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Abstract- The attitude angles of UAV, as the input parameters of the target localization process, 
influence the accuracy of geo-targeting. In order to improve the accuracy of target localization, this 
paper compensates the attitude angle errors of the UAV based on learning prediction compensation. 
Firstly, considering the airborne equipment and the metadata provided by the UAV, we combine rear 
intersection with GPS/INS to calculate the error of each platform and aircraft attitude angle. Then the 
error prediction model to compensate each platform and aircraft attitude error is derived by analyzing 
the error distribution and polynomial regression. Afterwards, because of the limit of the UAV aerial 
image amount and the similar influence of each attitude angle error on targeting and geometric 
correction, we use equivalent optical axis angle to represent platform and aircraft attitudes. 
Furthermore, we also predict and compensate the error of the equivalent angle. In this process, we 
adopt SVM and regression to classify and obtain error prediction model of equivalent optical axis 
angle. Finally, the actual data is used to verify the compensation algorithm. The results show that the 
method can improve the accuracy of target localization efficiently, and has a certain value of 
engineering guidance and practical application. 
 
Index terms: UAV; Geo-targeting technology; Attitude Angles; Rear intersection; Regression; Learning. 
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I. INTRODUCTION 

 

In recent years, the UAV is widely used in military, agriculture, life and other aspects. UAV geo-

targeting technology, one of the important missions of UAV, is the foundation of targeting 

tracking [1] and surveillance technique, and the positioning accuracy will directly affect the 

follow-up tasks. However, due to some objective limits, such as installation errors, lower 

precision of measurement unit, there often exist errors in the sensors of UAV, which 

deleteriously affects the target positioning accuracy. Therefore, to improve the accuracy of target 

localization, it is necessary to study how to reduce the attitude angle error of UAV. 

In order to improve the accuracy of target localization, domestic and foreign scholars have 

proposed many improved and innovative models and methods. Expect introducing some other 

sensors [2], some scholars use multiple images to improve target positioning accuracy. Meir 

Pachter achieves the purpose by repeatedly targeting the fixed ground object from multiple 

directions, so as to reduce the random error and systematic error [3]; K. Han and G. N. DeSouza 

use sift and stereo vision on airborne video sequences to estimate the terrain of target to improve 

localization accuracy [4]. Using multiple UAVs, J. Tisdale and his group have improved the 

localization accuracy of a ground target [5]. Some improve the positioning accuracy by 

eliminating the errors of the aircraft sensors. M. Jensen Austin found and eliminated the inherent 

errors of the attitude sensors by inverse-orthorectifying images and General Procrustes, thus 

improving the accuracy of target localization [6]. Myung Hwangbo and Takeo Kanade use a set 

of line segments in images of urban areas that are either parallel or orthogonal to the gravitational 

direction to provide visual measurements for the absolute attitude from a calibrated camera [7]. 

However, because of using multiple images or introducing some extra information and artificial 

assistance, the methods above do not have good real-time performance.  

In addition, some scholars improve the positioning accuracy through compensating the error of 

interior and exterior orientation parameters [8]. Jun Wu proposes one from coarse to fine 

calibration method which improves the accuracy of exterior orientation parameters (EoPs) by 5 

steps [9]. Najib A. Metni studies the sensor fusion to estimate the orientation accurately [10]. 

Nevertheless, EoPs are not directly provided by the UAV's metadata. Of course, camera 

calibration can also be used to raise the accuracy of the sensor, such as the direct linear 

transformation [11] and two calibration planes [12]. The relative pose and position of the UAV 
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can also be solved by using artificial icon, such as Amidi et al., with an icon made of 6 

rectangles, calculate the relative pose of the UAV by detecting the corner points of all rectangles 

[13]. However, the sensor error always varies with time, camera calibration too complex to 

calibrate camera before every flight. What’s more, the best way to eliminate the error of aircraft 

sensor may be use the method of field calibration [14]. Therefore, this paper presents a method to 

obtain the prediction model of attitude errors with the results of field calibration in advance, 

which can effectively improve the positioning accuracy but also guarantee the instantaneity. 

In view of the above problems, this paper firstly uses the method of field calibration to obtain the 

error of the platform and aircraft attitude angles. In this process, we combine rear intersection 

with GPS/INS to calculate the error of each attitude angle directly. Then we analyze the 

relationship between the error and the attitude angle to acquire the error compensation formula. 

