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Abstract – In recent years, various domains have been 
influenced by the rapid growth of machine learning. Autonomous 
driving is an area that has tremendously developed in parallel with 
the advancement of machine learning. In autonomous vehicles, 
various machine learning components are used such as traffic 
lights recognition, traffic sign recognition, limiting speed and 
pathfinding. For most of these components, computer vision 
technologies with deep learning such as object detection, semantic 
segmentation and image classification are used. However, these 
machine learning models are vulnerable to targeted tensor 
perturbations called adversarial attacks, which limit the 
performance of the applications. Therefore, implementing defense 
models against adversarial attacks has become an increasingly 
critical research area. The paper aims at summarising the latest 
adversarial attacks and defense models introduced in the field of 
autonomous driving with machine learning technologies up until 
mid-2021.  
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I. INTRODUCTION 
With the rapid growth of machine learning and artificial 

intelligence, various fields such as Autonomous Vehicles 
(AVs), computer vision, and natural language processing are 
developing rapidly [1]. Developing an autonomous vehicle is a 
core goal of conceptualizing the future vision of smart and 
autonomous cities [2]. Over the past decade, the development 
of autonomous cars has drawn much attention and lots of 
simulations and prototypes have been introduced. At present, a 
variety of blue-chip companies like Google, Apple (rumored), 
and Uber are in the process of productionalizing 
commercialized AVs. Companies such as Tesla have already 
commercialized vehicles on offer [3].  

In the development process of AVs, there are various 
artificial intelligence and machine learning components. Due to 
the high availability of the data and the high performance, most 
of the time the research community employs deep learning 
models for machine learning-related tasks [4]. At present, they 
have been deployed in various domains such as image, text, and 
audio classifications, time-series predictions and many 
more [5]. Some AV capabilities are integrated into modern 
vehicles, which also use deep learning models to provide 
functionality such as object detection, image classification, and 
semantic segmentation to improve the security of the 
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passengers. In the case of AVs, these models are used in more 
complicated tasks such as decision making, steering and 
pathfinding of the vehicles [6], [7]. Furthermore, to improve the 
effectiveness of AVs, a communication schema between 
stakeholders named Vehicle-to-Everyone (V2X) technique, 
which is a composition of communications like Vehicle-to-
Infrastructure (V2I) and vehicle-to-vehicle (V2V), has been 
introduced to transmit information such as traffic conditions 
and resource allocation [8]. Fig. 1 depicts a general architecture 
of an autonomous driving machine and its assorted data 
ingressing components. 

 
 

Fig. 1.  Overview of the autonomous driving machines [9], [10]. Inputs gathered 
from the cameras, other sensors and V2X communication is processed by the 
deep learning models and other controlling units in the AVs to perform various 
tasks. 

A. Adversarial Attacks 
Present research has discovered that deep learning models 

are not fully secure because an attacker can input adversarial 
examples, which are specifically designed perturbations to 
cause these deep learning models to predict erroneously [11]. 
These perturbations are undetectable by humans, but they are 
strong enough to reliably fool the model. There are considerable 
research works that have been done on defensive strategies 
against adversarial attacks as well. 

An attacker is able to execute attacks on a machine learning 
model in two main stages in a machine learning pipeline. The 
first category is the machine learning model-training phase 
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attacks [12]. This can be further divided into three main types. 
The first type of attack is known as the data injection attack 
where the attacker injects adversarial samples into the training 
dataset to change the distribution by poisoning but without any 
knowledge about the training dataset. The second type is data 
modification attacks where the adversary is modifying or 
contaminating the training dataset with the knowledge of it. In 
these two types of attacks, it assumes that the adversary has no 
knowledge about the target model. The latter type of attack is 
known as the logic corruption attack where the attacker tries to 
modify the target model. It is assumed here that the attacker is 
fully aware of the model [12], [13]. 

The second type of attack is testing phase attacks [12]. 
During this stage, the attacker primarily causes 
misclassifications in the model output by generating adversarial 
perturbations. From the above two main categories (i.e., 
training phase and testing phase attacks), testing phase attacks 
get higher attention because there are many studies conducted 
for attacks and defense methods at this stage [14], [15].  

