
Applied Computer Systems
ISSN 2255-8691 (online)
ISSN 2255-8683 (print)
May 2021, vol. 26, no. 1, pp. 1–11
https://doi.org/10.2478/acss-2021-0001
https://content.sciendo.com

1

©2021 Awais Qasim, Adeel Munawar, Jawad Hassan, Adnan Khalid.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

Evaluating the Impact of Design Pattern Usage on
Energy Consumption of Applications for Mobile

Platform
Awais Qasim1*, Adeel Munawar2, Jawad Hassan3, Adnan Khalid4

1, 4 Department of Computer Science, Government College University, Lahore, Pakistan
1 School of Science, Engineering and Environment, University of Salford, the UK

2, 3 Department of Computer Science, Lahore Garrison University, Pakistan

Abstract – Energy efficiency in mobile computing is really an
important issue these days. Owing to the popularity and
prevalence of Android operating system among the people, a great
number of Android smartphone applications have been developed
and proliferated by the software developers. While developing
these applications, developers have to keep energy consumption
factor in mind, as the efficiency of an application is largely affected
by it. Thus, designers and programmers endeavour to choose the
best designing approaches to develop energy-efficient applications.
It is imperative to assist the programmers in choosing appropriate
techniques and strategies to manage power consumption. In the
present research, we have investigated the effect of Android
application design on its energy utilisation. For this purpose, we
have practically implemented design patterns on two Android
applications and evaluated their energy consumption before and
after implementing these patterns. We have modelled the high-
level design of these two Android applications by using software
design patterns in such a way as to abate their energy requirement.
We have also checked how the quality, maintainability, and
efficiency of code are affected by these design patterns. The
outcomes of the research can facilitate programmers to utilise
these details while developing energy efficient solutions.

Keywords – Energy efficiency, green computing, green design,

software design, software maintenance.

I. INTRODUCTION

The efficiency of a mobile application is a considerable
factor during the development of mobile phone applications.
We do not regard a developed application as an efficient one if
it just performs all of its required functions and tasks. Other
nonfunctional quality attributes of software like maintenance
and performance are also considered while developing mobile
applications [1]. Maintenance specifically means how one can
easily retest the application by understanding and modifying it.
Sometimes, it is difficult to maintain the applications and, in
some cases, the applications are even unmaintainable.
Therefore, it is necessary to concentrate on the maintenance
aspect when a software application is in the development
process. Its benefit is that if we need a modification in a

* Corresponding author’s e-mail: Awais@gcu.edu.pk

software application, we can achieve it at a small cost, less time
and less work.

The performance of an application implies how effectively
and efficiently it works and how much it satisfies its users. In
the present research, we have specifically focused on
application performance in terms of power management.
Performance is an important aspect to concentrate on, for
effective solution delivery. Poor delivery of solutions is owing
to poor performance, which results in a loss of money [2].
Nowadays smart devices lack permanent power having
rechargeable batteries only. The effect of our proposed solution
on batteries of mobile devices is well under consideration.

We have analysed two different types of open-source
Android applications, which are named AppLocker and Gergek
applications. The source code of these Android applications is
collected from different online repositories of GitHub.
AppLocker and Gergek have 7 thousand and 8 thousand lines
of code (LOC), respectively. The number of classes (NOC) in
the source code of both (AppLocker and Gergek) applications
are 36 and 45, which shows that the nature of the source code
is very complex. AppLocker application works as a security
lock of an application, in which a user can select multiple
applications that are already installed in the mobile device to
secure them from un-authentic access so that no one can open
and steal the data of that application without the permission of
the administrator. If someone tries to open it, a pop-up window
appears, which takes command for authentication of
administrator’s rights. This application works continuously in
the system background, and it maintains a list of all the selected
applications, which have been marked by the device
administrator in order to secure these. The role of the
application is to confirm the name of the foreground running
application from the list of the marked applications, which has
been selected by the user. If it is present in that marked list, then
it gives an authentication pop-up to authenticate the user. In
Gergek, the application gives a reminder to the user when to
water the house plants. There are a number of plants in a house,
which are different in size. These plants need water on different

https://doi.org/10.2478/acss-2021-0001
http://creativecommons.org/licenses/by/4.0
mailto:Awais@gcu.edu.pk

Applied Computer Systems
___2021/26

2

days and at different intervals of time accordingly. The user of
the application selects the watering schedule for all plants
according to the plant type. The user sets the period, due days
and overdue days of watering for all the plants according to
their types. After scheduling the plan of watering, the
application continuously checks when the period becomes over
and the first day of due days starts. Then it gives a reminder to
the user that this specific plant needs water. If the user does not
take notice of these reminders, then it starts to calculate the
days, as the overdue day starts it gives warning to the user with
a dying percentage of that specific plant according to the
counting of due days and overdue days.

To evaluate the maintainability and performance of these
Android mobile applications, we have implemented different
design patterns, i.e., Observer, Singleton, Facade, Abstract
Factory, and Template on them. We have used two copies of
each application. One copy is used to check the implementation
and impact of design patterns on this application, whereas the
other copy remains without the implementation of design
patterns. We are going to evaluate and compare the
performance and maintainability of these two copies of
applications. Model-View-Controller architectural pattern has
been used to develop these applications. It is important to go
through some key characteristics of software application
development. The application source code ought to be simple,
well-structured, lucid, proficient, testable and self-reported.
Software engineers invest a large portion of time in redesigning,
altering and upgrading the software applications. This requires
much effort, time and cost that can be decreased simply by
using better techniques during the development of software [3].
Design patterns are the generally reusable substitute of
normally occurring problems. Design patterns can be utilized in
software development as they are effectively created and tried
solutions. Programmers implement these pre-tested design
patterns easily during the development, rather than reinventing
new solutions. Development of software application can get
easier by utilising these design patterns. These are even proven
to give more reusable and maintainable code actually. Design
patterns are the ‘basic language’ for programmers regardless of
the language they use for programming.

Developing a mobile application is a complicated task since
there are numerous aspects and factors that need to be
considered to achieve the specified quality attributes. Mobile
devices are evolving very quickly in terms of hardware. A lot
of new sensors and new technologies are launched as part of
mobile devices. Various types of mobile devices are available
on the market. These differ in length, width, display resolutions,
operating systems, processor speed, storage capacity, and
battery backup. However, one common problem in all cellular
devices is the modicum battery back-up. Mobile devices
possess limited computing resources and capability. Hence,
complex software, which in turn consumes a large number of
resources, cannot run well on cellular devices. As a result, it
needs exigency of time to develop such kind of applications,
which abate the energy consumption problem as well as give
high performance. Our research contribution consists of an

evaluation of the design pattern impacts on application
performance, i.e., energy consumption and code maintenance.

