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1. Introduction 

It is very well recognised that robust regression in statistics is an attractive research 
method. It is used to overcome some of the weaknesses of classical regression, namely 
when outliers contain heteroscedastic data. 

The study of the connection between a random variable 𝑊𝑊 and set of covariates 𝑍𝑍 
is a common problem in statistics. In the literature, these variables are generally known 
as functional variables. Remember that the robustification method is an old statistical 
issue, investigated first by Hurber (1964) who studied an estimation of alocation 
parameter (see also (Collomb & Härdale, 1979; Laib & Ouled-Said 2000)) for some 
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results containing the multivariate time series case under a mixing or an ergodic 
condition). 

Note that many writers have tackled the functional local linear estimating (LLE) 
problem since the appearance of the monograph by Ferraty and Vieu (2006) in NFDA, 
which relates to some responses to question number five given there, local linear 
estimation technique has several advantages in the case of finite-dimensional data over 
the kernel method, such as bias reduction and the adaptation of edge effects. Ballo and 
Grané (2009) provided the first response to this question, demonstrating the 
𝐿𝐿2-consistency of an LLE of the Hilbertian regression operator, whereas Barrientos  
et al. (2010) presented a different solution that may be used to a more general 
functional regressor. In turn, Demongeot et al. (2013) developed the first results on the 
LLE of the conditional density using functional variables. In this, the (a.co.) almost- 
-complete consistency of an LLE of the conditional density was proved (see, p. 230, 
definition A.3 in Ferraty and Vieu (2006)). In Rachdi, Laksaci, Demongeot et al. 
(2014), the leading term of the mean quadratic error of the LLE of the conditional 
density was then explicitly mentioned. Additionally, Zhou and Lin (2016) established 
the asymptotic normality of the LLE of the regression operator, and recently 
Almanjahie et al. (2022) treated the k Nearest Neighbour kNN LLE of the conditional 
density in a scalar-On-Function regression structure, for additional research on the 
LLE in NFDA (Nonparametric Functional Data Analysis), see, Chahad et al. (2017); 
Attouch et al. (2017). 

Note that the LLE’s significant advantages over the traditional kernel technique 
function as the primary inspiration for all of the cited works on functional LLE. 
Specifically, the kernel method’s bias error is reduced using the LLE approach (see, 
for instance (Fan & Gijbels, 1996; Rachdi et al., 2014) for more discussions on 
advantages of this method). 

The primary innovation in this study is the estimation of the conditional density 
mode using the LLE approach weighted by MAR procedure for the functional and i.i.d 
data, while many studies in this field use the kernel estimation approach to estimate 
nonparametric functional models. 

There are many references on the estimation of the conditional density, and there 
has been an increasing interest in the study of functional variables, the prime results 
about the conditional mode estimation obtained by Ferraty and Vieu (2006), about the 
almost complete convergence of the kernel estimator, and in the both cases i.i.d. and 
strong mixing, Ezzahrioui and Ould-Sa𝑖𝑖d (2006) established the asymptotic normality 
of the kernel estimator of the conditional mode. Lately the nonparametric estimation 
of the conditional mode using kNN method for independent and dependent functional 
data was examined by Attouch and Bouabsa (2013) and Attouch, Bouabsa and Chiker 
el mozoaur (2018). One can also mention for example Amiri and Dabo-Niang (2016) 
who investigated the recursive version of the kernel estimator of the density function. 
for spatial data, they stated the asymptotic qualities of the built estimator. The author 
referred to Giraldo et al. (2018), for a thorough discussion of spatio-functional data 
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analysis and its viability as an attractive method in spatial big data modeling. Taking 
the ergodicity structure into account, Chaouch and La𝑖𝑖b (2017) demonstrated the 
uniform consistency of the nonparametric estimator of functional modal regression. 
Maillot and Chesneau (2018) established the asymptotic properties of the conditional 
density for continuous time processes valued in functional space for current results. 
They also used this to calculate the convergence of the conditional mode and 
conditional expectation. Kirkby et al. (2021) investigated an alternate estimate of the 
conditional density, and employed the Galerkin method was to create an effective 
cross-validation technique for bandwidth parameter choice. 

This study’s innovation lies in its combination of the LLE technique with MAR 
data to provide a new estimator of functional conditional density. The rest of the paper 
is organized as follows. Section 2, presents for functional data the local linear 
estimation of the conditional mode. The principal hypotheses and notations are given 
in Section 3, All the results and proof are determined in Section 4. Section 5 presents 
a simulation study to prove the effectiveness of this study. The conclusions and 
prospects for future research are provided in the last section. 

2. The model 

(𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖), 𝑖𝑖 = 1, . . ,𝑛𝑛 is n copies of random vector identically distributed as (𝐴𝐴,𝐵𝐵), 𝐴𝐴 is 
valued in infinite dimensional semimetric vector space (𝐹𝐹, d), and 𝐵𝐵 is valued in ℝ, 
𝑆𝑆 in handy applications is a normed space that can be of infinite dimension, for 
example Banach or Hilbert space with norm ∥. ∥ that 𝑑𝑑(𝑎𝑎,𝑎𝑎′) =∥ 𝑎𝑎 − 𝑎𝑎′ ∥. 

Recall that 𝐺𝐺𝑎𝑎 (resp𝐺𝐺𝑎𝑎(𝑗𝑗)) isconditional density (resp its 𝑗𝑗𝑡𝑡ℎ order derivative) of 𝐵𝐵. 
The article presents the almost complete convergence results and rates for nonparametric 
estimates of 𝐺𝐺𝑎𝑎(𝑗𝑗). Thus when 𝐺𝐺𝑎𝑎  = 𝐺𝐺𝑎𝑎(0), the convergence of conditional density 
estimate is deduced instantly from the general results concerning 𝐺𝐺𝑎𝑎(𝑗𝑗). 

