BE EGNRUYTER TAT RA
MOUNTaiNS

Mathematical Publications

DOI: 10.1515/tmmp-2016-0036
Tatra Mt. Math. Publ. 67 (2016), 135-147

AN IMPROVED TRUNCATED DIFFERENTIAL
CRYPTANALYSIS OF KLEIN

SHAHRAM RASOOLZADEH — ZAHRA AHMADIAN —
— MAHMOUD SALMASIZADEH — MOHAMMAD REZA AREF

ABSTRACT. KLEIN is a family of lightweight block ciphers which was pro-
posed at RFIDSec 2011 by Gong et. al. It has three versions with 64, 80 or
96-bit key size, all with a 64-bit state size. It uses 16 identical 4-bit S-boxes com-
bined with two AES’s MixColumn transformations for each round. This approach
allows compact implementations of KLEIN in both low-end software and
hardware. Such an unconventional combination attracts the attention of crypt-
analysts, and several security analyses have been published. The most success-
ful one was presented at FSE 2014 which was a truncated differential attack.
They could attack up to 12, 13 and 14 rounds out of total number of 12, 16 and
20 rounds for KLEIN-64, -80 and -96, respectively. In this paper, we present
improved attacks on three versions of KLEIN block cipher, which recover the full
secret key with better time and data complexities for the previously analyzed
number of rounds. The improvements also enable us to attack up to 14 and 15
rounds for KLEIN-80 and -96, respectively, which are the highest rounds ever
analyzed. Our improvements are twofold: the first, finding two new truncated
differential paths with probabilities better than that of the previous ones, and
the second, a slight modification in the key recovery method which makes it faster.

1. Introduction

Designing a secure and lightweight primitive for constrained environments
such as RFID tags or wireless sensor networks is one of the interesting trends
in cryptographic community. In order to find solutions for this ever-increasing
demand, lightweight cryptography is developed as one of the most active areas
in symmetric cryptography community. In this direction, a number of lightweight
block ciphers have been proposed in the recent years, one of which is the KLEIN
block cipher [I].

KLEIN family of lightweight block ciphers was proposed by Gong et al
in RFIDSec 2011. It has three versions named KLEIN-64, -80 and -96, indicating
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the key size, with 12, 16 and 20 rounds respectively. It has an SPN structure,
which combines 4-bit S-boxes with AES’s MixColumn. Such a combination allows
a compact and low memory implementation in software and hardware, making
KLEIN a utilizable block cipher in constrained-resource environments.

Despite some basic evaluations carried out on KLEIN by the designers [I], its
real security level cannot be determined without further external analysis. So
far, some cryptanalyses have been published on KLEIN, most of which exploit
the security drawbacks arisen from its unconventional structure [2]-[7]. Apart
from the Biclique attacks [4], [5] which is inherently a brute-force-like attack
analysing the full round version, the most successful attack was discovered and
exploited by Lallemand and Naya-Plasencia in FSE 2014 [7] which can
recover the master key in full 12-, reduced 13- and 14-round for KLEIN-64, -80
and -96, respectively.

Truncated differential attack is a generalization of the differential attack de-
veloped by Knudsen in 1994 [§]. Whereas ordinary differential cryptanalysis
analyzes the full difference between two texts, the truncated variant considers
differences that are only partially determined. That is, the attack makes predic-
tions about only some of the bits instead of the full state.

In this paper, by exploiting new truncated differential paths and a slight mod-
ification in key recovery method, we present new truncated differential attacks,
which outperform [7] in data and time complexities for full round KLEIN-64,
13-round KLEIN-80 and 14-round KLEIN-96. Also, for the first time, we propose
cryptanalysis for 14 and 15 rounds of 80- and 96-bit versions of KLEIN, respec-
tively. The complexities of existing attacks along with ours are summarized in
Table [

This paper is organized as follows: Section 2] presents a brief description
of KLEIN. In Section Bl new truncated differential paths are introduced and
in Section [ the outline of the key recovery attack on KLEIN with all details and
its complexity evaluations are presented. Finally, Section [ concludes this paper.