Based on the problem statement, below are some research
questions which we are going to investigate in our research.
• What impact the Design Patterns have on energy

consumption/performance of Android applications?
• Can we attain the desired maintainability of applications

by the implementation of design patterns?
• How much design patterns would be effective in Android

application development?
• Can we ignore the maintenance of application over the

performance of the application?

To perform our analysis, we have used two different open-

source Android applications and applied some design patterns
from Gang of Four [4]. We have chosen five most commonly
used design patterns based on our personal experience, i.e.,
Facade, Observer, Abstract Factory, Singleton, and Template
pattern. This way we are able to cover all the three
classifications of design patterns, i.e., Structural design
patterns, Creational design patterns, and Behavioural design
patterns. Structural design patterns simplify the structure by
identifying the relationships and deal with how classes and
objects can be composed, to form larger structures. Our chosen
Facade pattern belongs to this category. Creational design
patterns discourage hard-coded solution and provide a
mechanism to make decision at the time of instantiation of a
class (i.e., creating an object of a class) providing a more
general and flexible approach. Our chosen Abstract Factory
pattern, Singleton pattern belong to this category. Behavioural
design patterns provide a mechanism that objects are loosely
coupled and are still able to communicate with each other
providing an efficient way of interaction and responsibility of
objects. Our chosen Observer Pattern, Template pattern belong
to this category. The architectural style followed in both
Android applications is Model-View-Controller (MVC). The
tools used to apply these design patterns and bring changes in
these open-source Android applications are android studio and
eclipse IDE. The goal of the research is to analyse and verify
the impacts of design patterns on Android applications. For this
purpose, we have conducted an empirical investigation to
examine application maintenance and performance.
Maintenance has been measured by quality metrics plug in such
as Metrics Reloaded [5]. Performance in terms of energy
consumption has been monitored using sophisticated Android
application, Power Tutor-App and Power Tutor Pro-App,
developed at the University of Michigan. Power Tutor is a
power estimating mobile application that informs smartphone
users and developers of the energy consumed by different apps.
The billed power model in Power Tutor includes six elements:
CPU and LCD in addition to GPS, Wi-Fi, audio, and cellular
interfaces. For 10-second intervals, it is accurate up to 0.8 %
typically with at most 2.5 % error [8]. The performance of
AppLocker and Gergek, before and after implementing design
patterns, has been measured by using the above-mentioned
power monitoring applications. This has been done on a
handheld Android device for a fixed interval of time. The

Applied Computer Systems
___2021/26

3

device uses a normal battery for its power. Other hardware
specifications of this device are given in Table II.

II. THE PROPOSED EVALUATION STRATEGY AND TOOL USAGE

We have relied on quality metrics plug in for maintenance
factor, i.e., Metrics Reloaded [5] for Lines of codes, Cyclomatic
complexity and the number of classes. For performance
measurement, we have monitored the result of design pattern
implemented application after its execution time. We finally
affirm that the outcomes produced by these design pattern
implemented Android applications are positive, after analysing
the results of power profiler applications and quality metrics in
terms of Cyclomatic complexity, Lines of codes, object creation
and the number of classes. Code quality gets better simply by
the use of design patterns. When we evaluate the performance
of every single design pattern implemented applications against
those which are not using design patterns, we notice that some
design patterns produce a negative impact on performance by
increasing the energy consumption and some of these design
patterns produce a positive impact on the performance of
application by curtailing the energy consumption and CPU
usage. From the obtained results generated by quality metrics
and power profiler applications, we finally maintain that the use
of design pattern improves the code quality. We suggest that
programmers should be aware of design pattern advantages and
disadvantages so that they can use/implement the appropriate
design pattern in software development to produce good quality
software or application in terms of performance and
maintenance. We additionally recommend that a poorly
composed code may also be rewritten simply by using design
patterns. In order to prevent performance and maintenance
issues, we can use design patterns with caution.

Power Tutor is an application for Google Android phones,
developed at Michigan State University. It displays the energy
utilised by major system parts such as CPU, network interface,
screen, GPS navigation receiver, and various running
applications. This application enables software programmers to
visualise the effect of design adjustments on power
consumption. Application end users may also make use of it to
regulate how their activities affect the battery life cycle. Power
Tutor runs on the energy usage model designed by direct
measurements within the careful control of device power
administration states. This model generally gives power usage
estimates within 5 % of actual cost. A configurable screen for
power consumption background is provided. It offers users a
text-file based result containing detailed outcomes. Energy
utilisation of any application can be checked by Power Tutor
application.

III. PRELIMINARIES

In this section, we provide a summarised overview of the
structural design patterns that we have used for the analysis of
energy consumption. These patterns are useful for building the
structure and therefore enhance the maintenance of the system.

A. Facade Pattern
The Facade design pattern provides a standard single

interface to multiple interfaces in a subsystem. The interface
created by the Facade pattern is a very advanced interface,
which makes the subsystems easier to use. The Facade pattern
reduces the overall complexity of a system, simply by
encapsulating the subsystem with a simple facade class and by
decoupling the client from the subsystem. Now if a client wants
to connect to the system, then it only communicates with the
system through the Facade interface. Without Facade, a client
has to be interacting at many places for communication purpose
with the subsystem. It separates the subsystem from the client;
therefore, the complexity of the subsystem is reduced due to the
decoupling. A standard working of the Facade pattern is
presented in Fig. 1. A client connects to the subsystem with the
help of Facade interface. Subsystem contains methods, which
perform some functionality of the application, and clients use
Facade interface class to connect with these subsystems.

Fig. 1. Facade pattern UML diagram [4].

Fig. 2. Facade pattern UML diagram [4].

Applied Computer Systems
___2021/26

4

Fig. 3. Observer pattern UML diagram [4].

B. Singleton Pattern
Singleton design pattern makes sure that a class does not

have more than one instance and provides a single point of
access to it at every point in the source code. It is utilised as a
language approach in object building. Usually, an object
requires being instantiated a lot of times in the application
lifecycle. In an application, the same type of object is created
multiple times, which is a resource demanding procedure.
Singleton makes sure that only a single object instance is
created in the application lifecycle and gives a way to access it.
When someone wants the object of the singleton class, it is
created for the first time and then the created object is used
multiple times in the application. The overall working of
Singleton design is presented in UML form in Fig. 2.

C. Observer Pattern
In some situations, it is important to inform a lot of objects

regarding some situation within the application. By using the
Observer pattern, we can handle these types of situations, in
which it is important to transmit notices regarding a specific
thing to the several object instances in the application software.
Observer pattern describes one-to-many relationships among
several objects to ensure that if the state of an object is changed,
then all of the objects which are dependent on it change
themselves instantly. The standard UML diagram of the
Observer design pattern is presented in Fig. 3. The most
important objects employed in the Observer pattern are
observer and subject. Subject contains a group of observers. All
the groups of observers which are in a subject are notified when
the state of the subject is changed. The observer is coordinated
with the subject state.

