B) + σ(A)

p + σ(B)
p . (16)

From arbitrariness of p and (16), we get

m0(A ∪B) ≤ m0(A) + km0(B),

and so, we obtain k-subadditivity of m0, by arbitrariness of A and B. �

We are in position to prove a Brooks-Jewett-type theorem for non-additive
capacities, which extends [7, Theorem 2.5].

������ 4.3	 Let R be any Dedekind complete lattice group, F a diagonal filter
of N, and let mj : Σ → R, j ∈ N, be an equibounded sequence of k-subadditive
capacities, such that m0(E) := (OF) limj mj(E) exists in R for every E ∈ Σ,
m0 is continuous from above at ∅ and mj is (s)-bounded on Σ for every j ≥ 0.

If R ⊂ C∞(Ω) is as in Theorem 2.7, then for every I ∈ F∗ and for each
disjoint sequence (Ch)h in Σ there exist a set J ⊂ I, J ∈ F∗, and a meager set
N ⊂ Ω with

(O) lim
h

⎛⎝∨
j∈J

mj(Ch)

⎞⎠= 0
(17)

and

lim
h

(
sup
j∈J

mj(Ch)(ω)

)
= 0 for each ω ∈ Ω \N. (18)

P r o o f. Let R ⊂ C∞(Ω) be as in Theorem 2.7, mj : Σ → R, j ≥ 0, as

in the hypotheses, and let
(
σ
(j)
p

)
p
be associated with mj as in Definition 3.5 (a).

Pick arbitrarily j ≥ 0. By Theorem 2.7, there exists a meager set N
(j)
∗ ⊂ Ω such

that mj(·)(ω) is real-valued on Σ, and

lim
p

σ(j)
p (ω) = inf

p
σ(j)
p (ω) = 0 for every ω ∈ Ω \N (j)

∗ . (19)

Thus, for every ε > 0 and ω ∈ Ω\N (j)
∗ , there is p0 ∈ N with σ

(j)
p (ω) ≤ ε for each

p ≥ p0. If (Ch)h is any arbitrary disjoint sequence from Σ, then for every j ≥ 0,
in correspondence with p0, there exists h0 ∈ N with

mj(Ch)(ω) ≤ σ(j)
p0

(ω) ≤ ε for all h ≥ h0 . (20)

If N0 :=
⋃∞

j=0N
(j)
∗ , then N0 is a meager subset of Ω, and from (20), it follows

that the real-valued capacities mj(·)(ω), j ≥ 0, ω ∈ Ω \ N0, are (s)-bounded
on Σ.

14
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Moreover, since mj, j ∈ N, is k-subadditive, from Proposition 4.2, it follows
that m0 is k-subadditive. From this and from Theorem 2.7, it follows that for
every j ≥ 0 and ω ∈ Ω \ N0 the capacity mj(·)(ω) is k-subadditive. By mono-
tonicity of mj and mj(·)(ω), we also get

mj(A)− kmj(B) ≤ mj(A) ≤ mj(A ∪B)
and

mj(A)(ω)− kmj(B)(ω) ≤ mj(A)(ω) ≤ mj(A ∪B)(ω)

whenever j ≥ 0, ω ∈ Ω \N0, A, B ∈ Σ, A ∩ B = ∅. Thus, for any ω ∈ Ω \ N0,
the capacities mj(·)(ω), j ≥ 0, satisfy (15).

Now, let K be the σ-algebra generated by the sets Ch, h ∈ N, in the set⋃∞
h=1Ch. For each B ∈ K there is a set P ⊂ N with B =

⋃
h∈P Ch. Let B be

a countable family whose elements are all finite and cofinite unions of the Ch’s
in
⋃∞

h=1Ch. By hypothesis, we get

m0(E) = (OF) lim
j

mj(E) for every E ∈ B . (21)

Since B is countable, by virtue of (21) and Lemma 2.10, for every set I ∈F∗

there is a set J ∈F∗, J⊂I, depending on I and (Ch)h, with

(O) lim
j∈J

mj(E) = m0(E) for each E ∈ B.

By Theorem 2.7, we find a meager setN ′⊂Ω, without loss of generalityN ′ ⊃ N0,
depending on I and (Ch)h, with

lim
j∈J

mj(E)(ω) = m0(E)(ω) for every ω ∈ Ω \N ′ and E ∈ B.

Moreover, since m0 is continuous from above at ∅, again thanks to Theorem 2.7,
there exists a meager set N⊂Ω, without loss of generality N⊃N ′, with

lim
n

⎡⎣m0

⎛⎝⋃
h≥n

Ch

⎞⎠ (ω)

⎤⎦= 0 for every ω ∈ Ω \N.