2. Description of KLEIN

KLEIN is a family of block ciphers with three variants KLEIN-64, KLEIN-80
and KLEIN-96 which have 64, 80 and 96 bits key, respectively. It is a Substitu-
tion-Permutation Network (SPN) with 64-bit block size for all versions, and
12, 16 and 20 rounds for KLEIN-64, KLEIN-80 and KLEIN-96, respectively.
Every round consists of four layers:

(1) AddRoundKey (ARK): Xor-ing the entering state with the round-key.

(2) SubNibbles (SN): State is divided into 16 nibbles, and each nibble is passed
through a 4-bit S-box.

136



AN IMPROVED TRUNCATED DIFFERENTIAL CRYPTANALYSIS OF KLEIN

(3) RotateNibbles (RN): Rotating the state two bytes to the left.

(4) MixNibbles (MN): Applying AES’s MixColumn transformation to each
32-bit half of the state.

All 16 S-boxes are the same and the reason for this choice by designers is
that a 4-bit S-box has smaller implementation and memory costs compared to
an 8-bit one. Also for reducing the decryption costs, they chose an involutive

S-box [1J.

TABLE 1. Summary of cryptanalytic results on KLEIN.

‘ Version ‘ Rounds ‘ Time ‘ Data ‘ Memory ‘ Attack Type ‘ Ref. ‘

12 2628 | 939 CP 24:5 Biclique

12 257 2545 CP 216 Truncated
12 254.9 | 2486  Cp 232 Truncated | Sec. [
12 258 | 2455 Cp 232 Truncated | Sec. @

7 945.5 [ 9343 (P 232 Integral 2]
8 246.8 | 932 CpP 216 Truncated 2]

S 935 935 CP - Truncated 8]

KLEIN-64 [ 157 962 [ Kp | 260 PC MitM* 6]
H]

[

8 2775 | 2343 Cp | 2% Integral 2]
11 274 |2 KpP| 2™ PC MitM* 6]
13 276 1252 Ccp| 26 Truncated 7

KLEIN-80 13 269 | 2546  Cp 232 Truncated | Sec.
13 272 | 2515 CPp 232 Truncated | Sec. @
14 275 | 2606 Cp 232 Truncated | Sec. @
14 278 | 2575 CP 232 Truncated | Sec. @

16 279|248 CP 260 Biclique 5]
13 |20 |2 KP| 2% |PCMitM* 6]
14 | 292 [2%4 CP| 26 | Truncated 7]

KLEIN-96 14 283 2606 Cp 232 Truncated | Sec.
14 286.1 | 957.5 (Cp 232 Truncated | Sec.
15 292.1 | 2635 (Cp 232 Truncated | Sec.

20 2952 | 932 CP 260 Biclique 5]
* Parallel Cut Meet in the Middle KP/CP: Known/Chosen Plaintext
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An additional ARK layer is applied after the last round. So, the number of sub-
keys required for encryption routine is one more than the number of rounds. The
structure of one round of KLEIN is shown in Fig. [l in which X" and K(") are
the input state and the subkey of round 7, respectively.

X(r) I I I I I

K(’) %

Rt 3

——

T MixColumn ][ Mix Column |

y ¥ ¥ ¥ v v v v
x4 1 1 1 1 1 1 |

FIGURE 1. Round structure of KLEIN.

Let us focus on AES’s MixColumn transformation, which works according
to the following matrix multiplication in GF(2®%) with the irreducible polynomial
B4t ad 41

02 03 01 01
01 02 03 01

M= 01 01 02 03 |- (1)
03 01 01 02

Recall that multiplying by 2 in this transformation can be performed as follows:

2xx:{x<<1 if msb(z) =0,

2
< 1®0xlb if msb(z) =1, @

where © < n means shifting « by n bits to left and msb(z) means the most
significant bit (MSB) of 2. Also, multiplication by 3 is equal to:

Ixxr=2XxXzrdwr (3)

These descriptions of finite field multiplications are more useful for explaining
the MN layer properties in the next section. It is better to note that only MN
layer is byte-wise while the others can be seen as nibble-wise.