D. Abstract Factory Pattern
The Abstract Factory design pattern is the Creational design

pattern. It gives a framework, which enables everyone to create
objects that adopt an overall pattern. Therefore, at execution
time, the Abstract Factory is certainly combined with any
preferred concrete factory that may produce items of a preferred
type. UML representation of the Abstract Factory design
pattern is presented in Fig. 4. Abstract Factory gives interfaces

for creating groups of identical or reliant objects without
mentioning their concrete implementation detail. Client
software makes a concrete implementation of the Abstract
Factory and then utilizes the general interfaces to produce the
concrete objects that are composed of the group of objects. The
clients do not have any knowledge that they get which object
from concrete factories as it only utilises the general interface
of the product.

E. Template Pattern
In some cases, we need to fix the sequence of procedures that

a function uses, but let subclasses give their own personal
implementations by applying the same sequence of procedures.
This Template pattern gives a sequence of procedures in a
function, and defines the implementation of this function in
subclasses. Representation of the UML diagram of the
Template pattern is given in Fig. 5. In the Template pattern,
there is an abstract class which contains the Template function.
Template function should contain specific actions whose
sequence is usually fixed and for a few of the functions, the
implementation of the Template method is different from the
bottom class to top class. In the Template method technique, the
template function should be declared final to fix the sequence
of actions. The majority of the time, subclasses call functions
from superclass; however, in Template design pattern,
superclass calls the template function from subclasses.
Functions in the base class with standard implementation are
known as Hooks, plus they are meant to be overridden by
subclasses.

Fig. 4. Abstract Factory pattern UML diagram [4].

Applied Computer Systems
___2021/26

5

Fig. 5. Template Pattern UML diagram [4].

IV. RELATED WORK

The conservation of energy by making energy saving mobile
applications is a hot area of research. Many energy conscious
techniques make an effort to reduce energy consumption by
replacing hardware components [6], and some other techniques
use the handling of energy requirements. It is described in [7]
that a basic replacement of the resources between CPU and
memory space helps decrease the quantity of energy needed.
The authors in [8] say that battery operated mobiles and inlay
system devices highly depend upon the energy usage of the
involved components. They have also pointed out the fact that
processing less information requires less energy, and also
presented a setup for measuring the energy requirements of the
core (CPU) and memory space of a micro-controller structured
system by working on sorting algorithms. Energy statistics for
software application depend on hardware based or software
based methods [9]. An approach to producing energy source
models for mobile devices utilising the smart battery software
accompanied by methods to achieve reliability has been
presented in [10]. A power producing scheme with execution to
enable fine-grained energy processing has been presented in
[11]. The effect of applying design patterns onto performance
is investigated in [12], also a procedure for choosing design
patterns is provided. A strategy for mapping software design to
power utilisation is provided in [13], as well as the results of
using this strategy on diverse software implementations are
presented.

Power analysis of embedded software is given in [14],
according to this research, it is the software that plays a key role
in power utilisation. In [15], it is identified that energy can be
reduced to 40 % just by rewriting the code on an Intel-based
system. It is also identified that the CPU and memory system
energy can be reduced by code compilation. In [16], it is
expressed that a system is composed of both software and
hardware components where software controls the hardware.
Thus, steps taken during program design have a critical effect
on the energy usage of the processor. The same concept is given
in [17], which states that by changing software design and
quality using software engineering techniques we can optimise
energy consumption. The researchers in [18] are of the view
that it is important to provide a correct set of tools to

programmers and designers so that they are able to make better
the process of energy conscious programming. SEEP presents
a programming framework that helps programmers and
designers in energy conscious programming [19]. The research
conducted in [20] suggests that for developing high-standard
and high-quality software, it is important to create a test case
scenario in order to compare different version or release for
energy consumption. The factors like warming, greenhouse gas
footprint or energy usage have to be viewed as for the durability
of the process of software production. In [21], the authors have
presented standard techniques for the measurement of energy
consumption of application running on mobile devices. These
standard techniques include a set of requisites, an
implementation and an API, which give three totally different
measurement methods resulting in accuracy. In [22], the
authors have given energy profiler; the first energy profiler for
mobile phone applications examines the profiling of
applications running on smartphones. Energy profiler finds that
65 % to 70 % energy of applications is wasted on a third-party
advertising campaign. They also have found multiple bugs of
“wakelock”, which are part of the bugs belonging to “energy”
in smartphone applications. They have also realised the
appropriate position of these bugs in the source code of
applications. In [23], a strategy is given by which an application
can find its energy consumption according to the pairing of
energy-related software and hardware constraints. Also in [24],
it is argued that the design process of the embedded system can
be helpful in estimating the energy consumption. In [25], the
researchers have presented a model-based architectural
approach for the analysis of energy efficiency. This model can
be run with architecture models and it performs an analysis at
the architecture level to calculate the power consumption of the
model software system. The authors of [26] have stated that
energy efficiency can conflict with the quality of design. It is
imperative to consider energy efficiency when improving or
developing the design of a mobile application. They have
performed an analysis on different mobile applications by an
anti-pattern approach. They have also found that the
applications containing anti-patterns can be refracted and gave
positive results. The works by [27] and [41] have revealed that
any change in the system call of an application profile can affect
the energy consumption of that application. The authors have
also discussed a tool, which systematically checks and analyses
the system call of an application and detects whether there is a
change in energy consumption of the application.

The authors of [28] have told us that a number of users
nowadays increasingly demand high-performance computing
solutions being able to address sustainability and limit power
consumption. They have also given an HDFS approach, a
hybrid storage mechanism, which uses hard disk and solid-state
disk combination to get better performance and save energy.
The researchers in [29] have identified that the developers have
less information regarding energy efficiency and lack
information about the best techniques to decrease software
energy utilisation, and are typically unclear about how software
utilises energy. In [30], [39], [40], the authors have delineated
the challenges that end users face and the greatest

Applied Computer Systems
___2021/26

6

responsibilities they have for their mobile phone energy
utilisation. Using many situations, the writers have presented
that performing an activity can use pretty much energy
depending upon the user’s preferences and software options. In
the work presented in [31], the authors have given a
demonstration and implementation of Green-Miner to measure
the energy utilisation of smartphones. It simplifies the
application assessment, and the results of this assessment are
reported back again to experts and developers. In [32], the
researchers have recommended a programming tool eLens to
calculate the power utilisation of Android applications. This
tool is in a position to calculate the billed power consumption
of actual applications up to 10 % of ground-truth
measurements.