For each ε > 0 and ω ∈ Ω \N there is a positive integer h0(ε, ω) with

m0

⎛⎝ ⋃
h≥h0

Ch

⎞⎠ (ω) ≤ ε,

and hence, by monotonicity of m0 (which follows from Proposition 4.2), we have

m0

⎛⎜⎝ ⋃
h≥h0
h∈P

Ch

⎞⎟⎠ (ω) ≤ ε

15
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whenever P ⊂ N. Moreover, there is j0 ∈ J , j0 = j0(ε, ω, h0) such that for any
j ∈ J , j ≥ j0, we get∣∣∣∣∣∣∣mj

⎛⎜⎝ ⋃
h≤h0
h∈P

Ch

⎞⎟⎠ (ω)−m0

⎛⎜⎝ ⋃
h≤h0
h∈P

Ch

⎞⎟⎠ (ω)

∣∣∣∣∣∣∣ ≤ ε

and ∣∣∣∣∣mj

( ⋃
h>h0

Ch

)
(ω)−m0

( ⋃
h>h0

Ch

)
(ω)

∣∣∣∣∣ ≤ ε.

Let now B ∈ K and ω ∈ Ω \ N . Taking account of k-subadditivity, positivity
and monotonicity of mj, for every j ∈ J , j ≥ j0, we get:

0 ≤ |mj(B)(ω)−m0(B)(ω)|

=

∣∣∣∣∣∣
mj

⎛
⎝ ⋃

h∈P

Ch

⎞
⎠ (ω)−m0

⎛
⎝ ⋃

h∈P

Ch

⎞
⎠ (ω)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
mj

⎛
⎜⎜⎝

⋃
h≤h0
h∈P

Ch

⎞
⎟⎟⎠ (ω)−m0

⎛
⎜⎜⎝

⋃
h≤h0
h∈P

Ch

⎞
⎟⎟⎠ (ω)

∣∣∣∣∣∣∣∣
+ km0

⎛
⎜⎜⎝

⋃
h>h0
h∈P

Ch

⎞
⎟⎟⎠ (ω) + kmj

⎛
⎜⎜⎝

⋃
h>h0
h∈P

Ch

⎞
⎟⎟⎠ (ω)

≤

∣∣∣∣∣∣∣∣
mj

⎛
⎜⎜⎝

⋃
h≤h0
h∈P

Ch

⎞
⎟⎟⎠ (ω)−m0

⎛
⎜⎜⎝

⋃
h≤h0
h∈P

Ch

⎞
⎟⎟⎠ (ω)

∣∣∣∣∣∣∣∣
+ km0

⎛
⎝ ⋃

h>h0

Ch

⎞
⎠ (ω) + kmj

⎛
⎝ ⋃

h>h0

Ch

⎞
⎠ (ω)

≤

∣∣∣∣∣∣∣∣
mj

⎛
⎜⎜⎝

⋃
h≤h0
h∈P

Ch

⎞
⎟⎟⎠ (ω)−m0

⎛
⎜⎜⎝

⋃
h≤h0
h∈P

Ch

⎞
⎟⎟⎠ (ω)

∣∣∣∣∣∣∣∣
+ k

∣∣∣∣∣∣
mj

⎛
⎝ ⋃

h>h0

Ch

⎞
⎠ (ω)−m0

⎛
⎝ ⋃

h>h0

Ch

⎞
⎠ (ω)

∣∣∣∣∣∣

+ 2 km0

⎛
⎝ ⋃

h>h0

Ch

⎞
⎠ (ω)

≤ (3 k + 1) ε .

So,

lim
j∈J

mj(B)(ω)=m0(B)(ω) for every ω ∈ Ω \N and B ∈ K.

Therefore, for each ω∈Ω\N , the finitely additive real-valued capacitiesmj(·)(ω),
j ∈ J , satisfy the hypotheses of Theorem 4.1 on K, and so, they are uniformly
(s)-bounded on K. Thus we get

lim
h

(
sup
j∈J

mj(Ch)(ω)

)
= 0 for all ω ∈ Ω \N,

16
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that is (18). From this, since N is meager and taking Theorem 2.7 into account,
we obtain

(O) lim
h

⎛⎝∨
j∈J

mj(Ch)

⎞⎠= 0 ,

that is (17). This finishes the proof. �

The following result extends [8, Theorem 3.8] to our context.