Moreover, density 𝐺𝐺𝑎𝑎 is continuous with respect to Lebesgue’s measure over ℝ. 
In the local linear modeling the estimation of conditional mode function 𝐺𝐺�𝑎𝑎(𝜗𝜗(𝑎𝑎)) is 
based on the approximation of conditional density function 𝐺𝐺𝑎𝑎(𝑏𝑏) by a linear function. 
To expand the local linear ideas to the infinite dimensional framework the author used 
the technique of Baìllo and Grané (2009), (see Barrientos-Marin et al. (2010) for some 
examples and references). Function 𝐺𝐺𝑎𝑎(. ) as marked by Fan and Gijbels (1996) can 
be viewed as a nonparametric regression model with response variable ℎ𝑄𝑄

−𝑗𝑗𝑄𝑄(𝑗𝑗) 

�ℎ𝑄𝑄−1(.−𝐵𝐵𝑖𝑖)� where 𝑄𝑄 is some cumulative distribution function and ℎ𝑄𝑄 is a sequence 
of positive real numbers. This estimation is motivated by the fact that:  

 𝐸𝐸 �ℎ𝑄𝑄
−𝑗𝑗𝑄𝑄(𝑗𝑗) �ℎ𝑄𝑄−1(𝑏𝑏 − 𝐵𝐵𝑖𝑖)� �𝐴𝐴𝑖𝑖 = 𝑎𝑎� → 𝐺𝐺𝑎𝑎(𝑗𝑗)(𝑏𝑏) 𝑎𝑎𝑎𝑎 ℎ𝑄𝑄 → 0 (𝑗𝑗 = 0; 1). 

Here, let us adopted fast functional local modelling, i.e. conditional density function 
𝐺𝐺�𝑎𝑎 is estimated by 𝑥𝑥� where the pair (𝑥𝑥�;𝑦𝑦�) is obtained by the optimisation rule:  
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(𝑥𝑥�, 𝑦𝑦�) = arg min
(𝑥𝑥,𝑦𝑦)∈ℝ2

�
𝑛𝑛

𝑖𝑖=1

ℎ𝑄𝑄−1𝑄𝑄 �ℎ𝑄𝑄−1(𝑏𝑏 − 𝐵𝐵𝑖𝑖)� − 𝑥𝑥 − 𝑦𝑦ℓ(𝐴𝐴𝑖𝑖 , 𝑎𝑎)2𝑊𝑊(ℎ𝑊𝑊−1℘(𝑎𝑎,𝐴𝐴𝑖𝑖)), (2.1) 

where, ℓ(. ; . ) and ℘(. ; . ) are locating functions defined from ℱ2 into ℝ, such that: 

 ∀𝜉𝜉 ∈ ℱ; ℓ(𝜉𝜉; 𝜉𝜉) = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑑𝑑(. ; . ) = |℘(. ; . )| 

and where function 𝑊𝑊: kernel function, 𝑄𝑄: distribution function (df) and ℎ = ℎ𝑊𝑊: =
ℎ𝑊𝑊,𝑛𝑛 and ℎ𝑄𝑄 = ℎ𝑄𝑄,𝑛𝑛 are suites of positive real numbers, as 𝑛𝑛 goes to infinity, and goes 
to zero. Clearly, estimator 𝑥𝑥�, given by (3.1), can be explicitly written as follows 

 𝐺𝐺�𝑎𝑎(𝑏𝑏) =
∑1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛𝜈𝜈𝑖𝑖𝑗𝑗(𝑥𝑥)𝐺𝐺(1)(ℎ𝐺𝐺

−1(𝑏𝑏−𝐵𝐵𝑖𝑖))
ℎ𝐺𝐺 ∑1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛𝜈𝜈𝑖𝑖𝑗𝑗(𝑎𝑎)

∀𝑏𝑏 ∈ IR, (2.2) 

where, 𝑄𝑄(1) is the derivative of Q, with  

 𝜈𝜈𝑖𝑖𝑗𝑗(𝑎𝑎) = ℓ𝑖𝑖(ℓ𝑖𝑖 − ℓ𝑗𝑗)𝑊𝑊(ℎ𝑊𝑊−1℘(𝑎𝑎,𝐴𝐴𝑖𝑖)) 

and ℓ𝑖𝑖 = ℓ(𝐴𝐴𝑖𝑖,𝑎𝑎) and convention 0/0 = 0; 
Suppose that 𝐺𝐺𝑎𝑎(. ) has an only mode, noted by 𝜗𝜗(𝑎𝑎) assumed uniquely defined 

in compact set 𝒮𝒮 which is given by  

 𝐺𝐺𝑎𝑎(𝜗𝜗(𝑎𝑎)) = sup
𝑏𝑏∈𝒮𝒮

𝐺𝐺𝑎𝑎(𝑏𝑏). (2.3) 

𝜗𝜗(𝑎𝑎) is a kernel estimator of the conditional mode which given as random variable 
�̂�𝜗(𝑎𝑎) that maximises kernel estimator 𝐺𝐺�𝑎𝑎(. ) of 𝐺𝐺𝑎𝑎(. ) 

 𝐺𝐺�𝑎𝑎(�̂�𝜗(𝑎𝑎)) = sup
𝑏𝑏∈𝒮𝒮

𝐺𝐺�𝑎𝑎(𝑏𝑏). (2.4) 

3. Principal hypotheses and notations 

This section contains all the assumptions that are necessary in deriving the almost- 
-complete convergence (a.co.) of the functional locally modelled estimator of 
𝐺𝐺�𝑎𝑎(�̂�𝜗(𝑎𝑎)). Then, (resp. b) denotes a fixed point in (ℱ(𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟.ℝ), 𝒩𝒩𝑎𝑎 (resp. 𝒩𝒩𝑏𝑏) denote 
a fixed neighbourhood of fixed point x (resp. of y) and 𝜒𝜒𝑎𝑎(𝑧𝑧1; 𝑧𝑧2) = 𝑃𝑃(𝑧𝑧2 <
𝜎𝜎(𝐴𝐴;𝑎𝑎) < 𝑧𝑧1). Thus, one assumes that this nonparametric model satisfies the 
following conditions:  
• (A1) For any 𝑟𝑟 > 0, 𝜒𝜒𝑎𝑎(𝑧𝑧): = 𝜒𝜒𝑎𝑎(−𝑧𝑧; 𝑧𝑧) > 0. 
• (A2) Conditional density function 𝐺𝐺𝑎𝑎) is such that there exist some positive 

constants 𝑦𝑦1 and 𝑦𝑦2, ∀(𝑏𝑏1;𝑏𝑏2) ∈ 𝒩𝒩𝑏𝑏 ×𝒩𝒩𝑏𝑏 and ∀(𝑎𝑎1;𝑎𝑎2) ∈ 𝒩𝒩𝑎𝑎 × 𝒩𝒩𝑎𝑎 

 |𝐺𝐺𝑎𝑎1(𝑗𝑗)(𝑏𝑏1) − 𝐺𝐺𝑎𝑎2(𝑗𝑗)(𝑏𝑏2)| ≤ 𝐶𝐶(𝜎𝜎(𝑎𝑎1,𝑎𝑎2)𝑦𝑦1 + |𝑏𝑏1 − 𝑏𝑏2|𝑦𝑦2), 

where, C is a positive constant depending on a.  
• (A3) Function ℓ(. , . ) and ℘(. , . ) and are such that:  
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 ∀𝑟𝑟 ∈ 𝐹𝐹, |℘(𝑎𝑎, 𝑟𝑟)| = 𝑑𝑑(𝑎𝑎, 𝑟𝑟)𝑎𝑎𝑛𝑛𝑑𝑑𝐶𝐶1|℘(𝑎𝑎, 𝑟𝑟)| ≤ |ℓ(𝑎𝑎, 𝑟𝑟)| ≤ 𝐶𝐶2|℘(𝑎𝑎, 𝑟𝑟)|, 

where, 𝐶𝐶1 > 0;𝐶𝐶2 > 0. 
• (A4) Kernel W is a positive, differentiable function which is supported within 