The work of [33] has recommended a refactoring strategy to
make improvements in energy utilisation of similar software
systems. They have used this refactoring strategy on 15 open
resource projects and experienced an energy reduction of 12 %.
Moreover, [34] has explored the effect of six generally used
refactoring on about 197 applications. The overall results of
their research have verified that refactoring effects energy
utilisation and it can either boost or reduce the quantity of
energy utilised by an application. Their results have also
displayed the necessity for energy-conscious refactoring
techniques, which can be included in IDEs. Similarly, the
researchers in [35] have studied the way in which the inline
method refactoring affects the energy consumption of three
embedded software applications developed in Java. The results
of their research present that inline methods can maximise
energy utilisation occasionally while reducing it in all others. In
[36], a scientific study has been carried out concentrating on the
singular and joint performance effects of three Android
performance anti-patterns, on two open-source Android
applications. The writers have considered the overall
performance of the original and fixed programs on a prevalent
user case test.

V. THE PROPOSED APPROACH AND IMPLEMENTATION DETAILS

In the preceding section, we briefly discussed the design
patterns that we are going to use in our research. In this section,
we now elaborate the implementation details of these design
patterns on our chosen open-source Android applications.
These design patterns are Singleton, Facade, Observer,
Template and Abstract Factory. We will discuss the individual
and combined results of each of the design patterns after
implementing them on both the AppLocker and Gergek
Android applications. Application energy consumption, i.e., an
indication of its efficiency, has been measured by Android
power profiler applications named Power Tutor and Power
Tutor Pro [37]. Both android applications (AppLocker and
Gergek) have been tested on a physical Android device and the
hardware details of the device are given in Table I. For
measuring the maintainability metrics of both Android
application source codes, we have used Metrics Reloaded and
Metrics. Overall, we have used the metrics of Energy
Consumption (EC), Cyclomatic Complexity (CC), Line of
Code (LOC) and also the number of classes (NOC).

TABLE I
SAMSUNG GALAXY NOTE 4 HARDWARE DETAILS

Component Name Related Detail

O.S 6.0.1 (Marshmallow)

Chipset Qualcomm APQ8084 Snapdragon 805
Exynos 5433

CPU Quad-Core 2.7 GHz Krait 450-Snapdragon
805 Octa-Core (4 × 1.3 GHz CortexA53 and

4 × 1.9 GHz Cortex-A57) – Exynos 5433

Battery Removable Li-Ion 3220 mAH battery

RAM 3GB

Our selected Android applications have been developed in

the Java programming language by following the MVC
Structural pattern. We have implemented Singleton, Facade,
Observer, Template and Abstract Factory design patterns on
(AppLocker and Gergek) Android applications.

A. Results before the Implementation of Design Patterns
Before the implementation of any design pattern, we

executed both applications for a fixed time (fifteen minutes) on
the Android device and measured the energy consumption with
the help of Power Tutor and Power Tutor Pro applications. We
then measured the CC, NOC, and LOC as a maintainability
factor of both applications. The values of positive
maintainability are given below.
• The standard value of Cyclomatic Complexity given by

McCabe is 10 for low-risk applications and between 11
and 30 for moderate risk applications [38].

• An increase in the Line of Code may affect the testability,
understandability and reduce the maintainability of the
code.

• An increase in the number of classes also increases the
complexity of the classes and source code, but it decreases
the dependency of classes.

Before implementing the decided design patterns, we noted
the results of power consumption of applications using Power
profiler application. The obtained values along with the values
of maintainability metrics are given in Tables II and III.
Average Cyclomatic Complexity of both applications is greater
than 10, which means that the code is very complex and
testability is very low. In the long run, very high cost and effort
are required for the maintenance of code.

TABLE II
APPLOCKER APPLICATION MEASUREMENT BEFORE DESIGN PATTERN

IMPLEMENTATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 107.9 7035 33 36

Power Tutor Pro 101 7035 33 36

TABLE III
GERGEK APPLICATION MEASUREMENT BEFORE DESIGN PATTERN

IMPLEMENTATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 35.4 8392 35 45

Power Tutor Pro 86.0 8392 35 45

Applied Computer Systems
___2021/26

7

VI. DESIGN PATTERN IMPLEMENTATION

In this section, we elaborate the impact of each design pattern
implementation one by one on both applications.

A. Implementation of Singleton Pattern
We performed a deep analysis of the source codes of both

applications and found out that there were two classes in the
source code on which we could apply the Singleton pattern.
Methods in these classes perform multiple tasks and save the
state of application activities, boolean flags and some other
temporary variable values in shared preferences. We observed
that there was no need for more than one object instance
initiation of these two classes for both applications. The access
modifier of default constructor has been turned to private so that
no other class can access it from outside the Singleton class.
After the implementation of Singleton pattern and execution of
both applications for 15 minutes, the results obtained are
presented in Tables IV and V. From table values, we learn that
after the implementation of Singleton pattern the value of
energy consumption of both applications has increased. The
number of classes remained consistent for both applications and
there is no major increase in the lines of code.

TABLE IV
 RESULTS AFTER SINGLETON PATTERN IMPLEMENTATION ON APPLOCKER

APPLICATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 118.8 7082 34 36

Power Tutor Pro 110.1 7082 34 36

TABLE V
RESULTS AFTER SINGLETON PATTERN IMPLEMENTATION ON GERGEK

APPLICATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 84.8 8569 33 45

Power Tutor Pro 176.6 8569 33 45

However, the average CC of AppLocker application has

increased but decreased for Gergek application, which means
that after the implementation of Singleton pattern the overall
code has become more complex in AppLocker, but it is reverse
in Gergek.

B. Implementation of Observer Pattern
In Gergek application, there are three asynchronous services

which are running in the background continuously to monitor a
specific variation in time. These services contain extra methods
that are triggered after a specific time and these methods are
executed during the A-sync service execution. These methods
put a huge load on the service execution cycle and we cannot
write these methods outside of the service class as these are the
most important part of the service. We have applied the
Observer pattern on these service classes and, for this purpose,
three additional classes have been created and registered as an
observer in the Observer pattern. The main function of these
classes is just to monitor the specific change in time when all
the a-sync service classes are interested. By discontinuing the
execution of these services we can allow the Observer pattern

to monitor the change in time. When a change occurs, the
update method of observer resumes the paused service and lets
it carry out its basic tasks again. By using Observer pattern, we
reduce the complexity of service class and also reduce the huge
load on the service execution cycle. In AppLocker application,
there is only a single background service to allow and disallow
the restricted application access. This service maintains a list of
applications that are restricted in the device and we have applied
the Observer pattern on this service. For this purpose, we have
created a class that registers itself as an observer and monitors
the change in the state of the mobile device. When the device is
in a locked or idle state, this observer stops the service
execution and restarts it again when the device comes in the
unlocked state.