Attacks during the testing phase are further classified into 
three categories: black-box, white-box, and grey-box attacks 
[5]. In black-box attacks, it is assumed that the attacker does not 
know the model, in white-box attacks, it is assumed that the 
attacker has full knowledge of the model, including architecture 
and defense methods, and in the grey-box attacks, the attacker 
has some knowledge about the model such as the structure of 
the model and training data but no knowledge about the weights 
of the model [13], [16]. Considering the adversary’s knowledge 
about the network, the white-box attacks could be stated as the 
strongest and the black box attacks are the weakest ones. Fig. 2 
depicts the summary of the above classification of the 
adversarial attacks. 

Fig. 2.  Concept map of the adversarial attacks. 

Considering the intention of the adversary, the attacks can be 
divided into two main categories. If the attack is performed for 
a specific feature, it is a targeted attack; if the attack performs 
all the features, it is an untargeted attack [13]. Apart from the 
above classifications, there is a set of attacks named exploratory 
attacks to gain sensitive information about the model and 
training set without modifications. Some examples of 
exploratory attacks: 1) Model extraction attacks: where the 
attacker tries to extract parameters by querying the model in a 

black-box manner, and 2) Model inversion attacks: where the 
attacker attempts to reconstruct or extract private and sensitive 
information related to the training set from the model 
parameters or using the prediction outputs [12], [13], [17]. 

B. Defending against Adversarial Attacks 
There are many attacks introduced in each of the above-

discussed stages. Moreover, when defending against these 
adversarial attacks, the researchers introduce several defense 
strategies. Among such strategies, the adversarial training 
method where the model is re-trained by augmenting 
adversarial examples to the training dataset with their correct 
labels is widely used. Here, the adversarial perturbations are 
generated by selecting one or many attacks [14]. Another 
popular defense mechanism is the defensive distillation 
method. The main objective of the defensive distillation method 
is to make the learning process smooth and remove the volume 
of gradients around the inputs [18]. Apart from these, 
Generative Adversarial Networks (GAN) based approaches 
(Defense GAN) [19] and denoiser-based defense approaches 
[20] have been introduced. Nevertheless, adversarial training is 
the most promising adversarial defense approach and several 
seminal improvements have been carried out and 
introduced [21].  

Qiu et al. divided these adversarial defense methods into 
three main strategies [1]. The first one is modifying the data-
based defense method, which refers to modifying both training 
and testing phase data and improving the robustness of the 
models. Defensive techniques such as adversarial training [14], 
gradient hiding [1], [22], [23] and input transformation [24] 
belong to this method. The second strategy is modifying the 
model-based defenses. This strategy includes defense 
mechanisms like defensive distillation and regularization [18]. 
The last one is auxiliary tool-based defense models, which use 
additional tools such as GAN networks in the defense 
model [1]. This is the summary of the adversarial attacks and 
the defense models commonly used in present.  

The security threat of the adversarial attack has received 
more attention among the research community with the arrival 
of AVs, which detect and classify objects, control speed and 
plan paths via the use of deep neural networks [25], [26]. This 
is understandable given the growth of computer vision 
technologies in AVs based on machine learning, and the future 
of autonomous and unmanned vehicles is likely to be based on 
machine learning [27], [28]. Thus, these adversarial attacks 
would be a significant threat. At present, there are several 
research works devoted to introducing novel adversarial attacks 
and defense models, pipelines in AVs. However, there is still a 
technical barrier to making fully robust defense models against 
these adversarial attacks. 

C. Motivation 
The importance and the usage of machine learning 

applications are increasing in the AV industry. However, as 
mentioned earlier, these machine learning and deep learning 
models are vulnerable to adversarial attacks, which are limiting 
the performance of the applications. Moreover, these attacks on 
AVs could be a great problem for society because if the output 
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of a machine-learning model in an AV is misclassified due to 
an adversarial attack it will result in an increase in automobile 
accidents, traffic delays, and even impairments and death. 
There are comprehensive surveys and reviews on adversarial 
attacks, but there is a limited number of works specifically in 
the domain of AVs. Therefore, the primary motivation of this 
review paper is to summarise the recently identified adversarial 
attacks, defense models against those attacks, and to discuss 
their performance and reliability in the field of AVs. In 
addition, a comprehensive analysis of open research problems 
in adversarial machine learning on AVs is given. We hope that 
it will be a valuable addition for those who are interested in 
conducting research on adversarial attacks on AVs. 