Finally, by compensating the attitude errors, we can improve the accuracy of target localization in 

real time. 

 

II. METHODOLOGY 

 

In the process of target localization, which based on the imaging model, the position information 

and the attitude information of UAV are required as input data. According to the collinear 

equation, the relation between image pixels coordinates and geographical coordinates are 

established. Then the position information of the target is obtained according to the proportion of 

the similar triangles. By analyzing the target localization method based on imaging model, we 

can see that the accuracy of attitude information of UAV will directly affect the accuracy of 

target localization. What’s more, in the practical application, there is a certain relationship 

between the accuracy of the target localization and the attitude of the UAV. Assuming that 

C C CX Y Z , P P PX Y Z  , N N NX Y Z and A A AX Y Z respectively represent Camera platform coordinate, 

Plane body coordinate, North-East-Up coordinate and space rectangular coordinate. When we 

define each coordinate system as shown in Figure 1, we can get the relationship between the 

target localization error and the attitude angle of the UAV shown in Figure 2. Concretely, Figure 

2(a) shows the relationship between position error and platform elevation, and Figure 2(b) shows 

the relationship between position error and platform azimuth. This means the target localization 

accuracy can be improved by compensating the attitude errors.  
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• Figure 1. The Schematic Diagram of each Coordinate System 

    
(a)      (b) 

• Figure 2. Relationship between Target Localization Accuracy and the Attitude of UAV 

2.1 Compensation Error of Each Attitude Angle 

Firstly, we improve the rear intersection to calculate error of each platform attitude angle 

(platform elevation and platform azimuth) and aircraft attitude angle (aircraft pitch, aircraft roll 

and aircraft yaw). Then analyze the relationship between the error and the attitude angle to 

acquire the error compensation formula. Finally carry out target localization with compensated 

attitude angles to improve the accuracy. 

2.1.1 Calculation of Each Attitude Angle Error 

On one hand, in order to guarantee the authenticity and availability of the error calculated, we use 

the field calibration method. On the other hand, in order to use and compensate the metadata 

provided by UAV directly, we combine rear intersection with GPS/INS. Rear intersection uses 

the principle of the corresponding relationship between ground control points and image pixel 

coordinates, linearizes the collinear equation to establish the error equation, and derive the error 

of each attitude angle value by iteration. First, we use provided telemetry parameters of GPS/INS 

as the initial values. Then according to the collinearity equation, calculate the camera coordinate 
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platform corresponding to the ground control points. Afterwards, utilizing the information of 

multiple control points and repeating the above operations, we can derive error equations and 

solve them. Finally, by performing several iterations until corrections are less than the tolerance, 

we can get the value of each attitude angle error. 

1) Calculate rotation matrix according to the telemetry parameters 

Calculate Rotation matrix with platform parameters (platform azimuth 1κ and platform 

elevation 1ω ) and aircraft parameters (pitch 2φ , roll 2ω and yaw 2κ ). The schematic diagram of 

each coordinate system is shown in Figure 1. 

1 2 3

2 2 2 1 1 1 2 3

1 2 3

( ) ( ) ( ) ( ) ( )
N c c P

N Z X Y Z Y c c P

N P

x x x a a a x
y R R R R R y R y b b b y
z f f c c c z

κ f ω κ ω
         
         = = =         
         − −         

  (1) 

2) According to the collinear equation, calculate the control points’ approximate values of the 

coordinates of the camera platform ( )x ( )y  

Because imaging principle of UAV is the central projection, we can establish the conversion 

relation from North-East-Up coordinate to space rectangular coordinate system based on 

collinear equation. Suppose the plane coordinates in space rectangular coordinate system 

is ( , , )s s sX Y Z  and Cartesian coordinates of the target point is ( , , )X Y Z .The conversion 

relationship can be expressed as 

1N N N

s s s

x y z
X X Y Y Z Z λ

= = =
− − −

     (2) 

Instead, we can use the ground control points (GCPs) to obtain coordinates of camera 

platform according to the collinearity equation of central projection 

1 1 1

3 3 3

2 2 2

3 3 3

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

s s s
c

s s s

s s s
c

s s s

a X X b Y Y c Z Zx f
a X X b Y Y c Z Z
a X X b Y Y c Z Zy f
a X X b Y Y c Z Z

− + − + −
= −

− + − + −
− + − + −

= −





− + − + −



    (3) 

cx 、 cy is the approximation of the camera platform coordinates ( )x ( )y corresponding to the 

control point. 