������ 4.4	 Let R, Ω, F be as in Theorem 4.3 and let mj : Σ → R,
j ∈ N be an equibounded sequence of k-subadditive capacities. Assume that
m0(E) := (OF) limj mj(E) exists in R for every E ∈ Σ.

Then for every I ∈ F∗ and for each decreasing sequence (Hn)n in Σ with

(O) lim
n

mj(Hn) =
∧
n

mj(Hn) = 0 for every j ≥ 0 (22)

there are a set J ⊂ I, J ∈ F∗, and a meager set N∗ ⊂ Ω with

lim
n

(
sup
j∈J

mj(Hn)(ω)

)
= inf

n

(
sup
j∈J

mj(Hn)(ω)

)
= 0 (23)

and

(O) lim
n

⎛⎝∨
j∈J

mj(Hn)

⎞⎠=
∧
n

⎛⎝∨
j∈J

mj(Hn)

⎞⎠= 0 . (24)

P r o o f. Let (Hn)n be as in (22), set Ch=Hh\Hh+1, h∈N, and C0 :=
⋂∞

n=1Hn.
Note that, by monotonicity, we getmj(C0) = 0 for every j ≥ 0. Moreover, thanks
to monotonicity and k-subadditivity, we get

mj(Hn \ C0) ≤ mj(Hn) ≤ mj(Hn \ C0) + kmj(C0) = mj(Hn \ C0),

and hence

mj(Hn \ C0) = mj(Hn) for all j, n ∈ N . (25)

By virtue of Theorem 2.7 and equiboundedness of (mj)j , there exists a meager
set N0 ⊂ Ω such that the capacities mj(·)(ω) are real-valued and

lim
n

mj(Hn)(ω) = inf
n

mj(Hn)(ω) = 0 (26)

for every j ≥ 0 and ω ∈ Ω \N0.

Let K be the σ-algebra generated by the Ch’s, h ≥ 0, in H1. Let (Ks)s be any
decreasing sequence in K with

⋂∞
s=1Ks = ∅. There exists a decreasing sequence

(Ps)s of subsets of N with Ks =
⋃

h∈Ps
Ch. If ps = minPs, s ∈ N, then (ps)s

17
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is an increasing sequence of positive integers and Ks ⊂ Hps
for every s ∈ N.

By monotonicity of the mj’s, we get

(O) lim
s

mj(Ks) =
∧
s

mj(Ks) = 0

and
lim
s

mj(Ks)(ω) = inf
s
mj(Ks)(ω) = 0 (27)

for every j ≥ 0 and ω ∈ Ω\N0. Moreover, if (Dn)n is any disjoint sequence in K,
then we have

0 ≤ mj(Dn) ≤ mj

( ∞⋃
r=n

Dr

)
for each n ∈ N and j ≥ 0 . (28)

Hence, from (27), (28) and monotonicity of mj , it follows that

lim
n

mj(Dn)(ω) = inf
n

mj(Dn)(ω) = 0

whenever j ≥ 0 and ω ∈ Ω \ N0, and thus, the capacities mj(·)(ω), j ≥ 0,
ω ∈ Ω \N0, are (s)-bounded on K.

Arguing similarly as in Theorem 4.3, we get that for any j≥0 and ω∈Ω \N
the capacity mj(·)(ω) is k-subadditive and satisfies (15). Furthermore, it is pos-
sible to prove that for every I ∈ F∗ there exist a set J ⊂ I, J ∈ F∗ and a meager
set N ⊂ Ω (depending on I and (Ch)h), without loss of generality N ⊃ N0, with

lim
j∈J

mj(B)(ω) = m0(B)(ω) for each B ∈ K and ω ∈ Ω \N.

Therefore, for each ω ∈ Ω\N , the real-valued capacities mj(·)(ω), j ∈ J , satisfy
the hypotheses of Theorem 4.1 on K, and so, they are uniformly (s)-bounded
on K.

By monotonicity and k-subadditivity of the mj’s, for every j, n ∈ N and
q ≥ n we get

mj(Hn \Hq) ≤ mj(Hn), mj(Hn) ≤ mj(Hn \Hq) + kmj(Hn ∩Hq),

and hence

|mj(Hn)−mj(Hn \Hq)| ≤ kmj(Hn ∩Hq). (29)

By (29) and (22), taking (25) and Theorem 2.7 into account, there exists a mea-
ger set N∗ ⊂ Ω, without loss of generality N∗ ⊃ N , depending only on I and
(Hn)n, with

lim
q

mj(Hn \Hq)(ω) = mj(Hn \ C0)(ω) = mj(Hn)(ω) (30)

for all ω ∈ Ω \N∗, j, n ∈ N. We now prove that N∗ satisfies (23). If (23) is not
true, then there are ε > 0 and ω ∈ Ω \N∗ such that for every p ∈ N there are
n ∈ N, n > p and j ∈ J with mj(Hn)(ω) > ε, and hence, thanks to (30),

mj(Hn \Hq)(ω) > ε (31)