D. Organisation of the Paper 
In this review paper, we summarise the research on 

adversarial attacks and defense models, pipelines in AVs. 
Section II discusses the adversarial attacks on the machine 
learning models in AVs. Here we review some of the 
vulnerabilities and attacks that are introduced on deep learning 
based object detection, object classification, segmentation, and 
driving simulation models. Section III considers defense 
models and pipelines to mitigate the above attacks in AVs. A 
discussion on their performance and limitations will follow. 
Section IV addresses open research problems and areas in 
adversarial attacks and defense methods on AVs. Finally, 
Section V concludes the paper. 

II. ADVERSARIAL ATTACKS INTRODUCED ON AUTONOMOUS 
VEHICLES 

This section focuses on the adversarial attacks, which are 
specially introduced and simulated on machine learning models 
in AVs. The section includes a discussion of their capabilities, 
objectives and structure. 

A. Attacks Introduced on Image Classification and Object 
Detection Models 

In [29], the researchers introduced an out-of-distribution 
attack in the traffic sign recognition model in AV. The proposed 
out-of-distribution attack allows for the generation of 
adversarial examples starting from anywhere in the training or 
testing data and going out of the distribution of training and 
testing data. The main insight of this attack is that since the 
network is trained on images of traffic signs it can only 
effectively classify the inputs of traffic signs, which are in 
distribution to the classifier. Thus, by using out-of-distribution 
images such as logos and embedding custom signs, the 
predictions of the model could be misclassified. This attack is 
able to fool the traffic sign recognition model in both real-world 
and virtual settings. 

In the same research, the researchers were able to fool the 
convolutional neural network (CNN) based traffic sign 
recognition model by using the optical phenomenon of different 
viewing angles, and this attack was called the lenticular printing 
attack. It synthesizes adverse images using at least two other 
images and makes a different sign appear based on the viewing 
angle. The key insight of this attack is the difference between 

the viewing angles of the human driver and the camera mounted 
on top of the vehicle. Moreover, to make the proposed out-of-
distribution attack effective under real-world conditions, they 
included transformations, such as brightness adjustments, 
perspective transformations and re-sizing at the training and 
evaluation phases. The researchers examined the effectiveness 
of the proposed attack pipeline against the adversarial training 
defense strategy. To support their examination, they trained the 
CNN model using the adversarial perturbations generated by 
the Fast Gradient Sign Attack (FGSM) with (Epsilon) ϵ = 0.3 
and (step size) α = 0.5. The training loss of the neural network 
is modified according to the equation below [14]. 

𝐽𝐽˜(θ, 𝑥𝑥,𝑦𝑦)  =  α𝐽𝐽(θ, 𝑥𝑥,𝑦𝑦)  + (1 −  α)J(θ,𝑥𝑥 + ϵ sign �∇𝑥𝑥𝐽𝐽(θ, 𝑥𝑥,𝑦𝑦)� 

(1) 
Here, the 𝐽𝐽(θ, 𝑥𝑥,𝑦𝑦) denotes the loss function, α denotes the 

step size, θ denotes the model weights and biases, ∇𝑥𝑥 denotes 
the gradient and ϵ sign �∇𝑥𝑥𝐽𝐽(θ, 𝑥𝑥, 𝑦𝑦)�  is the adversarial 
perturbation of the FGSM attack. Moreover, ϵ denotes the 
epsilon value, which is used to make the adversarial 
perturbation small [30]. When performing the proposed out-of-
distribution and lenticular printing attack on this adversarially 
trained model, they identified that the model was still 
ineffective for it. The research used the GTSRB [31] and 
GTSDB [32] datasets. In conclusion, the study emphasized that 
adversarial attacks could be introduced using the behaviours of 
the physical world as black-box adversaries. 

Tietz et al. introduced a GAN based adversarial perturbation 
generation mechanism for the traffic sign recognition models in 
AV [33]. The structure of their GAN model is similar to the 
AdvGAN model, which was introduced in [34] to generate 
adversarial perturbations. The experiments were carried out on 
the GTSRB dataset. The AdvGAN model contains mainly three 
components: the target classifier  𝑓𝑓 , generator  𝒢𝒢  and 
discriminator 𝒟𝒟. Initially,  𝒢𝒢  gets the original image and makes 
the adversarial examples (𝑥𝑥 + 𝒢𝒢(𝑥𝑥)) . Then adversarial 
examples are pointed to  𝒟𝒟  to ensure the generated samples are 
indistinguishable from their original class. At the same time, 
target network 𝑓𝑓  gets the generated adversarial samples and 
outputs loss (ℒadv), which represents the distance between the 
original and the predicted class for the adversarial samples [34].  