3) Derive error equation according to the collinear equation 

The collinear equation is linearized and takes first small value items 
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1 1 2 2 2
1 1 2 2 2

1 1 2 2 2
1 1 2 2 2

( )

( )

c s s s
s s s

c s s s
s s s

x x x x x x x xx x dX dY dZ d d d d d
X Y Z
y y y y y y y yy y dX dY dZ d d d d d

X Y Z

ω κ ω φ κ
ω κ ω φ κ

ω κ ω φ κ
ω κ ω φ κ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + + + + + +
∂ ∂ ∂





∂ ∂ ∂ ∂ ∂



 (4) 

The geodetic coordinates of control points are considered as true value, and the 

corresponding image point coordinates are considered as observations, in accordance with the 

principle that observed value +observed value corrections= approximate value + approximate 

value corrections, so we can derive 

( )
( )

c x

c y

x v x dx
y v y dy
+ = +
+ = +





      (5) 

So the error equation for each point can be denoted as 

1 1 2 2 2
1 1 2 2 2

1 1 2 2 2
1 1 2 2 2

( )

( )

x s s s c
s s s

y s s s c
s s s

x x x x x x x xv dX dY dZ d d d d d x x
X Y Z
y y y y y y y yv dX dY dZ d d d d d y y

X Y Z

ω κ ω φ κ
ω κ ω φ κ

ω κ ω φ κ
ω κ ω φ κ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + + + + + + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂







    (6) 

If denote the coefficients by a11… a28, the equation above can be written as  

11 12 13 14 1 15 1 16 2 17 2 18 2

21 22 23 24 1 25 1 26 2 27 2 28 2

x s s s x

y s s s y

v a dX a dY a dZ a d a d a d a d a d l
v a dX a dY a dZ a d a d a d a d a d l

ω κ ω φ κ
ω κ ω φ κ

= + + + + + + + −
= + + + + + + + −





  (7) 

where 

( )
( )

x c

y c

l x x
l y y
= −
= −





       (8) 

And the equation can be written in the form of matrix, which is  

V AX l= −        (9) 

where 

[ ]

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

1 1 2 2 2

,x y

s s s

x y

V v v

a a a a a a a a
A

a a a a a a a a

X dX dY dZ d d d d d

l l l

ω κ ω φ κ

Τ

Τ

Τ

 =  
 

=  





  

=



  =  

   (10) 

4）Calculate the coefficients of corrections  

For simplicity, the numerator and denominator in collinear equation can be denoted by  
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1 1 1

2 2 2 1 1 2 2 2

3 3 3

( ) ( ) ( ) ( ) ( )
s s s

s s Y Z Y X Z s

s s s

X a b c X X X X X X
Y a b c Y Y R Y Y R R R R R Y Y
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 (11) 

Then the coefficients can be calculated as follows 
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κ
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∂

∂ ∂ ∂
= = − −
∂ ∂ ∂

∂ ∂ ∂
= = − −
∂ ∂ ∂

∂ ∂ ∂
= = − −
∂ ∂ ∂

∂ ∂ ∂
= = − −
∂ ∂ ∂
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21 2 3

22 2 3

23 2 3

24 2
1 1 1

25 2
1 1 1

26 2
2 2 2

27 2
2 2 2

28
2

1 ( )

1 ( )

1 ( )

( )
( )

( )
( )

( )
( )

( )
( )

c
s

c
s

c
s

ya a f a y
X Z
ya b f b y
Y Z
ya c f c y
Z Z

y f Y Za Z Y
Z

y f Y Za Z Y
Z

y f Y Za Z Y
Z

y f Y Za Z Y
Z

ya

ω ω ω

κ κ κ

ω ω ω

fff 

κ

∂
= = +
∂
∂

= = +
∂
∂

= = +
∂

∂ ∂ ∂
= = − −
∂ ∂ ∂

∂ ∂ ∂
= = − −
∂ ∂ ∂

∂ ∂ ∂
= = − −
∂ ∂ ∂

∂ ∂ ∂
= = − −
∂ ∂ ∂

∂
= =
∂ 2

2 2

( )
( )

f Y ZZ Y
Z κ κ





















∂ ∂
− −

∂ ∂








 (12) 