(−1; 1).  
• (A5) Kernel Q is a differentiable function and 𝑄𝑄(1) is a positive, bounded, 

Lipschitzian continuous function such that:  

 ∫ |𝑡𝑡|𝑦𝑦2𝑄𝑄(1)(𝑡𝑡)𝑑𝑑𝑡𝑡 < ∞𝑎𝑎𝑛𝑛𝑑𝑑 ∫ 𝑄𝑄(2)(𝑡𝑡)𝑑𝑑𝑡𝑡 < ∞. 

Bandwidth ℎ𝑊𝑊 satisfies that there exists positive integer 𝑛𝑛0, such that, ∀𝑛𝑛 > 𝑛𝑛0, 
 

 − 1
𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)∫

1
−1 𝜒𝜒(𝑟𝑟ℎ𝑊𝑊;ℎ𝑊𝑊) 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑟𝑟2𝑊𝑊(𝑟𝑟))𝑑𝑑𝑟𝑟 > 𝐶𝐶3 > 0, 

and  

 ℎ𝑊𝑊 ∫𝐵𝐵(𝑎𝑎;ℎ𝑊𝑊) ℓ(𝑢𝑢; 𝑎𝑎)𝑑𝑑𝑃𝑃(𝑢𝑢) = 𝑜𝑜 �∫𝐵𝐵(𝑎𝑎;ℎ𝑊𝑊) ℓ
2(𝑢𝑢; 𝑥𝑥)𝑑𝑑𝑃𝑃(𝑢𝑢)�. 

where, 𝐵𝐵(𝑎𝑎; 𝑟𝑟) = {𝑟𝑟 ∈ ℱ/|℘(𝑟𝑟; 𝑎𝑎)| ≤ 𝑟𝑟} and 𝑑𝑑ℙ(a) is the cumulative distribution of 
𝐴𝐴; also that lim𝑛𝑛→∞ ℎ𝑄𝑄 = 0 width lim𝑛𝑛→∞ 𝑛𝑛𝛾𝛾ℎ𝑄𝑄 = ∞ forsome 𝛾𝛾 > 0 and 

log(𝑛𝑛)

𝑛𝑛ℎ𝑄𝑄
2𝑗𝑗+1𝜒𝜒𝑥𝑥(ℎ𝑊𝑊)

→ 0. 

• (A6) ∃𝜂𝜂 > 0,𝐺𝐺𝑎𝑎 ↗ on (𝜗𝜗 − 𝜂𝜂,𝜗𝜗) and 𝐺𝐺𝑎𝑎 ↘ on (𝜗𝜗,𝜗𝜗 + 𝜂𝜂). 
• (A7) 𝐺𝐺𝑎𝑎 is j-times continuously differentiable with respect to a on (𝜗𝜗 − 𝜂𝜂,𝜗𝜗 + 𝜂𝜂), 

• (A8) �
𝐺𝐺𝑎𝑎(𝑙𝑙)(𝜗𝜗) = 0, 𝑖𝑖𝑖𝑖 1 ≤ 𝑙𝑙 < 𝑗𝑗,
and�𝐺𝐺𝑎𝑎(𝑗𝑗)(𝜗𝜗)� > 0.

 

• (A9) Operator 𝑃𝑃(. ) is continuous on 𝑁𝑁𝑎𝑎 and such that 𝑃𝑃(𝐴𝐴) > 0.  

4. Remarks on the hypotheses 

Condition (A1) is straight forward tailoring (in Ferraty et al., ( 2008)) of hypothesis 
(A1), when one substitutes semi-metric d(., .) by ℘(. , . ). Hypotheses (A2) typify the 
structural functional space of the model. As in Barrientos-Marin et al. (2010) and 
Demongeot et al., (2010), this study used the same conditions (A3) and the first part 
of (A5). In order to simplify the proofs, the author supposed (A4) and imposed the 
technical conditions (A5) as in Fan and Gijbels (1996) for non-parametric estimation. 
The convergence of the estimator can be obtained under minimal assumption (A6). 
(A7) and (A8) are classical hypotheses in the functional estimation in finite or infinite 
dimension spaces,while assumption (A9) is a supposition for missing at random, hence 
it is a technical condition for the concision of the proof of the main results.  
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5. Result and proof 

The following denotes by C and C’ some strictly positive generic constants. and defines 
the quantities, for any 𝑎𝑎 ∈ ℱ and for all 𝑖𝑖 = 1,⋯ ,𝑛𝑛. 𝑊𝑊𝑖𝑖 = 𝑊𝑊(ℎ𝑊𝑊−1℘(𝑎𝑎,𝐴𝐴𝑖𝑖)) and 

𝑄𝑄𝑖𝑖 = 𝑄𝑄(ℎ𝑄𝑄−1℘(𝑎𝑎,𝐴𝐴𝑖𝑖)). 

Theorem 5.1. Under conditions (A1)-(A6), one has 

𝝑𝝑�(𝒂𝒂) − 𝝑𝝑(𝒂𝒂) = 𝑶𝑶�𝒉𝒉𝑾𝑾
𝒚𝒚𝟏𝟏 + 𝒉𝒉𝑸𝑸

𝒚𝒚𝟐𝟐� + 𝑶𝑶�
𝐥𝐥𝐥𝐥𝐥𝐥(𝒏𝒏)

𝒏𝒏𝒉𝒉𝑸𝑸𝝌𝝌𝒂𝒂(𝒉𝒉𝑾𝑾)�

𝟏𝟏
𝟐𝟐

,𝒂𝒂. 𝒄𝒄𝒄𝒄. 