Results obtained after the Observer pattern implementation,
and execution of both applications for 15 minutes are presented
in Tables VI and VII. From these table values, it clear that the
Observer pattern has a good impact on the energy consumption
of both applications as it is reduced. However, after the
implementation of the design pattern in Applocker application,
the number of classes has dropped. On the contrary, in Gergek
application, the number of classes has increased. This reduction
in classes has caused a reduction in the Cyclomatic Complexity
of AppLocker application. For Gergek application, however,
the Cyclomatic Complexity of the source code is not changed.
LOC is decreased for AppLocker application, which is good
from the maintenance point of view, but it is increased for
Gergek application. The increase in LOC is due to an increase
in the number of classes, which shows that in Gergek
application classes are more complex compared to AppLocker.

TABLE VI
RESULTS AFTER OBSERVER PATTERN IMPLEMENTATION ON APPLOCKER

APPLICATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 11.5 2011 31.5 29

Power Tutor Pro 8.4 2011 31.5 29

TABLE VII
 RESULTS AFTER OBSERVER PATTERN IMPLEMENTATION ON GERGEK

APPLICATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 5 8603 35 51

Power Tutor Pro 7 8603 35 51

C. Implementation of Facade Pattern
In Gergek application, we have attempted to implement the

Facade pattern on the activity class. For proper execution of
services, multiple objects are created and a number of
parameters are initialised before the initiation of these services.
These objects and parameters play an important role in
performing the tasks for which these services are initiated.
Facade pattern manages the initiation of these objects and
parameters, as well as manages the execution of these services
without affecting the structure of an activity class. In
AppLocker application, we have implemented the Facade
pattern on the classes, which manage the application log event

Applied Computer Systems
___2021/26

8

detail and activity log event detail for tracking the proper log
detail of the whole application. We created a Facade pattern
interface and made both classes implement that interface. The
activity class that wants to save the log event detail can use a
single log event controller class object and can perform the
functionality of both classes more conveniently.

Facade pattern has imparted a positive impact on both
applications. Results obtained from the two power profiler
applications (Power Tutor, Power Tutor Pro) after Facade
pattern implementation are given in Tables VIII and IX. The
results show a clear reduction in energy consumption of both
applications. Average CC of AppLocker application code has
also been decreased showing that after the implementation
coding errors in the source code are reduced. However, for
Gergek application the source code average CC remains the
same. Thus, it may be predicted that Gergek source code
contains more coding errors than the AppLocker source code.
The NOC and LOC have increased for both applications
though.

TABLE VIII
RESULTS AFTER FACADE PATTERN IMPLEMENTATION ON APPLOCKER

APPLICATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 83 7138 30.25 43

Power Tutor Pro 71.8 7138 30.25 43

TABLE IX
RESULTS AFTER FACADE PATTERN IMPLEMENTATION ON GERGEK

APPLICATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 16.3 8491 35 50

Power Tutor Pro 33 8491 35 50

D. Implementation of Template Pattern
In the source code of both AppLocker and Gergek

applications, the activity classes responsible for the initiation of
background services do a lot of work for service initiation. By
using the Template pattern, we can overcome the complexity
and responsibility of an activity class and can also reduce the
load of an activity class life cycle. Since an activity class
provides an interface to interact with the application, by putting
a huge load on activity lifecycle, the application can go to a not-
responding-state. This will result in poor usability from the
user’s perspective.

The results obtained after the implementation of the
Template pattern are presented in Tables X and XI. After
execution of the AppLocker application for 15 minutes, the
results show that Template pattern has a good impact on energy
consumption as it is reduced. On the contrary, in Gergek
application it has increased. The NOC in AppLocker
application has slightly increased showing that there is no major
change in the NOC. We have obtained similar results for the
Gergek application as there is no significant change in the NOC.
Average CC of AppLocker application has reduced, but in
Gergek app there is no change in it. However, LOC has
increased in both applications.

TABLE X
RESULTS AFTER TEMPLATE PATTERN IMPLEMENTATION ON APPLOCKER

APPLICATION.

Power Profiler EC LOC Avg CC NOC

Power Tutor 32.6 7128 30.25 38

Power Tutor Pro 58.1 7128 30.25 38

TABLE XI
RESULTS AFTER TEMPLATE PATTERN IMPLEMENTATION ON GERGEK

APPLICATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 109.6 8509 35 49

Power Tutor Pro 162.7 8503 35 49

E. Implementation of Abstract Factory Pattern
Abstract Factory pattern provides an interface, which

manages the creation of appropriate objects of a factory without
indicating their classes clearly. A class, which starts the
background services, decides at runtime which type of service
it should initiate, and what type of objects and data is required
by this particular type of service for its execution. We have
implemented the Abstract Factory pattern on this class; now this
class only uses the appropriate object created by a particular
factory for a particular service. All the decisions that are taken
before the initiation of a particular service are now handled in a
particular factory. The only responsibility of the service starter
class is just to call an appropriate factory for service initiation
and it starts the particular service without creating a different
type of object and parameter initialisation.

After the Abstract Factory pattern implementation, the
obtained results are provided in Tables XII and XIII. Abstract
Factory pattern has produced a good impact on the energy
consumption of both Android applications as it is dramatically
reduced. The NOC has been increased in both applications but
not that much. The Average CC has reduced in the AppLocker
application, but in Gergek application there is neither positive
nor negative change in it. It may be predicted that the
AppLocker source code has fewer coding errors than the
Gergek source code. There is a noticeable increase in LOC of
both applications. Although there is a decrease in average
energy consumption for both applications, but an increase in
NOC and LOC makes the source code very complex, which is
not good for the maintainability factor of the source code.

TABLE XII
RESULTS AFTER ABSTRACT FACTORY PATTERN IMPLEMENTATION ON

APPLOCKER

Power Profiler EC LOC Avg CC NOC

Power Tutor 40.7 7275 31.5 43

Power Tutor Pro 29 7275 31.5 43

TABLE XIII
RESULTS AFTER ABSTRACT FACTORY PATTERN IMPLEMENTATION ON

GERGEK APPLICATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 19.1 8620 35 55

Power Tutor Pro 29.3 8620 35 55

Applied Computer Systems
___2021/26

9

F. Implementation of All the Combined Patterns
After implementing each design pattern separately, we have

implemented multiple design patterns simultaneously on the
AppLocker application to check the effect of combined
patterns. This approach will help us to find if any of these
patterns has a contradictory effect on energy consumption or
code complexity. It is rare that in industry we use so many
patterns in a single application. However, we did not find any
attempt in previous work in which these patterns were all
combined in a single application. This is very important for a
large code base, in which multiple patterns can be implemented.
We need results that show how combined pattern
implementation will have a positive impact. Since a lot of effort
is required to implement all of these pattern combined, there is
a need to make sure that the amount of effort required is less
than the benefit obtained. Therefore, we chose Facade,
Template and Singleton design patterns. After the
implementation of these patterns and running the application
for 15 minutes, we monitored the energy consumption using
power Tutor and Power Tutor Pro applications. The results of
our observation are presented in Table XIV.