Therefore, we have  
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2
1 1 2 2

2 2

2
1 1 2 2
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

  (13) 

5）Obtain normal equations by calculating for each control point  

If the number of control points is n, we can list n groups of error 

equations[ ]1 2 nV V V Τ
 ，and form the total error equation as 

V AX L= −       (14) 

where  

[ ]
[ ]
[ ]

1 2

1 2

1 2

n

n

n

V V V V

A A A A

L l l l

Τ

Τ

Τ







=

=

=







     (15) 

In the light of the least squares principle of indirect adjustment, we can derive the normal 

equation as  

A AX A LΤ Τ=       (16) 

Then the vector solution can be obtained  
1( )X A A A LΤ − Τ=         (17) 
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That is to say, we can gain the corrections  sdX , sdY , sdZ , 1dω , 1dκ , 2dω , 2dφ , 2dκ 。 

6）Obtain the final error by iterating until corrections is less than the tolerance 

Compare the correction obtained each time with the tolerance. If the requirement is not met, 

perform the iteration until the correction is less than the tolerance. Finally, we obtain the total 

error of each attitude angle. 

2.1.2 Compensation of Each Attitude Angle Error 

According to rear intersection, the error distribution of each attitude angle can be calculated. 

Through the analysis of the experimental data, the error of the attitude angle is distributed 

according to a certain trend. Therefore, the error prediction model can be established through the 

study of attitude angle error. After the wrong data are removed, we can use the least square 

method to carry out regression study, and then get the prediction model of each attitude angle 

error. 

In order to improve the real-time performance and reduce the amount of data required in 

flight, the basic form of error prediction model is obtained by analyzing the error distribution of 

previous flight test data. Then modify the parameters using a small amount of the flight data, so 

as to make use of the prediction model to forecast and compensate the error of each attitude angle. 

At last, the target position is calculated after the compensation of the attitude angle. Figure 3 

shows the flow chart of platform and aircraft attitude angle error compensation. 
 Previous flight dataPrevious flight data

Real time flight dataReal time flight data
Model modificationModel modification Error compensationError compensation

Get error distribution 
(the rear intersection)
Get error distribution 
(the rear intersection)

obtain the basic form of the 
error prediction model

obtain the basic form of the 
error prediction model

Calculate Error 
(the intersection)
Calculate Error 

(the intersection)

Modified prediction 
model parameters

Modified prediction 
model parameters

Predict and compensate 
attitude error

Predict and compensate 
attitude error

Target localization
 (with compensated attitude)

Target localization
 (with compensated attitude)

 
• Figure 3. Flow Chart of Platform and Aircraft Attitude Angle Error Compensation 
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2.2 Compensation Errors of Equivalent Angle 

However, because of the limit of the UAV aerial image amount, previous flight data is 

difficult to cover every range of platform and aircraft attitude angle. In order to improve the 

localization accuracy efficiently with limited training set, it is necessary decrease the number of 

attitude angles to be compensated. Therefore, using the method of combining theoretical analysis 

and experimental data, we equal the platform and aircraft attitudes to equivalent optical axis 

angle. Then calculate and compensate the error of equivalent optical axis angle to improve 

targeting accuracy. 

2.2.1 Angle Equivalence and Calculation of Equivalent Angle Error 

By analyzing the target localization method based on the imaging model and experimental 

data, we can draw some conclusions about the influence of each platform and aircraft attitude 

angle error.  

On one hand, the influence of the platform elevation error and the aircraft pitch error on the 

displacement of the final target is similar, and the direction of the displacement is the optical axis 

direction. The influence of the platform azimuth error the platform yaw error on the displacement 

of the final target is similar, and the displacement direction is perpendicular to the direction of the 

optical axis. 

On the other hand, the error of platform elevation and the error of aircraft pitch have 

approximately effect on the final geometric correction; they both will produce a scaling 

transformation for the final corrected image. The error of platform azimuth and the error of 

aircraft yaw have approximately similar effect on the final geometric correction; they both will 

produce a rotation transformation for the final corrected image. Although the roll error will 

produce a cut transformation on the final geometric correction, the roll angle of UAV is usually 

small, and it has little influence on the optical axis.  

Therefore, the platform elevation and the aircraft pitch can be equivalent to the optical axis 

lip angle, and the platform azimuth and the aircraft yaw can be equivalent to the optical axis 

direction angle. Figure 4 shows the schematic diagram of the optical axis angle. The optical axis 

lip angle is represented by dρ , and the optical axis direction angle is represented by dθ . 