Proof 
1. Conditional density 𝐺𝐺𝑎𝑎(. ) is continuous, see (A2) and (A6) thus 

∀𝜀𝜀 > 0,∃𝜎𝜎(𝜀𝜀) > 0,∀𝑏𝑏 ∈ (𝜗𝜗(𝑎𝑎) − 𝜂𝜂,𝜗𝜗(𝑎𝑎) + 𝜂𝜂), |𝐺𝐺𝑎𝑎(𝑏𝑏) − 𝐺𝐺𝑎𝑎(𝜗𝜗(𝑎𝑎))| ≤ 𝜎𝜎(𝜀𝜀)
⇒ |𝑏𝑏 − 𝜗𝜗(𝑎𝑎)| ≤ 𝜖𝜖. 

By construction �̂�𝜗(𝑎𝑎) ∈ (𝜗𝜗(𝑎𝑎) − 𝜂𝜂,𝜗𝜗(𝑎𝑎) + 𝜂𝜂) then  
 ∀𝜖𝜖 > 0,∃𝜎𝜎(𝜖𝜖) > 0, |𝐺𝐺𝑎𝑎(�̂�𝜗)− 𝐺𝐺𝑎𝑎(𝜗𝜗(𝑎𝑎))| ≤ 𝜎𝜎(𝜀𝜀) ⇒ |𝑏𝑏 − 𝜗𝜗(𝑎𝑎)| ≤ 𝜀𝜀. 

Therefore,one arrives finally at  

 ∃𝜎𝜎(𝜖𝜖) > 0,ℙ(|�̂�𝜗(𝑎𝑎) − 𝜗𝜗(𝑎𝑎)| > 𝜖𝜖) ≤ ℙ(|𝐺𝐺𝑎𝑎(�̂�𝜗(𝑎𝑎)) − 𝐺𝐺𝑎𝑎(𝜗𝜗(𝑎𝑎))| > ℘(𝜖𝜖)). 

 In the other case, it comes directly by the definition of 𝜗𝜗(𝑎𝑎) and �̂�𝜗(𝑎𝑎) that:  

�𝐺𝐺𝑎𝑎(𝜗𝜗
^

(𝑎𝑎))− 𝐺𝐺𝑎𝑎(𝜗𝜗(𝑎𝑎))� = �𝐺𝐺𝑎𝑎(𝜗𝜗
^

(𝑎𝑎))− 𝐺𝐺
^
𝑎𝑎(𝜗𝜗

^
(𝑎𝑎)) + 𝐺𝐺

^
𝑎𝑎(𝜗𝜗

^
(𝑎𝑎))− 𝐺𝐺𝑎𝑎(𝜗𝜗(𝑎𝑎))�

≤ �𝐺𝐺𝑎𝑎(𝜗𝜗
^

(𝑎𝑎))− 𝐺𝐺
^
𝑎𝑎(𝜗𝜗

^
(𝑎𝑎))�+ �𝐺𝐺

^
𝑎𝑎(𝜗𝜗

^
(𝑎𝑎))− 𝐺𝐺𝑎𝑎(𝜗𝜗(𝑎𝑎))�

≤ 2sup
𝑏𝑏∈𝒮𝒮

 �𝐺𝐺
^
𝑎𝑎(𝑏𝑏) − 𝐺𝐺𝑎𝑎(𝑏𝑏)� .

 (5.1) 

The uniform complete convergence of the conditional density estimate beyond the 
compact set |𝜗𝜗 − 𝜂𝜂,𝜗𝜗 + 𝜂𝜂| (see 1 below) can be used leading directly from both 
precedent inequalities to  

 ∀𝜖𝜖 > 0,∑𝑛𝑛𝑖𝑖=1 𝐏𝐏(|�̂�𝜗(𝑎𝑎) − 𝜗𝜗(𝑎𝑎)| > 𝜖𝜖) < ∞. (5.2) 

Finally, the following consistency result is checked as long as the following 
Lemmas could be verified.  

Proposition 5.1. Under conditions of Theorem 5.1 one has that  

 lim
𝑛𝑛→∞

 𝑎𝑎𝑢𝑢𝑟𝑟
𝑦𝑦∈𝒮𝒮

|𝐺𝐺�𝑎𝑎(𝑏𝑏) − 𝐺𝐺𝑎𝑎(𝑏𝑏)| = 0a. co. 

 sup
𝑏𝑏∈𝒮𝒮

�𝐺𝐺�𝑎𝑎(𝑏𝑏) − 𝐺𝐺𝑎𝑎(𝑏𝑏)� = 𝑂𝑂�ℎ𝑊𝑊
𝑦𝑦1� + 𝑂𝑂�ℎ𝑄𝑄

𝑦𝑦2�+ 𝑂𝑂 ��
log𝑛𝑛

𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)
�  a. 𝑐𝑐𝑜𝑜. 
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Proof 
It was already shown in (5.1) that  

 |𝐺𝐺𝑎𝑎(�̂�𝜗) − 𝐺𝐺𝑎𝑎(𝜗𝜗)| = 2sup
𝑏𝑏∈𝒮𝒮

|𝐺𝐺�𝑎𝑎(𝑏𝑏) − 𝐺𝐺𝑎𝑎(𝑏𝑏)|. (5.3) 

Now write the following Taylor expansion of function 𝑖𝑖𝑎𝑎:  

 𝐺𝐺𝑎𝑎(�̂�𝜗) = 𝐺𝐺𝑎𝑎(𝜗𝜗)  +  1
𝑗𝑗!
𝐺𝐺𝑎𝑎(𝑗𝑗)(𝜗𝜗∗)(�̂�𝜗 − 𝜗𝜗)𝑗𝑗 , 

for some 𝜗𝜗∗ between 𝜗𝜗 and �̂�𝜗, use (5.3), as along as it is possible to check that  

 ∀𝜏𝜏 > 0,∑𝑛𝑛𝑖𝑖=1 ℙ�𝐺𝐺𝑎𝑎(𝑗𝑗)(𝜗𝜗∗) < 𝜏𝜏� < ∞. (5.4) 

Hence 

 (�̂�𝜗 − 𝜗𝜗)𝑗𝑗 = 𝑂𝑂 �sup
𝑏𝑏∈𝒮𝒮

|𝐺𝐺�𝑎𝑎(𝑏𝑏) − 𝐺𝐺𝑎𝑎(𝑏𝑏)|� ,𝑎𝑎. 𝑐𝑐𝑜𝑜., (5.5) 

so it suffices to check (5.4), and this is done directly by using the second part of (A8) 
together with (1). 