In this study, the researchers checked the effect of the 
transformations of the input image and other hyperparameters 
of the GAN model on the success rate of the attack. As the 
initial step, they checked the performance of the attack for 
different perturbation threshold values with greyscale and RGB 
images. Then they verified the performance of the attack with 
hyper-parameters of the GAN models such as weighted loss, 
learning rate, and the number of filters in the generator model. 
After the experiments, results showed that the proposed attack 
was able to reduce the test accuracy to 17.4 % and obtained a 
misclassification rate of 82.9 % as the optimal result. Moreover, 
as a future enhancement of the research, the researchers 
mentioned making a defense model using adversarial training 
or defensive distillation methods.  
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Li et al. proposed a novel black-box attack on traffic sign 
classification models in AVs [3]. This method was based on the 
square attack implemented using the random search proposed 
in [35]. Moreover, this attack was evaluated for both targeted 
and untargeted approaches and it performed well in both cases. 
In summary, these are some main attacks introduced for image 
classification-related machine learning models in AVs.  

In AVs, object detection also plays a major role. In terms of 
object detection, at present RetinaNet, YOLO, and Faster R-
CNN are the trending methods [36]. A recent study has 
introduced an attack by compressing the size of the malicious 
samples to stickers that can fool the YOLO and Faster R-CNN 
object detectors [37]. Furthermore, ShapeShifter: Adversarial 
attacks on Faster R-CNN object detector [38] proposed a new 
attack method that resulted in object detection failures in AVs. 
The proposed attack was inspired by two approaches introduced 
for image classification named change-of-variable attack [39] 
and Expectation over Transformation (EOT) [40]. For the 
evaluation, they trained a Faster R-CNN model using the 
Microsoft Common Objects in Context (MS-COCO) dataset 
[41] and performed the proposed attack in both indoor and 
driving conditions. Their experiments showed that the proposed 
attack was able to fool the object detector with a maximum of 
93 % success rate.  

Eykholt et al. proposed an adversarial physical perturbation-
based attack to fool classification models [42]. The main 
objective of the work was to introduce a novel algorithm named 
robust physical perturbations (RP2) that synthesized adversarial 
samples under different physical conditions such as 
environmental conditions and spatial constraints. The 
evaluation of this study was performed using classification 
models made on GTSRB and LISA [43] datasets and the 
proposed attacks were robust to a wide range of distances and 
angles. Based on the RP2 algorithm introduced in [42], Eykholt 
et al. proposed two novel attacks on YOLO and Faster R-CNN 
traffic sign object detection models [44]. These attacks make 
object detectors ignore the traffic signs (disappearance attack) 
or start to detect objects that are not available in the frame 
(creation attack) by covering the signs with adversarial posters 
or attaching stickers. Both object detectors were fooled with an 
average of 85% by the disappearance attack with poster 
perturbations in a lab environment.  

Lovisotto et al. proposed a novel attack technique named 
SLAP (Short-Lived Adversarial Perturbations) which used a 
specific adversarial pattern on traffic signs using a projector 
[45]. To ensure the strength of the perturbations for physical 
conditions such as viewing angles, various input 
transformations were used with EOT method-based 
optimization. The attack success rate was evaluated on different 
distances, angles, and indoor/outdoor conditions. The results 
showed that an adversarial training defense approach could 
successfully improve the resistance against attack; however, the 
input randomization defense approach was unable to improve 
resilience [45].  

B. Attacks Introduced on Segmentation and Driving Simulation 
Models 

Apart from classification and object detection, semantic 
image segmentation is also a key annotation technique used in 
AVs. Xu et al. introduced an iterative projected gradient-based 
attack on segmentation models in AVs [46]. For the 
investigation of the attack, they used the DeepLab-V3+ 
segmentation model. In the evaluation, the untargeted way of 
the attack reached approximately 65 % of D-mIoU (Drop-in 
mean interaction over-union) rate and the attack was improved 
when the number of iterations increased. Based on the 
observations, they also proposed an adversarial training method 
to defend against attacks on segmentation models.  