TABLE XIV
RESULTS AFTER COMBINED PATTERN IMPLEMENTATION ON APPLOCKER

APPLICATION

Power Profiler EC LOC Avg CC NOC

Power Tutor 105.7 14441 27.56 41

Power Tutor Pro 92.8 14441 27.56 41

From these results, it is clear that after the implementation of

the combined pattern on AppLocker application the energy
consumption has decreased. The number of classes has
increased and it is good for maintainability of the source code,
as when the number of classes increases, the responsibility of
all the classes decreases. Average CC of the source code has
also decreased, which is also good for maintainability as a low
value indicates that the source code has fewer coding errors.
Noticeably, LOC has increased and it is almost double the
original value. This increase in LOC can create a problem in the
long run for source code maintenance.

VII. DISCUSSION AND FUTURE WORK

In the present research, we have investigated the effects of
different design patterns on the energy consumption of two
different android applications. We have also investigated
whether the maintainability related issues are curtailed or not in
the source code of these applications. From the obtained values,
we see that the values of energy consumption have increased
after the implementation of the Singleton pattern. We can say
that the Singleton pattern puts a negative effect on the energy
consumption of the application. This could be because in the
Singleton pattern an object remains present in memory during
the lifecycle of an application. This is opposed to lazy
instantiation where an object is created on demand. In the same
way, the results obtained after the template pattern
implementation are not consistent. The energy consumption has
increased in Gergek application, while in AppLocker app it has

reduced. The increase in energy consumption for the Gergk
application may be due to an increase in the number of classes.
The increase in the number of classes before template pattern
implementation is due to reducing the responsibilities of
classes, so that the Template pattern can be implemented.
Facade, Abstract Factory and Observer pattern implementation
has reduced the energy consumption of both applications
though. In case of Abstract Factory this is because rather than
passing object references among classes, now we have a single
place to get the required objects. The Observer pattern has the
highest level of reduction in energy consumption. This is due to
the nature of the changes made for the implementation of
pattern. Now if any objects need to get notified of any event of
interest there is no need to continuously enquire other objects.
In case that event occurs the object is notified by the Observer.
For those classes in which a lot of events related to background
tasks are performed, it is specially recommended to implement
Observer pattern. The use of Facade pattern has lower energy
consumption because the interaction among classes is reduced
significantly. Facade contains the business logic of application
and becomes the center point of interaction. All the business
logic related activities are now performed in Facade resulting
in reduced interaction among classes. This means a fewer
number of temporary objects are created that are required for
pass by value.

Tables XV and XVI shows the percentage of energy saved
after the implementation of these design patterns.

TABLE XV
PERCENTAGE OF ENERGY SAVED IN APPLOCKER APPLICATION

Pattern
Name

Energy
Consumption
before Pattern

Energy
Consumption after

Pattern

Percentage

Observer
Pattern

107 11.5 ↓ 89.26

Facade
Pattern

107 83 ↓ 22

Singleton
Pattern

107 118 ↑10

Template
Pattern

107 62.6 ↓ 41

Abstract
Factory
Pattern

107 40.7 ↓ 61

TABLE XVI
PERCENTAGE OF ENERGY SAVED IN GERGEK APPLICATION

Pattern Name Energy
Consumption
before Pattern

Energy
Consumption
after Pattern

Percentage

Observer
Pattern

86 7 ↓ 91

Façade Pattern 86 33 ↓ 61

Singleton
Pattern

86 176.6 ↑105

Template
Pattern

86 162.7 ↑89

Abstract
Factory Pattern

86 29.3 ↓ 65

Applied Computer Systems
___2021/26

10

Among all these three patterns, the Observer pattern has
given the best results. We can clearly see a noticeable decrease
in energy consumption for both applications. Between Facade
and Abstract Factory pattern results, Abstract Factory has given
better results than the Facade pattern.

VIII. CONCLUSION

To reduce the energy consumption of Android applications,
we have proposed a new approach by implementing different
design patterns on two Android applications. After
implementation, we see that the Observer pattern
implementation has saved 89.26 % energy in case of
AppLocker application and 91 % energy in case of Gergek
application. Facade pattern has saved 22 % and 61 % energy for
the AppLocker and Gergek applications. The amount of energy
required by both Android applications after Singleton pattern
implementation has shown a 10 % increase in AppLocker
application and 105 % increase in Gergek application, which
shows that Singleton pattern has not reduced the amount of
energy required by both applications. Template pattern has
conserved 41 % energy of AppLocker application but in Gergek
application, the Template pattern has not conserved the energy.
The amount of energy conserved by the Factory pattern
implementation is 61 and 65 % in AppLocker and Gergek,
respectively. In our proposed approach, the maximum amount
of energy has been conserved by Observer and Factory patterns,
followed by the Facade pattern. Template and Singleton
patterns have not saved energy, rather these two patterns have
caused an increase in energy consumption.

REFERENCES
[1] ISO & IEC, Software Engineering – Product Quality: Quality Model,

2001, vol. 1.
[2] C. U. Smith and L. G. Williams, Performance Solutions: A Practical

Guide to Creating Responsive, Scalable Software, vol. 23. Addison-
Wesley Reading, 2002.

[3] R. Leitch and E. Stroulia, “Assessing the Maintainability Benefits of
Design Restructuring Using Dependency Analysis,” in Proceedings. 5th
International Workshop on Enterprise Networking and Computing in
Healthcare Industry (IEEE Cat. No. 03EX717). 2004, pp. 309–322.

[4] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented
Software. Pearson Education India, 1995.

[5] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones,” in
Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, 2010, pp. 105–114.
https://doi.org/10.1145/1878961.1878982

[6] C. Bunse and H. Höpfner, “Resource Substitution with Components-
Optimizing Energy Consumption,” in Proceedings of the Third
International Conference on Software and Data Technologies, 2008, pp.
28–35. https://doi.org/10.5220/0001879000280035

[7] C. Bunse, H. Höpfner, S. Roychoudhury, and E. Mansour, “Energy
Efficient Data Sorting Using Standard Sorting Algorithms,” in Software
and Data Technologies. Springer, 2009, pp. 247–260.
https://doi.org/10.1007/978-3-642-20116-5_19

[8] H. Höpfner and C. Bunse, “Energy Aware Data Management on AVR
Micro Controller Based Systems,” ACM SIGSOFT Software Engineering
Notes, vol. 35, no. 3, pp. 1–8, 2010.

 https://doi.org/10.1145/1764810.1764820
[9] C. Bunse and H. Höpfner, “OCEMES: Measuring Overall and

Component-Based Energy Demands of Mobile and Embedded Systems,”
in Proceedings of the 42. Annual Conference of the German Computer
Society (Gesellschaft für Informatik e.V. (GI)), 2012.