The Key Schedule of KLEIN generates R + 1 round keys K, r = 1,...
..., R+ 1 from the master key, where R is the number of rounds of the ci-
pher. The final subkey K(7+1 is used as the whitening key. KLEIN’s key sched-
ule works as follows. First, the master key is stored in a key register as K1),
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Then the following steps are iteratively applied to generate R more subkeys:
(1) Rotate the two halves of the key state to the left, one byte each.
(2) Swap the two halves by a Feistel-like structure.

(3) In the left half of the key state, xor the 3rd byte from the left with round
counter r.

(4) In the right half of key state, substitute the 2nd and the 3rd bytes using
four KLEIN S-boxes.

At the end of round 7, the leftmost 64 bit of the key register is K ("*+1). Fig.
shows one round of the key schedule for KLEIN-64.

Y
B
r+o
y A A Y A A Y 4
by I I I |

F1GURE 2. Key schedule of one round of KLEIN-64.

3. Truncated differential paths

In this section, we will introduce two new truncated differential paths with
better probabilities than that of [7].

ProrosITION 1 (2], [3]). If the eight nibbles entering MixzColumn are of the form
0X0X0X0X, where the wild-card X represents any 4-bit value, then the output
1s of the same form if and only if the MSB of all the four lower nibbles are
the same. This case occurs with probability 275,

PROPOSITION 2. If the eight nibbles entering MizColumn are of the form 0 X0X
0X0X, then the output will be of the form 00000X0X or 0X0X0000 with prob-
ability of 31 x 2715,

Proposition 1 has been explained enough in previous cryptanalyses, especially
in [7], so we do not discuss it here. The proof of Proposition 2 is as follow.
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Proof. Consider 0A0BOCOD be the eight nibbles entering MixColumn and
0000 OEOF be the eight output nibbles. Also consider that X = zgriz213,
where xg is the MSB of X. Since two most significant bytes of output are zero,
we must have:
{B:3><A@2><C, {E:HXA699><C, (@)
D=TxA®7xC, F=14x A 13 x C.

Since B, D, E and F have only 4 nonzero bits (e.g., the higher nibble in each

byte is zero), it holds that
Co = aop,

c1 = ay, (5)
Co = ag. D az.

Therefore, from 26 — 1 cases for A, B,C and D only 2° of them are acceptable.
One of these 32 cases is all zeros which should be excluded. So the probability
of this event is 31 x 2716 By taking the second form of MixColumn’s output

(0E0F0000) into account, the probability would be 31 x 2717, O

Using Proposition 1, an iterated truncated differential path for one round
of KLEIN has been presented in [2], [3]. Its probability is 276 assuming the
intersection of two independent events explained in Proposition 1. This iterated
truncated differential path is shown in Fig. Bl

H u Im |m i Im |m N

sv. JEORONCOE COECONCONCE
N IH m 'm am Im Im Im
g Ju Iu Im g m | Im

m Iml |m m m |ml = =l

FIGURE 3. Iterated truncated differential path for one round of KLEIN.