Jialiang Liu, Wenrui Ding and Hongguang Li, HIGH PRECISION TARGET LOCALIZATION METHOD 
BASED ON COMPENSATION OF ATTITUDE ANGLE ERRORS

178



 
• Figure 4. Schematic Diagram of the Angle Error and the Optical Axis Angle 

So the equivalent angle error can be calculated as 

2

1

2

2

2

1 d

d

d d
d

d
dd

θ
ρ ω

φ

κ κ
ω

φ

+
−

=

=
 =



     (18) 

2.2.2 Compensation of Equivalent Angle Error 

However, the experimental results show that we cannot simply use an error prediction 

formula to represent the error distribution. As is shown in Figure 5, when the optical axis 

lip/direction angle is same, the corresponding errors may appear two different trends. In the 

process of calculating the equivalent optical axis angular error, since the platform error is 

superimposed with the aircraft error, the equivalent optical axis may have a variety of possible 

errors at the same angle.  

          
(a)        (b) 

• Figure 5. The Relationship between the Angle Error and the Optical Axis Angle 

Figure 5 (a) shows the corresponding relationship between the angle error and the optical 

axis lip angle. In 0°~40°that two different error trends appear at the same angle. Figure 5(b) 

shows the error distribution of the equivalent optical axis direction angle. Also in a certain range, 
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the same optical axis direction angle will correspond to a number of errors. However, different 

from the lip angle error showing two distinct trends in the opposite direction, the optical axis 

direction angle error increases with the angle increasing. Thus, it is of great importance to solve 

the trend classification of lip angle error. 

Since the error may be related to multiple attitude angles, and the two kinds of trends are 

explicit, the error trend can be classified by support vector machines (SVM). First, divide the 

error of lip, which has two values into two categories. Classification results is marked as 1when 

the error which is greater than 0.5°increases with the lip increasing, and classification results is 

marked as 0 when the error which is less than 0.5°decreases with the increase of the lip. Treat 

aircraft and platform attitudes as input data, 1/0 as the classification results, and adopt SVM 

training and obtain the required two types of classifiers. Finally, combining with the experimental 

data, the error prediction model based on actual attitude information is obtained. Figure 6 shows 

the flow char of error compensation of equivalent optical axis angle based on SVM. 

 

The distribution of equivalent 
optical axis angle error

The distribution of equivalent 
optical axis angle error

classify errors ,
Obtain training data of SVM classifier 

classify errors ,
Obtain training data of SVM classifier 

Training SVM 
classifier

Training SVM 
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The error prediction model  
(by SVM classifier)

The error prediction model  
(by SVM classifier)

 compensate errors of 
the lip angle and the direction angle 

 compensate errors of 
the lip angle and the direction angle 

Get two types of 
error prediction 

model

Get two types of 
error prediction 

model

 
• Figure 6. Error Compensation of Equivalent Optical Axis Angle Based on SVM 

Then using the error prediction model got from the SVM based on platform and aircraft 

attitudes, we can compensate the equivalent optical axis angle errors, in order to improve the 

targeting accuracy. 

As can be seen from the above analysis, the impact of aircraft roll error on targeting is 

different from other attitudes, and the aircraft roll angle is generally floating in the smaller range 

of. So firstly, compensate the roll error alone, and use the basic objectives positioning theory to 
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calculate the corrected image. Secondly, compensate the optical axis lip angle and the optical axis 

direction angle, and use the air triangle and UAV’s GPS to get latitude and longitude of the 

image center point. Finally, the latitude and longitude of the whole image are compensated by the 

idea of differential. The flow chart is shown in Figure 7. 
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• Figure 7. Flow Chart of Equivalent Optical Axis Error Compensation 

1) Compensate the roll angle error of UAV, and carry out geometric correction and targeting 

based on imaging model. 

According to the experimental statistics, the mean value of the roll angle error is obtained as 

the compensation value. Compensate the roll angle of the UAV, and get the rotation matrix 

R with the original telemetry parameters. Then according to the collinear equation, calculate the 

geographic coordinates of the center of the image ( , )X Y . 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 9, NO. 1, MARCH 2016 

181



2) Calculate the optical axis lip angle and the optical axis direction angle, and predict and 

compensate the error. 