When developing autonomous driving models, simulation 
engines do a great job. In [47], the researchers investigated the 
effect of physical adversarial attacks using the CARLA 
simulator. Here they generated adversarial perturbations such 
as painting of a black line on the road to investigate the models 
and they identified that those physical perturbations could 
easily deceive the steering functionalities of an AV. Moreover, 
[48] proposed a novel attack to cause failure in the motion 
planning system of AVs using adversarial billboards. This 
attack was evaluated in physical conditions such as brightness, 
weather conditions. According to the results, they were able to 
mislead the steering angle error of the vehicle by nearly 26 
degrees.  

Wu et al. devised FGSM on regression (FGSMr) and 
universal adversarial perturbation on regression (UAPr) attacks 
for steering tasks in AVs using a simulator [49]. The results 
showed that the FGSMr attack had the ability to deviate the 
vehicle within seconds while the UAPr attack caused 
underperformance of the vehicle at certain critical points. 

According to the attacks discussed above, it can be seen that 
most of the proposed attacks concentrate on image 
classification and object detection-based machine learning 
models. Moreover, since adversarial attacks on semantic 
segmentation and other fields are still ongoing research areas, 
in the future there will likely be more attacks introduced. 
Furthermore, we have noticed that the researchers have 
concentrated on the strength of the proposed adversarial 
perturbations under various physical world conditions. Table I 
provides a summary of the state-of-the-art adversarial attacks 
specially introduced for autonomous driving machines. 

III. DEFENSE METHODS INTRODUCED ON AUTONOMOUS 
VEHICLES AGAINST ADVERSARIAL ATTACKS 

This section focuses on the adversarial defense mechanism 
introduced on AVs. In addition, we will discuss the advantages 
and disadvantages of these defense models.  

The authors of [50] performed an in-depth analysis of four 
existing defense methods against five adversarial attacks on 
CNN-based driving models. They evaluated adversarial 
training, defensive distillation, anomaly detection, and feature 
squeezing defense methods against Iterative Targeted Fast 
Gradient Sign Method (IT-FGSM) attack, optimization based 
attack, AdvGAN [34] universal adversarial perturbation attack, 
and AdvGAN universal adversarial perturbation attack [51]. As 
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a result, adversarial training and defensive distillation methods 
are only robust to IT-FGSM and optimization-based attacks up 
to some extent, while other defenses are able to detect more 
attacks with their own limitations. It was proposed to make a 
collaborative defense approach.  

Wan et al. evaluated adversarial training and defensive 
distillation for adversarial attacks on traffic light classification 
[52]. First, they trained the model using a dataset, which 
contained original and adversarial examples and then 
implemented defensive distillation. In the investigation process, 
they verified the robustness of the model using spatial, one-
pixel, Carlini & Wagner (C&W) and boundary attacks. As a 
result, each defense approach was marginally successful or 
susceptible to those attacks. 

In [53], the researchers proposed adversarial training and a 
defensive distillation-based approach. For the adversarial 
training, they used perturbations from the FGSM and the 
Jacobian-based saliency map (JSMA) attacks generated by a 
separate deep learning network trained on the same dataset. 
Equation (2) represents the hypothesis of adversarial 
perturbations from FGSM, and the optimization function of the 
JSMA attack to generate adversarial perturbations is 
demonstrated in Eq. (3) [54]:  

  η = ϵ ∗  sign(∇  ∗  𝐽𝐽(θ, 𝑥𝑥,𝑦𝑦))      (2) 

argmin
δ𝑥𝑥

�|δ𝑥𝑥|� s. t.𝐹𝐹(𝑋𝑋 +  δ𝑥𝑥) =  𝑌𝑌∗,     (3) 

where 𝑌𝑌∗ denotes the targeted label and δ𝑥𝑥  denotes the 
perturbation added to the original input X.  

The researchers were able to obtain an average of 91 % 
testing accuracy by using the proposed hybrid defense method. 
This approach emphasises the importance of the collaborative 
approach of several defense technologies rather than using a 
single defense approach.  