[10] M. Dong and L. Zhong, “Self-Constructive High-Rate System Energy
Modeling for Battery-Powered Mobile Systems,” in Proceedings of the
9th International Conference on Mobile Systems, Applications, and
Services, 2011, pp. 335–348. https://doi.org/10.1145/1999995.2000027

[11] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-Grained
Power Modeling for Smartphones Using System Call Tracing,” in
Proceedings of the Sixth Conference on Computer systems, 2011, pp.
153–168. https://doi.org/10.1145/1966445.1966460

[12] D. Gross and E. Yu, “From Non-Functional Requirements to Design
Through Patterns,” Requirements Engineering, vol. 6, no. 1, pp. 18–36,
2001. https://doi.org/10.1007/s007660170013

[13] N. Mani, D. C. Petriu, and M. Woodside, “Towards Studying the
Performance Effects of Design Patterns for Service Oriented
Architecture,” in Proceedings of the 2nd ACM/SPEC International
Conference on Performance Engineering, 2011, pp. 499–504.
https://doi.org/10.1145/1958746.1958822

[14] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no.
4, pp. 437–445, 1994. https://doi.org/10.1109/92.335012

[15] V. Tiwari, S. Malik, and A. Wolfe, “Compilation Techniques for Low
Energy: An Overview,” in Proceedings of 1994 IEEE Symposium on Low
Power Electronics, 1994, pp. 38–39.

 https://doi.org/10.1109/lpe.1994.573195
[16] H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh, “Techniques

for Low Energy Software,” in Proceedings of the 1997 International
Symposium on Low Power Electronics and Design, 1997, pp. 72–75.
https://doi.org/10.1145/263272.263286

[17] C. Bunse, M. Gottschalk, C. von Ossietzky, S. Naumann, and A. Winter,
“2nd Workshop Energy Aware Software-Engineering and Development
(EASED@BUIS),” Softwaretechnik-Trends, vol. 33, no. 2, pp. 2–3, May
2013. https://doi.org/10.1007/s40568-013-0019-z

[18] T. Hönig, C. Eibel, W. Schröder-Preikschat, B. Cassens, and R. Kapitza,
“Proactive Energy-Aware System Software Design with SEEP,”
Softwaretechnik-Trends, vol. 33, no. 2, pp. 6–7, May 2013.
https://doi.org/10.1007/s40568-013-0021-5

[19] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-Preikschat, “SEEP:
Exploiting Symbolic Execution for Energy-Aware Programming,” ACM
SIGOPS Operating Systems Review, vol. 45, no. 3, pp. 58–62, 2012.
https://doi.org/10.1145/2094091.2094106

[20] S. Naumann, E. Kern, and M. Dick, “Classifying Green Software
Engineering – The GREENSOFT Model,” Softwaretechnik-Trends,
vol. 33, no. 2, pp. 18–19, May 2013. https://doi.org/10.1007/s40568-013-
0027-z

[21] M. Josefiok, M. Schröder, A. Winter, “An Energy Abstraction Layer for
Mobile Computing Devices,” Softwaretechnik-Trends, vol. 33, no. 2, pp.
12–13, May 2013. https://doi.org/10.1007/s40568-013-0024-2

[22] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent Inside
My App? Fine Grained Energy Accounting on Smartphones with Eprof,”
in Proceedings of the 7th ACM European Conference on Computer
Systems, 2012, pp. 29–42. https://doi.org/10.1145/2168836.2168841

[23] P. Heinrich and C. Prehofer, “Network-Wide Energy Optimization for
Adaptive Embedded Systems,” ACM SIGBED Review, vol. 10, no. 1, pp.
33–36, 2013. https://doi.org/10.1145/2492385.2492391

[24] D. Shorin and A. Zimmermann, “Evaluation of Embedded System Energy
Usage with Extended UML Models,” Softwaretechnik-Trends, vol. 33,
no. 2, pp. 16–17, May 2013. https://doi.org/10.1007/s40568-013-0026-0

[25] C. Stier, A. Koziolek, H. Groenda, and R. Reussner, “Model-Based Energy
Efficiency Analysis of Software Architectures,” in European Conference
on Software Architecture. Springer, 2015, pp. 221–238.
https://doi.org/10.1007/978-3-319-23727-5_18

[26] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol, “Anti-
Patterns and the Energy Efficiency of Android Applications,” arXiv
preprint arXiv:1610.05711, 2016.

[27] K. Aggarwal, A. Hindle, and E. Stroulia, “Greenadvisor: A Tool for
Analyzing the Impact of Software Evolution on Energy Consumption,” in
2015 IEEE international conference on software maintenance and
evolution (ICSME), 2015, pp. 311–320.

 https://doi.org/10.1109/ICSM.2015.7332477
[28] I. Polato, D. Barbosa, A. Hindle, and F. Kon, “Hybrid HDFS: Decreasing

energy consumption and speeding up hadoop using SSDs,” PeerJ
PrePrints, vol. 3, pp. e1320v1, 2015.

 https://doi.org/10.7287/peerj.preprints.1320

https://doi.org/10.1145/1878961.1878982
https://doi.org/10.5220/0001879000280035
https://doi.org/10.1007/978-3-642-20116-5_19
https://doi.org/10.1145/1764810.1764820
https://doi.org/10.1145/1999995.2000027
https://doi.org/10.1145/1966445.1966460
https://doi.org/10.1007/s007660170013
https://doi.org/10.1145/1958746.1958822
https://doi.org/10.1109/92.335012
https://doi.org/10.1109/lpe.1994.573195
https://doi.org/10.1145/263272.263286
https://doi.org/10.1007/s40568-013-0019-z
https://doi.org/10.1007/s40568-013-0021-5
https://doi.org/10.1145/2094091.2094106
https://doi.org/10.1007/s40568-013-0027-z
https://doi.org/10.1007/s40568-013-0027-z
https://doi.org/10.1007/s40568-013-0024-2
https://doi.org/10.1145/2168836.2168841
https://doi.org/10.1145/2492385.2492391
https://doi.org/10.1007/s40568-013-0026-0
https://doi.org/10.1007/978-3-319-23727-5_18
https://doi.org/10.1109/ICSM.2015.7332477
https://doi.org/10.7287/peerj.preprints.1320

Applied Computer Systems
___2021/26

11

[29] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What Do Programmers
Know About the Energy Consumption of Software?,” PeerJ PrePrints,
vol. 3, p. e886v2, 2015. https://doi.org/10.7287/peerj.preprints.886