According to the relationship between the image and other coordinate systems when the 

platform and the UAV are in the starting position, it can be assumed that the optical axis of the 

camera platform coordinates is ( )0,0, f Τ− . So the coordinates of the optical axis in the North-

east-Up coordinate system is 

0
0

Ng

Ng

Ng

x
y R
z f

   
   =   
   −  

     (19) 

According to the physical meaning of the optical axis, the optical axis lip angle ρ and the 

optical axis direction angle θ can be obtained 

2 2
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    (21) 

Then according to the experimental statistics and the forecast model obtained by regression 

learning, we can compensate ρ andθ .  

3) Target localization based on aerial triangle with the optical axis lip and the optical axis 

direction after compensation.  

Figure 4 gives a schematic diagram of the basic principle of the air triangle. Set the aircraft 

position coordinate as ( , , )s s sX Y Z , the distance projected on the ground between the plane and the 

target point can be obtained by using the optical axis lip angle * tan( )SD Z ρ= . Then we can get 

the coordinates of the center point of the image 
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'
'

 * cos( )
 * sin( )

S

S

X X
Y Y

D
D

θ
θ

= +
 = +

     (22) 

4) Differential compensation for the whole image 

The difference between geographical coordinates of image center points, which are 

respectively calculated with the telemetry parameters before and after compensation, can reflect 

the positioning error of the whole image in a certain extent. Therefore, use difference principle to 

compensate the rest of the geographic coordinates of the image. 

'
'

X X
Y Y

X
Y

∆ = −
= −


 ∆

      (23) 

 

III. RESULT AND DISCUSSION 

 

3.1 Analysis of Each Attitude Angle Error 

Through the rear intersection, the error information of each attitude angle can be obtained by 

using the attitude information of UAV as the initial value. A sequence of images is carried out to 

obtain the error distribution. The error prediction expressions are obtained by polynomial 

regression, and the errors of the attitude angles are analyzed. 

Figure 8 shows the distribution of the platform elevation error, and the change range of the 

platform elevation is 90 ,0° ° −  . It is obvious that the relationship of elevation and the error of the 

elevation are nonlinear. The result of quadric polynomial fitting is given. It can be seen that the 

error is rapidly changing when the platform angle is close to 90−  and 0 , and the error in the range 

of 70 , 20 − − 
  is maintained at about 0.6 . Thus, the error of platform elevation can also be 

represented with piecewise function.  

 
• Figure 8. Platform Elevation Error Distribution 
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• Figure 9. Platform Azimuth Error Distribution 

Figure 9 shows the distribution of the platform azimuth error, and the change range of the 

platform azimuth is 180 ,180 − 
  . It can be seen that the relationship between the error of the 

azimuth angle and the azimuth angle of the platform can be fitted with the quadric polynomial 

fitting. The quadric polynomial fitting is given, which has a large correlation coefficient. The 

general trend is that the error is smaller in the vicinity of the 0 , and larger in the vicinity of 

the 180±  . 

Figure 10 shows the relationship between the error of the pitch angle and the pitch angle of 

the aircraft. Although the actual range of the aircraft pitch angle is 0 ,90  
  , but in the process of 

the plane stationary flight, the pitch angle is generally active in a smaller range, so here only the 

error of the pitch in 0.5 ,2  
   is analyzed. From the graph, we can see that a linear expression can 

fit the relationship between the pitch angle error and the pitch angle.  

 
• Figure 10. Aircraft Pitch Angle Error Distribution 

The relationship between the roll angle error of the plane and the roll angle is shown in 

Figure 11. Similar to the plane pitch angle, the plane roll angle only varies in a small range in the 

process of plane stationary flight. Here we only study the distribution of the roll error when roll 

varies in 0.6 ,0.4 − 
  . In the graph, the linear regression and the quadric polynomial regression 
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are tried, but the correlation coefficient of the regression is not high. This is due to the influence 

of external factors, such as the horizontal wind. However, the error of the roll angle of the plane 

is mainly in the range of 0.2 ,0.45  
  . Therefore, the average error data can be used to 

compensate the roll angle.  

 
• Figure 11. Aircraft Roll Error Distribution 

 
• Figure 12. Aircraft Yaw Error Distribution 

The range of the yaw angle of the plane should be 0 ,360° °    , but due to the limited data, 

only the error distribution within 70 ,180° °    is given in the Figure 12. Nonetheless, it can be 

seen from the data that the error of the yaw angle of the aircraft is about 0.3°  . Therefore, the yaw 

error can be treated as a constant. 