5G technology is an area that is gaining high focus at present. 
Wu et al. proposed a 5G network-based approach to make the 
traffic sign recognition models in AVs robust against 
adversarial attacks [55]. As the main defense technology, 
singular value decomposition (SVD) was used where SVD 
eliminated or filtered out the adversarial perturbation to restore 
the input image of the neural network model. To address the 
requirement of real-time combating of the adversaries, they 
used mobile edge computing (MEC), where the model was 
deployed in a MEC node with 5G capability, to get the correct 
(Robust Output) signal for the vehicle. Moreover, to investigate 
the adversarial robustness, Iterative FGSM (I-FGSM), C&W, 
Deep Fool and JSMA attacks were used. 

In [56], the researchers proposed a restoration method that 
secured the model by removing the adversarial noise from the 
adversarial examples and reverting it to the original inputs using 
an encoder and a decoder (AutoEncoder). According to the 
output, an average of 97 % restoration rate for the FGSM 
adversarial perturbations was obtained.  

Sun et al. proposed a novel defense approach to counteract 
the adversarial attacks on object detection models in AVs. The 
proposed defense strategy was based on adversarial training 
with a novel regularization term, which considered the local 

smoothness and stereo information. The evaluation results 
showed that their approach was more effective than a regular 
adversarial training approach and it improved the detection 
performance of the original model as well [57]. 

Lu et al. showed that the solidity of the adversarial 
perturbations would degrade with the distances and viewing 
angles. They empirically examined this phenomenon using a 
traffic sign detector based on YOLO [58]. However, later 
researchers used input transformation methods to improve the 
strength of the proposed attack under these conditions. This is 
a clear example to show how attackers adopt the particular 
defense or resilience approaches, and it shows that adversarial 
machine learning is a boundless research area.  

According to the aforementioned adversarial defense 
methods for AVs, we can clearly understand that researchers 
are not yet able to implement a fully robust model for the 
specific components that they paid attention to, such as traffic 
sign recognition. Besides, most of the research used FGSM or 
collaborative adversarial training and defensive distillation 
method as the main techniques. However, each defense 
approach is not fully robust against adversarial attacks and none 
of those works concentrated on natural corruptions which 
appeared as black-box adversaries. Table II summarises the 
defense methods introduced in AVs. In the next section, we will 
discuss open research areas in this domain. 

IV. DISCUSSION 
Based on what has been presented so far, it can be understood 

that there are various adversarial attacks introduced relevant to 
machine learning components in AVs. However, the number of 
defense methods introduced is sparse when compared to the 
number of attacks introduced. This section will discuss open 
research areas in adversarial attacks and defense methods in the 
AV domain. 

A. Introducing New Attack Methods 
In recent years, most research on adversarial machine 

learning on AVs has introduced novel attacks. However, we can 
see that most of those attacks are limited to object detection and 
classification-related areas. We have identified that research on 
making adversarial attacks tends to use behaviours of the 
physical world. As future research, we propose implementing 
novel attacks on deep learning techniques used in AVs such as 
semantic segmentation and creating 3D/2D maps. In particular, 
in AVs photogrammetry and 3D scene, re-construction 
techniques could be used to accumulate information about 
objects, geographic properties and other environmental 
variations [59], [60]. We hope that in the future, cutting-edge 
3D scene reconstruction techniques like Neural Radiance Field 
[61] will be applied in the AVs. Thus, trying out attack methods 
in an ethical manner is critical for identifying vulnerabilities 
and improving those technologies. Furthermore, since AVs 
gather training data for the algorithms, future attacks could use 
data modifying or poisoning approaches. To sum up, we hope 
that introducing attacks will help domain experts identify the 
weak components in the AV architectures. 
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TABLE I 

SUMMARY OF THE ADVERSARIAL ATTACKS INTRODUCED ON AUTONOMOUS VEHICLES 

Year Work Objective Summary of the Attack Used Dataset Results 

2018 [29] To misclassify the traffic 
sign recognition models. 
 
To investigate the attack 
against an FSGM 
adversarially trained 
network. 

Introduced attack named out-of distribution attack 
effectively synthesizes adversarial perturbations using 
logos and custom signs.  
 
Introduced viewing angle-based attack named a 
lenticular printing attack. 

GTSRB 
GTSDB 

The proposed adversarial attacks 
are able to fool the adversarially 
trained robust model. 

2018 [62] To misclassify the traffic 
sign recognition models. 

Modifies non-toxic signs and advertisements to be 
classified as traffic signs.  