The proof is a direct consequence of the following decomposition: 

 
𝐺𝐺𝑎𝑎� (𝑏𝑏) − 𝐺𝐺𝑎𝑎(𝑏𝑏) = 1

𝑔𝑔�𝐷𝐷
𝑎𝑎 ��𝐺𝐺�𝑁𝑁𝑎𝑎(𝑏𝑏) − 𝔼𝔼�𝐺𝐺�𝑁𝑁𝑎𝑎(𝑏𝑏)�� − �𝐺𝐺𝑎𝑎(𝑏𝑏) − 𝔼𝔼�𝐺𝐺�𝑁𝑁𝑎𝑎(𝑏𝑏)���

+ 𝐺𝐺𝑎𝑎(𝑏𝑏)
𝑔𝑔�𝐷𝐷
𝑎𝑎 (1 − 𝑔𝑔�𝐷𝐷𝑎𝑎),

 

where 

 𝐺𝐺�𝐷𝐷𝑎𝑎 = 1
𝑛𝑛(𝑛𝑛−1)𝔼𝔼[𝜈𝜈12(𝑎𝑎)]

∑𝑖𝑖≠𝑗𝑗 𝜈𝜈𝑖𝑖𝑗𝑗(𝑎𝑎), 

and  

 𝐺𝐺�𝑁𝑁𝑎𝑎(𝑏𝑏) = 1
𝑛𝑛(𝑛𝑛−1)ℎ𝑄𝑄𝔼𝔼[𝜈𝜈12(𝑎𝑎)]

∑𝑖𝑖≠𝑗𝑗 𝜈𝜈𝑖𝑖𝑗𝑗(𝑥𝑥)𝑄𝑄(1) �ℎ𝑄𝑄−1�𝑏𝑏 − 𝐵𝐵𝑗𝑗��, 

and of the Lemmas below.  
Lemma 5.1. Under assumptions (A1), (A3), and (A4) one has 

 1 − 𝑔𝑔�𝐷𝐷𝑎𝑎 = 𝑂𝑂 ��
log(𝑛𝑛)

𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)
� ,𝑎𝑎. 𝑐𝑐𝑜𝑜. 

 ∃℘ > 0,∑
𝑛𝑛
ℙ[|𝑔𝑔�𝐷𝐷𝑎𝑎| < ℘] <  +∞. 

Proof 
One can write  

 |1 − 𝑔𝑔�𝑎𝑎(𝑏𝑏)| ≤ (1 − 𝑔𝑔�𝑎𝑎(𝑏𝑏))/2 ⟹ |𝐺𝐺�𝑎𝑎(𝑏𝑏) − 𝐺𝐺𝑎𝑎(𝑏𝑏)| ≥ 𝐺𝐺𝑎𝑎(𝑏𝑏)/2, 
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to arrive finally at  

 ℙ|1 − 𝑔𝑔�𝑎𝑎(𝑏𝑏)| ≤ (1 − 𝐺𝐺�𝑎𝑎(𝑏𝑏))/2 ≤ ℙ|𝑔𝑔�𝑎𝑎(𝑏𝑏) − 𝑔𝑔𝑎𝑎(𝑏𝑏)| ≥ 𝑔𝑔𝑎𝑎(𝑏𝑏)/2. 

It is enough to take, 𝜂𝜂 = (1 − 𝐺𝐺�𝑎𝑎(𝑏𝑏))/2, to show the result. 
Lemma 5.2. Under all suppositions (A1), (A2), (A4) and (A5,) one has 

 sup
𝑏𝑏∈𝒮𝒮

�𝐺𝐺𝑎𝑎(𝑏𝑏) − 𝔼𝔼[𝐺𝐺�𝑁𝑁𝑎𝑎(𝑏𝑏)]� = 𝑂𝑂�ℎ𝑊𝑊
𝑦𝑦1� + 𝑂𝑂�ℎ𝑄𝑄

𝑦𝑦2�,𝑎𝑎. 𝑐𝑐𝑜𝑜. 

Proof 
From assumption (A4), and when pairs (𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖) are identically distributed, one 

obtains 

 𝔼𝔼[𝐺𝐺�𝑁𝑁𝑎𝑎] = 𝔼𝔼[𝜈𝜈12(𝑎𝑎)[𝔼𝔼[ℎ𝑄𝑄−1𝑄𝑄11|𝐴𝐴]]]. 

By using classical change of variables 𝑡𝑡 = 𝑏𝑏−𝑑𝑑
ℎ𝑄𝑄

, one obtains 

 ℎ𝑄𝑄−1𝐄𝐄[𝑄𝑄(1)|𝐴𝐴] = ∫ℝ 𝑄𝑄
(1)𝐺𝐺𝐴𝐴(𝑏𝑏 − ℎ𝐺𝐺𝑡𝑡)𝑑𝑑𝑡𝑡, 

so 

 |𝔼𝔼[𝑄𝑄(1)|𝐴𝐴] − 𝐺𝐺𝑎𝑎(𝑏𝑏)| ≤ ∫ℝ 𝑄𝑄
(1)|𝐺𝐺𝐴𝐴(𝑏𝑏 − ℎ𝑄𝑄𝑡𝑡) − 𝐺𝐺𝑎𝑎(𝑏𝑏)|𝑑𝑑𝑡𝑡, 

and by supposition (A2)  

 I𝐵𝐵�𝑎𝑎,ℎ𝑄𝑄�(𝐴𝐴)�𝔼𝔼�𝑄𝑄(1)�𝐴𝐴� − 𝐺𝐺𝑎𝑎(𝑏𝑏)� ≤ ∫ℝ 𝑄𝑄
(1)(𝑡𝑡)�ℎ𝑄𝑄

𝑦𝑦1 + �𝑡𝑡|𝑦𝑦2ℎ𝑄𝑄
𝑦𝑦2�𝑑𝑑𝑡𝑡. 

Thus we obtain the claimed result of this Lemma from the direct consequence 
ofassumption (A5), and 𝑄𝑄(1) is a probability density. 

Lemma 5.3. Under the assumptions of Theorem 5.1 one has 

 sup
𝑏𝑏∈𝒮𝒮

�𝐺𝐺�𝑁𝑁
𝑎𝑎(𝑗𝑗)(𝑏𝑏) − 𝔼𝔼[𝐺𝐺�𝑁𝑁𝑎𝑎(𝑏𝑏)� = 𝑂𝑂 ��

log(𝑛𝑛)
𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)

� ,𝑎𝑎. 𝑐𝑐𝑜𝑜. 