] Inactive Nibble
I Active Nibble

p=2°

Also using Proposition 2, we introduce two new truncated differential paths
for four and three rounds that are shown in Fig.[@and [, respectively. In the first
path (path I), we consider that the event explained in Proposition 2 happens
for both of MixColumns of round 1 and all output active nibbles belong to a sin-
gle half state, after RN layer of round 2. Then its probability is

1 —15\2 —
pr=5x(31x2 )7 ~ 272

Therefore only one MixColumn is active in round 2 and if the mentioned event
happens again, its probability will be

pa = 31 x 2715 ~ 2710
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So there are at most 2 active lower nibbles for input of the third round. These
lower nibbles will activate only one MixColumn, and only lower nibbles in output
of MixColumn will be active with probability of

2 7 29 7\
= Ly L) ~o2
bs 31X15+31X(15>

Regarding ps, it must be stated that for 2 cases out of 31 cases, only one lower
nibble is active, and when a nibble is active with probability one, the probability
that the output difference of S-box has a MSB equal to 0 is % After this, the
input of each MixColumn in the fourth round has at most 2 active lower nibbles.
The probability that only the lower nibbles of the fourth round’s output are

active is 7\ w
== ~277"
D4 <15>

The second path (path IT) looks like the first one, except that the events of
the second round in first path are omitted. Therefore the probability that only
lower nibbles are activated is po = 272 for the second round and p3 = 2744
for the third round. In both of the paths, we use the above mentioned iterated
truncated path for the remaining rounds. The probability for an (R—1)-round
distinguisher of KLEIN is p = 276%%=7-6 and p = 276xE~45 ysing paths I and II,
respectively. As we will see, using these two paths, we will be able to attack up
to 14 and 15 rounds, respectively. It must be considered that in Fig. @ or Fig.
only one side of the probability is shown.

aum| Im| jm i gm e . je|
sy JEOEUECE R CECELNE
o EOBCORCECECECECE 2
o UIDOER DO 00 DOOdUm U

sv JROR OO D0 DODO0 DM DM
> v UOOOOOOO ORDOECEDE 27
av LU OO OO OO OO OO L L

sy O OO D000 OO0 OO0 DMLl
3o QOO0 0OO0O0 ORCOROooe 2~
wv OO OO0 OO

sy OO0 OO0O0 ORCECE N
« v JOOO0DEDE DORCEOO0e 2o
ol JH| JE N pE| N JE i

F1GURE 4. Truncated differential path for 4 round of KLEIN.
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| gm| | jm g jml jm| jm| |
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o UJEOEDOERCE CECEDECE 2
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sv LR OR DO OO0 ODOO0OmOn
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FIGURE 5. Truncated differential path for 3 round of KLEIN.

4. Truncated differential cryptanalysis of KLEIN

In this section, we first make use of the key recovery method presented in [7]
and then we improve it slightly to proportionate it to the truncated differential
paths introduced in the previous section. Finally, the complexities of our attacks
will be presented.

For recovering master key’s lower nibbles we use a slightly modified version
of the key recovery attack used in [7]. First, we will state two propositions that
were introduced in previous cryptanalyses. Using these propositions we will be
able to partially decrypt the lower or higher nibbles in each round.

ProrosiTiON 3 ([2], [3]). In the key schedule algorithm, lower nibbles and higher
nibbles are not mized: the lower/higher nibbles of any round-key can be computed
directly from the lower/higher nibbles of the master key.

PRrOPOSITION 4 ([7]). The values of the lower/higher nibbles outputting MizCol-
umn depend on the values of the lower/higher nibbles at the input and 3 more
bits computed from the higher/lower nibbles that we will call information bits.
A similar property holds for the computation of the output lower/higher nibbles
of inverse MixColumn.

Proof of Proposition 4. is given in [7] and we do not state it here. These
two properties of KLEIN will allow us to recover lower and then higher nibbles
of the master key. The key recovery method is as follows:

(1) Collecting enough pairs of data: To be sure that we get one pair
that conforms to our differential path, we must generate a certain number
of plaintexts. So we must have about p~! differential pairs, and for reducing
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data complexity we use structural chosen plaintext attack. The size of
each structure is determined by the number of active bits in the truncated
difference entering the first round. As our truncated differential paths have
32 active bits in the plaintext, the size of structures would be 232 plaintexts
and each structure has about 22%32—1 = 263 pairs.