18
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for q large enough. At the first step, in correspondence with p = 1, there exist
three integers n1 > 1, j1 ∈ J and q1 > max{n1, j1}, with mj1(Hn1

)(ω) > ε and
mj1(Hn1

\Hq1)(ω) > ε. By (26), in correspondence with j = 1, 2, . . . , j1, we find
an integer h1 > q1 with

mj(Hn)(ω) ≤ ε (32)

whenever n ≥ h1. At the second step, there exist three integers n2 > h1, j2 ∈ J
and q2 > max{n2, j2}, with

mj2(Hn2
)(ω) > ε; mj2(Hn2

\Hq2)(ω) > ε. (33)

From (32) and (33) it follows that j2 > j1. Proceeding by induction, we find two
strictly increasing sequences (nh)h, (qh)h in N and a strictly increasing sequence
(jh)h in J with qh > nh > qk−1 for every k≥2, qh>jh andmjh(Hnh

\Hqh)(ω)>ε
for each h ∈ N. But this is impossible, since the sets Hnh

\ Hqh , k ∈ N, are
pairwise disjoint elements of Σ and the capacities mj(·)(ω), j ∈ N are uniformly
(s)-bounded on Σ for each ω ∈ Ω \N∗. This proves (23).

Since N∗ is meager, from (23) and Theorem 2.7, we obtain (24). This finishes
the proof. �

As consequences of Theorem 4.4, we give the following Vitali-Hahn-Saks-
(resp. Nikodým-)type theorem, which extends [7, Theorem 2.6].

������ 4.5	 Let F, R, Ω be as in Theorem 4.4, let τ be a Fréchet-Nikodým
topology on Σ, and let mj : Σ→R, j ∈N, be an equibounded sequence of τ -con-
tinuous (resp. continuous from above at ∅) k-subadditive capacities. Letm0(E) :=
(OF) limj mj(E) exist in R for every E∈Σ, and suppose that m0 is τ -continuous
(resp. continuous from above at ∅) on Σ.

Then for every I ∈ F∗ and for each decreasing sequence (Hn)n in Σ with
τ − limn Hn = ∅ (resp.

⋂∞
n=1Hn = ∅), there exist a set J ⊂ I, J ∈ F∗, and

a meager set N ⊂ Ω satisfying (23) and (24).

Now, we give a Dieudonné-type theorem for regular lattice group-valued ca-
pacities with respect to filter convergence, extending [8, Theorem 3.10].

������ 4.6	 Let F , R, Ω be as in Theorem 4.4, and let G, H ⊂ Σ be two lat-
tices as in Definition 3.8 (c). Let mj : Σ → R, j ∈ N, be an equibounded sequence
of G-H-regular k-subadditive capacities such that m0(E) = (OF) limj mj(E) for
any E ∈ Σ and m0 is G-H-regular. Then we get

(R3) for every E ∈ Σ and I ∈ F∗ there are J ∈ F∗, J ⊂ I, and two sequences
(Fn)n in H, (Gn)n in G satisfying (10) and with

(O) lim
n

⎛⎝∨
j∈J

mj(Gn \ Fn)

⎞⎠=
∧
n

⎛⎝∨
j∈J

mj(Gn \ Fn)

⎞⎠= 0 .
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Furthermore, there exists a meager set N ⊂ Ω with

(O) lim
n

(
sup
j∈J

mj(Gn \ Fn)(ω)

)
= inf

n

(
sup
j∈J

mj(Gn \ Fn)(ω)

)
= 0

for each ω ∈ Ω \N .

P r o o f. Given E ∈ Σ, pick two sequences (Fn)n and (Gn)n fulfilling (R2).
The mj’s satisfy the hypotheses of Theorem 4.4, and the sequence (Gn \ Fn)n
fulfils (22). Thus we get (R3). �

Acknowledgements. Our thanks to the referee for his/her suggestions, which
improved the exposition of the paper.

Open problems:

(a) Prove some theorems in which it is possible to obtain τ -continuity, conti-
nuity from above or regularity of the limit measure in the conclusions.

(b) Prove similar results for other classes of filters and/or for measures, which
are not necessarily positive.

(c) Prove some results on filter weak compactness/weak convergence of non-
-additive measures.
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