Proof 
The demonstration of this lemma is given by a straightforward adaptation of the 

proof of Lemma 5.2 in (Barrientos-Marin et al., 2010) by writing  

 𝐺𝐺𝑁𝑁𝑎𝑎(𝑏𝑏) = 𝐸𝐸1(𝐸𝐸2𝐸𝐸3 − 𝐸𝐸4𝐸𝐸5), 

where 

 𝐺𝐺𝑁𝑁𝑎𝑎(𝑏𝑏) = 𝑛𝑛2ℎ𝑊𝑊𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)
𝑛𝑛(𝑛𝑛−1)𝔼𝔼[𝑉𝑉12]�������

𝐸𝐸1

[�1
𝑛𝑛
∑
𝑗𝑗=1

𝑛𝑛 𝑊𝑊𝑗𝑗(𝑎𝑎)𝑄𝑄𝑗𝑗(𝑦𝑦)
ℎ𝑄𝑄𝜒𝜒𝑥𝑥(ℎ𝑊𝑊)

�
�����������

𝐸𝐸2

�1
𝑛𝑛
∑
𝑖𝑖=1

𝑛𝑛 𝑊𝑊𝑖𝑖(𝑎𝑎)ℓ𝑖𝑖
2(𝑎𝑎)

ℎ𝑊𝑊
2 𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)

�
�����������

𝐸𝐸3

 

 −�1
𝑛𝑛
∑
𝑗𝑗=1

𝑛𝑛 𝑊𝑊𝑗𝑗(𝑎𝑎)ℓ𝑗𝑗(𝑎𝑎)𝑄𝑄𝑗𝑗(𝑏𝑏)
ℎ𝑄𝑄ℎ𝑊𝑊𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)

�
���������������

𝐸𝐸4

�1
𝑛𝑛
∑
𝑖𝑖=1

𝑛𝑛 𝑊𝑊𝑖𝑖(𝑎𝑎)ℓ𝑖𝑖(𝑎𝑎)
ℎ𝑊𝑊𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)

�
�����������

𝐸𝐸5

]. 



The Estimating of the Conditional Density with Application to the Mode Function… 25 

With the similar method utilised above, one can show that  

 𝐸𝐸𝑖𝑖 − 𝔼𝔼[𝐸𝐸𝑖𝑖] = 𝑂𝑂𝑎𝑎.𝑐𝑐𝑐𝑐. ��
log(𝑛𝑛)

𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)� ,𝑖𝑖𝑜𝑜𝑟𝑟 𝑖𝑖 = 2,4. (5.6) 

 𝔼𝔼[𝐸𝐸𝑙𝑙] = 𝑂𝑂(1) 𝑖𝑖𝑜𝑜𝑟𝑟 𝑙𝑙 = 2,4. (5.7) 

 𝐶𝐶𝑜𝑜𝐶𝐶(𝐸𝐸2,𝐸𝐸3) = 𝑜𝑜 ��
log(𝑛𝑛)

𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)
�, (5.8) 

and  

 𝐶𝐶𝑜𝑜𝐶𝐶(𝐸𝐸4,𝐸𝐸5) = 𝑜𝑜 ��
log(𝑛𝑛)

𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)
�. (5.9) 

First, note that (5.7) was already set by Barrientos et al., (2010). Thus, it suffices 
to show (5.6), (5.8) and (5.9) to finish the proof of the Lemma. To show the result 
(5.6), set  

 𝐸𝐸𝑙𝑙,𝜍𝜍 − 𝔼𝔼[𝐸𝐸𝑙𝑙,𝜅𝜅] = 1
𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)

∑𝑛𝑛𝑖𝑖=1 𝑈𝑈𝑖𝑖
𝑙𝑙,𝜍𝜍𝑖𝑖𝑜𝑜𝑟𝑟𝑙𝑙 = 0,1,2,𝑎𝑎𝑛𝑛𝑑𝑑𝑎𝑎 = 0,1 

where  

 𝑈𝑈𝑖𝑖
𝑙𝑙,𝜍𝜍 = 1

𝑛𝑛ℎ𝑊𝑊
𝑙𝑙 ℎ𝑄𝑄

𝜍𝜍 𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)
(𝑊𝑊𝑖𝑖𝑄𝑄𝑖𝑖

𝜍𝜍ℓ𝑖𝑖𝑙𝑙 − 𝔼𝔼[𝑊𝑊𝑖𝑖𝑄𝑄𝑖𝑖
𝜍𝜍ℓ𝑖𝑖𝑙𝑙]). 

By (A3), one has 1
ℎ𝑊𝑊
𝑙𝑙 ℎ𝑄𝑄

𝜍𝜍 (𝑊𝑊𝑖𝑖ℓ𝑖𝑖𝑙𝑙) < 𝐶𝐶 and since 𝑄𝑄 < 1, therefore 

 �𝑈𝑈𝑖𝑖
𝑙𝑙,𝜍𝜍� ≤ 𝐶𝐶

𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)  𝑎𝑎𝑛𝑛𝑑𝑑 𝔼𝔼[𝑈𝑈𝑖𝑖
𝑙𝑙,𝜍𝜍2] ≤ 𝐶𝐶′

𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)
. 

Thus, using the classical Bernstein’s inequality (Uspensky, 1937, p. 205) allows 
to give for all 𝜂𝜂 ∈ (0; 𝐶𝐶′

𝐶𝐶
), 

 ℙ �𝐸𝐸𝑙𝑙,𝜍𝜍 − 𝔼𝔼[𝑈𝑈𝑙𝑙,𝜍𝜍] > 𝜂𝜂�
𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛

𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)
� ≤ 𝐶𝐶′𝑛𝑛−𝐶𝐶𝜂𝜂2 , 

and the relevant choice of 𝜂𝜂 permits to subtract that  

 ℙ �𝐸𝐸𝑙𝑙,𝜍𝜍 − 𝔼𝔼[𝐸𝐸𝑙𝑙,𝜍𝜍] > 𝜂𝜂�
log𝑛𝑛

𝑛𝑛ℎ𝑄𝑄
2𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)

� ≤ 𝐶𝐶′𝑛𝑛−1−𝛾𝛾, 

for l = 0,1,2 and 𝑎𝑎 = 0,1. Now, let us continue to show the results of (5.8) and (5.9). 
For both equations using the case that pairs (𝐴𝐴𝑖𝑖;𝐵𝐵𝑖𝑖), 𝑖𝑖 = 1,⋯ ,𝑛𝑛 are identically 
distributed, one obtains 
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⎩
⎪
⎨