To obtain the required p~—! differential pairs, we must encrypt about
p~ ! x % = p~! x 273! plaintexts. So, this value would be the attack
data complexity. All 232 plaintexts in a structure should be saved and
processed, and then the allocated memory should be released. Therefore,
we need memory space to save all these plaintexts. As we will see, this is
our salient memory complexity and the memory required for other parts
of the attack is negligible compared to this one.

Sieving ciphertext pairs: As in the right differential pair, the differen-
tial in the output of round R — 1 has differences just in lower nibbles and
this difference will be preserved until the input of MN layer. By invert-
ing the ciphertext difference through the last MN layer, we can observe
the value of the difference entering this layer and then discard the ones
that have the active higher nibbles. In this way, we can eliminate such
pairs that we are sure do not satisfy the differential path (wrong differen-
tial pairs). Only a fraction of 2732 wrong pairs can survive this filtering,
so there would be p~! x 2732 remaining differential pairs.

In practice, it is not necessary to invert all ciphertext pairs, because
if only lower nibbles in input of MN layer are active, the output higher
nibbles could be only 0 or 1. Using this property, we can sieve ciphertext
pairs with a negligible time complexity.

Guessing lower nibbles of the first subkey: For each remaining dif-
ferential pair that has passed the sieving of the previous step, we will find
possible values for the first 8 lower nibbles of the key in two levels.

For event described in Proposition 2 there are 2 x 31 possible input
differences for each MixColumn. So, a number of 62 x 2'6 pairs is possible
for half of the outputs of SN. Therefore, there are on average 62 pairs
which have the same difference in the input of SN, on average. By passing
these pairs through SN~ = SN and saving the input pair to SN and their
output difference before MixColumn in a table indexed by the input of
SN difference, we can find all 62 possible keys for 4 lower nibbles only by
xoring the plaintexts with pairs in the table, where the difference of pairs
is equal to the corresponding 4 nibbles in plaintexts difference.

Using this method again we can find 31 possible keys for the other 4
lower nibbles. In other words, for each pair of plaintexts and their cipher-
texts that pass the previous step, we have 2 x 312 key candidates for the
8 first lower nibbles of the master key.
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This step requires a negligible time complexity because there are only
two look-up tables and all the other used operations are XORs. This en-
ables us to compute half of both states at the input of the first MN layer
that already satisfies the conditions of round 1. This pair of half states
will be denoted by (.5, 5")*

For KLEIN-64, the lower nibbles of the first subkey determine all
the lower nibbles of the whole key, but for obtaining all the possible
lower nibble values of KLEIN-80 and KLEIN-96, we have to make addi-
tional guesses for the remaining 8 and 16 bits of lower nibbles, respectively.
After this step, we will have p~'x 2731x 312 x 28%(0:1.2) pogssible candidates
of (C,C’, kjow), respectively for KLEIN-64, -80 and -96.

Sieving candidate subkeys on second round: In the 2nd round
of path I, the event mentioned in Proposition 2 happens again. We can
use the saved table again to check if the candidates for the key lower nib-
bles can pass this round.

Because the values of input lower nibbles for one of the MixColumns
in the first round are known for both plaintexts, we can guess their values
after MixColumn (We will guess the value of four nibbles after the Mix-
Columns transformation. This value is one of the possible values and the
other one is this value xored with Oxb). But for each of 2% possible pairs the
difference is the same. So we will search through this difference in the table
to examine if that value of 4 nibbles xored with corresponding 4 nibbles
of candidate subkey is equal to the saved values in table.

A plaintext pair and a candidate key can pass this sieve with probability
of 62 x 2716 x 24 so there will be p~1 x 2742 31%x 28%(0:1.2) pogsible candi-
dates (C, C’, kjow ), respectively for KLEIN-64, -80 and -96. Note that this
step will be used only in the path I. Alike previous step, time complexity of
this step will be negligible compared to the time complexity of next step.