[30] C. Zhang, A. Hindle, and D. M. German, “The Impact of User Choice on
Energy Consumption,” IEEE software, vol. 31, no. 3, pp. 69–75, 2014.
https://doi.org/10.1109/MS.2014.27

[31] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and S.
Romansky, “GreenMiner: A Hardware Based Mining Software
Repositories Software Energy Consumption Framework,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, 2014,
pp. 12–21. https://doi.org/10.1145/2597073.2597097

[32] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating Mobile
Application Energy Consumption Using Program Analysis,” in 2013 35th
International Conference on Software Engineering (ICSE), 2013, pp. 92–
101. https://doi.org/10.1109/ICSE.2013.6606555

[33] G. Pinto, F. Soares-Neto, and F. Castor, “Refactoring for Energy
Efficiency: A Reflection on the State of the Art,” in 2015 IEEE/ACM 4th
International Workshop on Green and Sustainable Software, 2015, pp.
29–35. https://doi.org/10.1109/GREENS.2015.12

[34] C. Sahin, L. Pollock, and J. Clause, “How Do Code Refactorings Affect
Energy Usage?,” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2014,
pp. 1–10. https://doi.org/10.1145/2652524.2652538

[35] W. G. da Silva, L. Brisolara, U. B. Corrêa, and L. Carro, “Evaluation of
the Impact of Code Refactoring on Embedded Software Efficiency,” in
Proceedings of the 1st Workshop de Sistemas Embarcados, 2010, pp.
145–150.

[36] G. Hecht, N. Moha, and R. Rouvoy, “An Empirical Study of the
Performance Impacts of Android Code Smells,” in Proceedings of the
International Conference on Mobile Software Engineering and Systems,
2016, pp. 59–69. https://doi.org/10.1145/2897073.2897100

[37] B. Tiwana, R. Dick, M. Gordon, L. Zhang, and Z. M. Mao, A Power
Monitor for Android-Based Mobile Platforms. [Online]. Available:
http://ziyang.eecs.umich.edu/projects/powertutor/ [Accessed: 2020].

[38] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software
Engineering, no. 4, pp. 308–320, 1976.

 https://doi.org/10.1109/TSE.1976.233837
[39] A. Qasim, S. Iqbal, Z. Aziz, S. A. R. Kazmi, A. Munawar, B. A. Gilani,

and N. Qasim, “Handling Temporal Constraints in Interaction Protocols
for Intelligent Multi-Agent Systems,” International Journal on Smart
Sensing and Intelligent Systems, vol. 13, no. 1, pp. 1–15, 2020.
https://doi.org/10.21307/ijssis-2020-020

[40] D. M. Vistro, A. Munawar, A. Iftikhar, A. Qasim, and A. U. Rehman,
A.U., “Tertiary Care Hospital Monitoring System Using Wireless
Sensors,” Journal of Critical Reviews, vol. 7, no. 10, pp. 1504–1511,
2020.

[41] A. Qasim, H. M. B. Ameen, Z. Aziz, and A. Khalid, “Efficient
Performative Actions for E-Commerce Agents,” Applied Computer
Systems, vol. 25, no. 1, pp. 19–32, May 2020.

 https://doi.org/10.2478/acss-2020-0003

Awais Qasim received the B. sc. degree in Computer
Science from the Punjab University College of
Information Technology (PUCIT), Lahore, Pakistan,
in 2009 and the M. sc. degree in Computer Science
from Lahore University of Management Sciences
(LUMS), Lahore, Pakistan, in 2011. After that he
worked as a Software Engineer in the industry and
developed a number of iPhone and Android
applications. He works as an Assistant Professor at the
Computer Science Department, Government College
University. Currently he also works as a Postdoc

researcher at the School of Science, Engineering and Environment, University
of Salford, the UK. His current research includes developing robotic solutions
for real-time disaster management activities. He has published 14 research
papers in peer-reviewed ISI indexed journals. Overall, he has conducted
research in the areas of code cloning, code smells, model checking, multi-agent
systems, real-time systems, and self-adaptive systems.
E-mail: Awais@gcu.edu.pk
ORCID iD: https://orcid.org/0000-0001-8677-9569

Adeel Munawar received the B. sc. degree from
Gujranwala Institute of Future Technology
University (GIFT), Gujranwala, Pakistan, in 2015
and the M. sc. degree in Computer Science from the
Government College University (GCU), Lahore,
Pakistan, in 2018. His research interest includes the
multi-agent system, artificial intelligence, real-time
systems, and natural processing languages. Currently,
he works as a Lecturer at Lahore Garrison University,
Lahore, Pakistan. From 2019 he is associated with

research-related activities to propagate the trends of research at Lahore Garrison
University. His research interest includes code smells and design patterns.
E-mail: Adeel.munawar@lgu.edu.pk
ORCID iD: https://orcid.org/0000-0003-3315-3348

Jawad Hassan received the B. sc. degree in
Computer Science from the Government College
University, Lahore, Pakistan, in 2017 and the M. sc.
degree in Computer Science from the Government
College University, Lahore, Pakistan in 2019. He has
one and a half years of experience as visiting faculty
at the Government College University. He joined the
Computer Science Department, Lahore Garrison
University in 2019 as a Lecturer. He has authored two
research papers in peer-reviewed ISI indexed
journals. His research interests include multi-agent

systems and code cloning.
E-mail: Jawad.hassan@lgu.edu.pk

Adnan Khalid received the PhD degree in Cloud
Computing from the University of Engineering &
Technology, Lahore, under the supervision of Prof.
Dr. M. Shahbaz. He is currently an Assistant
Professor with the prestigious Government College
University, Lahore. He teaches research methods and
software engineering at the undergraduate and
postgraduate levels. His area of research is fog
computing. He intends to highlight the benefits of this
relatively novel field of research. He has 12 scholarly

publications in international HEC recognised journals.
E-mail: Adnan.Khalid@gcu.edu.pk

https://doi.org/10.7287/peerj.preprints.886
https://doi.org/10.1109/MS.2014.27
https://doi.org/10.1145/2597073.2597097
https://doi.org/10.1109/ICSE.2013.6606555
https://doi.org/10.1109/GREENS.2015.12
https://doi.org/10.1145/2652524.2652538
https://doi.org/10.1145/2897073.2897100
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.21307/ijssis-2020-020
https://doi.org/10.2478/acss-2020-0003
mailto:Awais@gcu.edu.pk
https://orcid.org/0000-0001-8677-9569
mailto:Adeel.munawar@lgu.edu.pk
https://orcid.org/0000-0003-3315-3348
mailto:Jawad.hassan@lgu.edu.pk
mailto:Adnan.Khalid@gcu.edu.pk