⎪
⎧𝐶𝐶𝑜𝑜𝐶𝐶(𝐸𝐸2,𝐸𝐸3) = 1

𝑛𝑛ℎ𝑄𝑄ℎ𝑊𝑊
2 𝜒𝜒𝑎𝑎2(ℎ𝑊𝑊)

[𝔼𝔼[𝑊𝑊1
2𝑄𝑄1ℓ12] − 𝔼𝔼[𝑊𝑊1𝑄𝑄1]𝔼𝔼[𝑊𝑊1ℓ12]],

𝐶𝐶𝑜𝑜𝐶𝐶(𝐸𝐸4,𝐸𝐸5) = 1
𝑛𝑛ℎ𝑄𝑄ℎ𝑊𝑊

2 𝜒𝜒𝑎𝑎2(ℎ𝑊𝑊) �𝔼𝔼[𝑊𝑊1
2𝑄𝑄1ℓ12]− 𝔼𝔼[𝑊𝑊1𝐺𝐺1ℓ1]𝔼𝔼[𝑊𝑊1ℓ1]� .

 

In fact, one has to evaluate for both results  

 𝔼𝔼�𝑊𝑊𝑖𝑖𝑄𝑄𝑖𝑖
𝜍𝜍ℓ𝑖𝑖𝑙𝑙  �𝑖𝑖𝑜𝑜𝑟𝑟 𝑙𝑙 = 0; 1; 2;  𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 = 0; 1. 

Once more, as 𝑄𝑄 < 1, then for all l = 0; 1; 2; and 𝑎𝑎 = 0; 1; one has that  

 𝔼𝔼[𝑊𝑊𝑖𝑖𝑄𝑄𝑖𝑖
𝜍𝜍ℓ𝑖𝑖𝑙𝑙] = 𝑂𝑂(𝔼𝔼[𝑊𝑊𝑖𝑖ℓ𝑖𝑖𝑙𝑙]), 

and by using (Lemma 5.3 in Barrientos et al. (2010)), one obtains 

 𝔼𝔼[𝑊𝑊𝑖𝑖𝑄𝑄𝑖𝑖
𝜍𝜍ℓ𝑖𝑖𝑙𝑙] = 𝑂𝑂(ℎ𝑊𝑊𝑙𝑙 ℎ𝑄𝑄

𝜍𝜍 𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)), 

which implies that 

 𝐶𝐶𝑜𝑜𝐶𝐶(𝐸𝐸2,𝐸𝐸3) = 𝑂𝑂 � 1
𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)

� = 𝑜𝑜 � 𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛
𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)

�, 

 𝑎𝑎𝑛𝑛𝑑𝑑 𝐶𝐶𝑜𝑜𝐶𝐶(𝐸𝐸4,𝐸𝐸5) = 𝑂𝑂 � 1
𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝑊𝑊)

� = 𝑜𝑜 � log𝑛𝑛
𝑛𝑛ℎ𝑄𝑄𝜒𝜒𝑎𝑎(ℎ𝐾𝐾)

�. 

6. Application: simulated data 

The aim of this simulation was to prove the effectiveness of this study by comparing 
the classical regression and the conditional mode with MAR in the presence of or 
without outliers. 

Functional variable 𝐴𝐴 is taken as a function with support [0,1] based on the 
following observation  

 𝐴𝐴𝑖𝑖(𝑡𝑡) = 𝑋𝑋𝑖𝑖𝑡𝑡2 + cos(𝜋𝜋𝑌𝑌𝑖𝑖𝑡𝑡), 𝑖𝑖 = 1, … , 200;  𝑡𝑡 ∈ [0,1], 

where 𝑋𝑋𝑖𝑖 are i.i.d. ∼ 𝑈𝑈(0,1) and 𝑌𝑌𝑖𝑖 are i.i.d. ∼ 𝒩𝒩(0,1), and are independent from 𝑋𝑋𝑖𝑖 
and 𝑌𝑌𝑖𝑖. For simplicity, Figure 1 presents a sample of 𝑛𝑛 = 200 of the covariable curves 
𝐴𝐴(𝑡𝑡). The author defined response variable 𝐵𝐵 by 𝐵𝐵 = 𝜆𝜆(𝐴𝐴) + 𝜖𝜖, where 𝜆𝜆 is the 
regression operator with  

 𝜆𝜆(𝑎𝑎) = �∫10 𝑎𝑎′(𝑡𝑡)d𝑡𝑡�
2

, 

and 𝜖𝜖 ∼ 𝒩𝒩(0,0.075). 
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Fig. 1. The results of the analysis with the assumption that A_(i = 1, …, 100) (t), t ∈ [0,1] 

Source: own calculations. 

The main goal was to compare the sensitivity of the regression methods with MAR 
and the mode with MAR to outliers, the two estimators are defined as following 
 ∀𝑏𝑏 ∈ IR, hence 

 �̂�𝜆𝑎𝑎(𝑏𝑏) =
∑1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛𝜈𝜈𝑖𝑖𝑗𝑗(𝑎𝑎)𝐵𝐵𝑗𝑗
∑1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛𝜈𝜈𝑖𝑖𝑗𝑗(𝑎𝑎)

, (6.1) 

and the mode estimator, and 𝐺𝐺�𝑎𝑎(𝑏𝑏) defined in (6.1). 
 Choosing the semi-metric on ℱ 

 𝑑𝑑�𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑗𝑗� = �∫10 �𝑎𝑎𝑖𝑖′(𝑡𝑡) − 𝑎𝑎𝑗𝑗′(𝑡𝑡)�
2𝑑𝑑𝑡𝑡,𝑖𝑖𝑜𝑜𝑟𝑟𝑎𝑎𝑖𝑖,𝑎𝑎𝑗𝑗 ∈ ℱ, 

and the quadratic kernel defined as:  

 𝐾𝐾(𝑥𝑥) = 3
2

(1 − 𝑎𝑎2)1 = I = I(0,1). 