Inverting pairs of ciphertexts: At this step we will invert every pos-
sible triplet of (C,C’, ko), generating possible pairs (S,S5"), for r = R,
R —1,..., (where (S, S"), represents the value of lower nibbles entering
round 7).

Since for every MixColumn there are 3 information bits, inverting one
round costs 22 round encryptions per triplet. During the iterative rounds,
the number of possible triplets stays the same, because from 2° possible
values of inverting, only 27 of them can satisfy the condition of Propo-
sition 1. But during the non-iterative rounds, because of the tight condi-
tions, number of candidates gets reduced significantly (factor of reduction
for each event of Proposition 2 is 2711).
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Once we have computed (5, 5")3 (for the first path and (5,.5")2 for the
second path), we have to guess the 3 bits needed to invert the second (or the
first) one MixColumn, and then we have to match values with the already
computed values (5,5")* After the matching condition, number of key
candidates for a pair of ciphertexts gets much smaller than 2. So, the
cost of recovering the key is much smaller than an exhaustive search.

The cost of this step is given by the number of candidate triplets multi-
plied by 23 (cost of inverting one round), multiplied by the number of itera-
tive rounds. The cost for inverting non-iterative rounds is so small, because
the number of candidates has been reduced so much. Time complexity for
the other steps is negligible, this step will determine time complexity for
this attack.

(6) Recovering higher nibbles of master key: If a k;,,, candidate for a pair
of ciphertexts and their corresponding plaintexts can match the condition
in previous step, we will find the whole bits of the master key with an
exhaustive search for higher nibbles.

0

4.1. Results and complexities

Applying described key recovery attack to both paths, we are able to attack
up to 14 and 15 rounds KLEIN which outperforms the cases introduced in [7].
Results of our attacks are shown in Table Bl The memory complexity is 232 of
block size in all of our attacks.

TABLE 2. Summary of the complexities of our attacks.

‘ Version/Rounds ‘ Path ‘ Probability ‘ Time ‘ Data

KLEIN-64 ! 9—79.63 | 954.91 | 948.63
-64/12 0 97649 | 957.98 | 545.49

1 9—85.63 968.96 | 954.63

RO/ I 2—82.49 972.02 | 951.49
KLEIN-80/14 I 2-91.63 975.01 | 960.63
II 9—88.49 078.05 | 957.49

KLEIN-96/14 I 9—91.63 983.01 | 960.63
II 58849 | 986.05 | 957.49

KLEIN-96/15 ‘ I ‘ 9—94.49 ‘292.08‘263.49
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As it can be seen in Bl using path I makes a good time complexity and
path II makes a good data complexity. There is a trade-off between time and
data. Regarding the attacks with the same number of rounds, our attacks have
better time complexity or need less data than attacks in [7] (and in some cases
both). But, they have greater memory complexity. Also, except biclique attacks,
cryptanalyses of 14-round KLEIN-80 and 15-round KLEIN-96 were introduced
for the first time in this paper.

5. Conclusions

In this paper we introduced two new truncated differential paths for KLEIN,
as well as an improved key recovery method based on what was proposed by
Lalle mand and Naya-Plasencia [7]. Results show that our attacks have
the best time and data complexities on full-round KLEIN-64, 13-round KLEIN-80
and 14-round KLEIN-96 so far. Also, we introduced two new attacks on 14-round
KLEIN-80 and 15-round KLEIN-96 for the first time.

The block cipher KLEIN has two main weaknesses: (1) MixNibbles layer using
Rijndael’s MixColumn transformation does not correctly mix higher and lower
input nibbles, as the only transformation responsible to do that. (2) The Key
Schedule does not mix higher and lower nibbles. These two enables the cryptan-
alyst to perform a reduced partial key search. Anyway, by using an appropriate
diffusion layer instead of Rijndael’s and a stronger Key Schedule one can prevent
the attacks applied on KLEIN.
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