3.2 Analysis of Equivalent Angle Error 

The elevation angle error of the platform and the pitch angle error of the aircraft are 

approximately equivalent to the lip angle error of the optical axis, and the azimuth angle error of 

the platform and the yaw angle error of the aircraft are approximately equivalent to the direction 

angle error of the optical axis. By polynomial regression, the approximate error expressions are 

obtained. 
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With the increase of the actual situation of the UAV, the error of the equivalent optical axis 

angle may have two trends. In this case, we cannot obtain a satisfying result using a single error 

prediction function. So with the introduction of the trained SVM classifier, a suitable error 

prediction model can be selected based on the attitude of the UAV, so as to further improve the 

positioning accuracy. Figure 13 shows the classification results of the two trends of equivalent 

optical axis lip angle error and their predictive models obtained by regression. 

 
• Figure 13. Error Distribution of Optical Axis Angle 

3.3 Analysis of Experimental Results 

In this experiment, the accuracy of the three methods is compared, i.e. geo-targeting based 

on imaging model, compensation error of each attitude angle and compensation errors of 

equivalent angle. According to the above method, we can get the compensation formula of 

aircraft and platform attitude angle error and equivalent optical axis angle.  

In experiment 1, we compensate the remote sensing data when the training set is large 

enough to cover the change range of each attitude angle. Figure 14 gives a comparison of the 

results of the experiments. It can be seen that both two kinds of compensation methods have a 

great improvement in the accuracy of the positioning method, and the positioning accuracy of the 

two methods is similar. The method of compensating each attitude angle error is a litter better. 
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• Figure 14. Target Localization Accuracy of Experiment 1 

 

• Figure 15. Target Localization Accuracy of Experiment 2 

In experiment 2, we use another test set whose attitude angles not all change in the range of 

the training set. Then we compensate attitude angles with the same error prediction formula with 

experiment 1.Figure 15 shows the results of the target localization accuracy. In this case, the 

method of compensating equivalent optical axis angle errors works better.  

Table 1 gives the training range and the corresponding angle range of two experiments. 

From the table, we can see that the two methods are similar in the compensation effect when the 

test set is concentrated in the training set, and the results of the error compensation of the optical 

axis are better when the test set is out of the range of the training set. 

• Table 1. Attitude Angle Range of Experiments 

Elevation of platform Azimuth  of platform Roll of aircraft Pitch of aircraft Yaw of aircraft

Training Set (-84,-27) (-170,-20) (0.6,1.7) (5,62) (-98,52)

Experiment 1 (-84,-27) (-170,-41) (0.6,1.7) (5,62) (-97,32)

Experiment 2 (-80,-35) (-22,157) (0.7,2.3) (9,55) (-61,72)  
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In summary, compensation of platform and plane attitude error and compensation of 

equivalent optical axis error can both improve the accuracy of target localization greatly. 

Nevertheless, the latter has better generalization ability, and has better robustness to the change 

of attitude angle. 

 

IV. CONCLUSIONS 

 

By analyzing the target localization method based on imaging model, we can see that the 

attitude angle error will directly affect the accuracy of the target localization. By combining rear 

intersection with GPS/INS, we can calculate the angle error of platform and aircraft attitudes. In 

addition, by analyzing the error distribution and polynomial regression, we can establish the error 

prediction model of each platform and aircraft attitude. Then we can improve the accuracy of the 

target localization with compensated platform and aircraft attitudes.  

Moreover, based on the influence of every attitude angle error on the final position and 

correction, the attitude angles of platform and aircraft are equivalent to the lip angle of the optical 

axis and the direction angle of the optical axis. This is an effectual method when the UAV aerial 

image amount is limited. In this process, the error prediction models of equivalent optical axis 

angles are obtained by using SVM and regression. 

 From the experiments at the end of this paper, we can conclude that the error compensation 

method of each attitude angle and that of the equivalent effective optical axis angle can both 

improve the accuracy of target localization largely. When the training set is abundant enough to 

cover the range of the platform and aircraft attitude angle, both of the two compensation methods 

can gain good results. While the equivalent optical axis angle method has better adaptive ability 

and better robustness in the case of small training sets. 
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