One splits the sample of size 200 into a learning sub-sample (𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖), 
𝑖𝑖 = 1, … , 150 and a testing sub-sample �𝐴𝐴𝑗𝑗,𝐵𝐵𝑗𝑗�, 𝑗𝑗 = 151, … , 200. For the missing 
mechanism, the author adopted the following expression 

 𝑃𝑃(𝑥𝑥) = ℙ(℘ = 1|𝐴𝐴 = 𝑎𝑎) = 𝑟𝑟𝑥𝑥𝑟𝑟 �2𝛼𝛼 ∫10 𝑎𝑎2(𝑡𝑡)𝑑𝑑𝑡𝑡�, 

where, exp (𝜔𝜔) = 𝑟𝑟𝜔𝜔/(1 + 𝑟𝑟𝜔𝜔) for ∀𝜔𝜔 ∈ ℝ. To control the quantity 𝑃𝑃(𝑎𝑎), compute 
℘� = 1 − 1

150
∑150𝑖𝑖=1 ℘𝑖𝑖. For optimal bandwidth ℎ𝑊𝑊, choose the automatic selection 
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with a cross validation procedure introduced by (Ferraty & Vieu, 2006). Then 
calculate �̂�𝜆𝐴𝐴𝑗𝑗 and 𝐺𝐺�𝐴𝐴𝑗𝑗 for 𝑗𝑗 = 151, … ,200. 

To highlight the performance of the results, the author plots the true values versus 
the predicted values for the MSE for both cases with complete data without outlier 
(CMSE), and MAR with outlier (MMSE), respectively. 

Predicted values for the MSE for both cases complete the data and response 
missing at random MAR, respectively.  

 1. Complete case, the mean square error (CMSE) is  

 𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑑𝑑𝑟𝑟𝑔𝑔 = 1
50
∑200𝑗𝑗=151 ��̂�𝜆𝐴𝐴𝑗𝑗 − 𝑇𝑇�𝐴𝐴𝑗𝑗��

2
.  𝐴𝐴𝑛𝑛𝑑𝑑 𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑚𝑚𝑐𝑐𝑑𝑑𝑟𝑟 = 1

50
∑200𝑗𝑗=151  

�𝐺𝐺�𝐴𝐴𝑗𝑗 − 𝑇𝑇�𝐴𝐴𝑗𝑗��
2

. 

 2. Incomplete case response MAR, the mean square error (MMSE) is  

 𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑑𝑑𝑟𝑟𝑔𝑔 = 1
50
∑200𝑗𝑗=151 ��̂�𝜆𝐴𝐴𝑗𝑗 − 𝑇𝑇�𝐴𝐴𝑗𝑗��

2
.  𝐴𝐴𝑛𝑛𝑑𝑑 𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑚𝑚𝑐𝑐𝑑𝑑𝑟𝑟 = 1

50
∑200𝑗𝑗=151  

�𝐺𝐺�𝐴𝐴𝑗𝑗 − 𝑇𝑇�𝐴𝐴𝑗𝑗��
2

, 

𝑇𝑇�𝐴𝐴𝑗𝑗� means the response variable. 
1) Complete case: the obtained results are shown in Figure 2, it is clear that there 

is no meaningful difference between the two estimation methods.  

 

Fig. 2. The complete data case: CMSE 

Source: own calculation. 
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2) Incomplete case response MAR: the obtained results in Figure 3 show that the 
mode estimation is better than the classical kernel regression; i.e. the classical kernel 
method with MAR.  

 
 

Fig. 3. The missing at random case: MMSE 

Source: own calculation. 

Table 1. MMSE comparison between both methods for the combinations of parameters (𝛼𝛼)  

𝛼𝛼 ℘�  MMSE class MMSE mode 
0 0.50 0.0705089 0.07207680 

0.5 0.33 0.06701626 0.0687210 
1 0.23 0.05916404 0.06102103 

1.5 0.15 0.05689561 0.05784979 
2 0.10 0.05511259 0.05638462 

Source: own calculation. 

Now, compare the performance of both estimators(classic and mode) in the 
presence of outliers. To do this, the author introduced artificial outliers by multiplying 
some values of responses 𝐵𝐵 by 100 with a fixed degree of dependence (𝛼𝛼). The mode 
estimator has a better performance than the classical one, even if the MMSE of both 
estimators increases substantially relative to the number of outliers, but it remains very 
low for the mode method, as shown in Table 2. 
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Table 2. MMSE for the Classical Kernel Estimator and the mode Estimator according to the numbers 
of the introduced artificial outliers 

Number of artificial outliers 0 10 20 40 
Classical Estimator 𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑑𝑑𝑟𝑟𝑔𝑔 0.04605103 34.41909 104.3417 1112.265 
Mode Estimator 𝐶𝐶𝐶𝐶𝑆𝑆𝐸𝐸𝑚𝑚𝑐𝑐𝑑𝑑𝑟𝑟 0.04678676 0.08507463 0.1022152 0.422661 

Source: own calculation.  

The mode estimator with MAR has a better performance than the classical MAR, 
even if the MMSE of both estimators increases substantially relative to the number of 
outliers, but it remains very low for the mode MAR method, as shown in Table 1. 

7. Conclusion 

In this paper, the author studied the problem of the nonparametric estimation of the 
conditional density with application to the mode function using the local linear 
approach. The feature of this study is the possibility to cover the incomplete data 
situation characterised by the missing phenomena. Empirical analysis showed the 
excellent performance of the proposed methodology, which varied with respect to the 
missing level. In addition to these features, the presented study opened up some 
significant avenues for the future research. In particular, it will be interesting to 
investigate other types of incomplete functional data, such as censored or truncated 
data. Another possible direction is to study the asymptotic property of kNN local linear 
estimator in the functional times series case (complete or incomplete cases). 
In addition, the asymptotic distribution of the proposed estimators is an interesting 
open question. Such asymptotic property is essential as preliminary statistical analyses, 
including the confidence interval or hypotheses testing. Moreover, extending this kind 
of estimation to other nonparametric models, such as the conditional hazard function 
or the conditional distribution function, is also a natural prospect of this study. 
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Szacowanie gęstości warunkowej z wykorzystaniem modelu  
w strukturze regresji skalarnej na funkcji: lokalne podejście liniowe  
z losowym brakiem 

Streszczenie: Celem analizy było zbadanie nieparametrycznego estymatora funkcji gęstości i trybu 
skalarnej zmiennej odpowiedzi na zmienną funkcyjną, gdy obserwacje są i.i.d. Ten proponowany 
estymator jest tworzony przez połączenie metody Missing At Random (MAR) z lokalnym podejściem 
liniowym. Na koniec zapewniono również badanie porównawcze oparte na symulowanych danych, aby 
zilustrować wydajność skończonej próbki i przydatność lokalnego podejścia liniowego z MAR do 
obecności nawet niewielkiej części wartości odstających w danych. 

Słowa kluczowe: dane funkcjonalne, lokalna estymacja liniowa, funkcja trybu warunkowego, 
funkcjonalna statystyka nieparametryczna. 
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