GTSRB Able to fool the traffic sign model 
with an average of 95 % success 
rate.  

2019 [33] To misclassify the traffic 
sign recognition models 
using adversarial examples 
generated by a GAN model. 

Introduced generative adversarial network (GANs) 
based approach generates adversarial examples, and 
the effect for the model is evaluated when adding 
transformations for the input image and changing the 
hyperparameters of the GAN model. 

GTSRB The test accuracy was reduced to 
17.4 % and an 82.9 % 
misclassification rate was 
obtained. 

2021 [3] To misclassify the traffic 
sign recognition model. 

Introduced random search-based adaptive square 
attack can be performed in both targeted and 
untargeted ways. 

GTSRB Able to get more than 80 % 
success rate for both targeted and 
untargeted ways. 

2017 [37] To fool the YOLO and 
Faster R-CNN traffic sign 
object detection model. 

Adversarial stickers are attached to the traffic signs. NA Successfully fooled the object 
detection models. 

2019 [38] To fool the Faster R-CNN 
based traffic sign object 
detection models. 

Introduced attack was inspired by the change-of-
variable attack and EOT method originally introduced 
for image classification. 

MS-COCO Successfully fooled the object 
detection model with a maximum 
of 93 % success rate. 

2018 [42] To fool the traffic-sign 
classification model.  

Introduced robust physical perturbation algorithm 
(RP2) generates adversarial perturbations under 
different physical conditions, such as environmental 
conditions and spatial constraints. 

LISA 

GTSRB 

Successfully fooled the object 
detectors, and adversarial samples 
were robust to a wide range of 
angles and distances. 

2018 [44] To fool the Faster R-CNN 
and Yolo object detection 
models. 

Introduced two attacks by adversarial stickers or 
posters fool the object detection models based on the 
RP2 algorithm. 

 

NA Both traffic sign detection models 
were fooled at a nearly 85 % 
success rate by ignoring the traffic 
signs by adversarial posters. 

Object detector starts recognising 
objects that are not present in the 
frame. 

2021 [46] To fool the semantic 
segmentation models in 
AVs. 

An iterative projected gradient-based attack is 
introduced on the DeepLab-V3+ segmentation model. 

Cityscapes 
Dataset [63] 

Approximately 65 % D-mIoU rate 
was obtained for the untargeted 
way of the attack. 

2019 [47] To attack the AV 
controlling system. 

Testing AVs controlling and the robustness for the 
physical adversaries. 

CARLA 
Simulator 

Physical perturbations can fool 
autonomous cars and make 
failures in their controlling system. 

2020 [48] To attack the steering tasks 
of the AV. 

Introduced method generates adversarial billboards, 
which have dynamic behaviours under the viewing 
angles, illumination changes, and other driving 
conditions to maximise the error of steering tasks. 

Udacity self-
driving 

dataset [64] 

Dave dataset 
[65] 

KITTI [66] 

Able to mislead the steering angle 
error of the vehicle up to 26.44 
degrees. 

 

2021 [45] To fool object detection and 
traffic sign recognition 
components. 

A specific adversarial pattern was projected to the 
objects. To improve the physical reliability of 
adversarial examples, input transformations and EOT-
based optimization were used. 

LISA 

GTSRB 

The attack was a success on Mask 
RCNN, YOLO models, and CNN 
models used for traffic sign 
recognition. 

Adversarial training could 
improve the resistance against the 
attack. 

2021 [49] To evaluate adversarial 
attacks on steering tasks on 
AVs. 

It was devised and evaluated how FGSMr and UAPr 
adversarial perturbations affected the steering tasks in 
AVs using a simulator.  

NVIDIA end-
to-end self-

driving 

Unity3D 
simulator 

FGSMr attack can deviate the 
vehicle within seconds. 

UPAr attack causes incidents 
under certain conditions. 
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TABLE II 
SUMMARY OF THE ADVERSARIAL ATTACK DEFENSE METHODS INTRODUCED ON AUTONOMOUS VEHICLES 

Year Work Objective Summary of the Defense Method Defense 
Category Dataset Result 

2020 [50] To evaluate the four existing 
defense models against five 
adversarial attacks. 

Adversarial training 

Defensive distillation 

Anomaly detection 

Feature squeezing methods 

Updating the 
data 

Updating the 
model 

Auxiliary 
tool-based 

defense 

Udacity dataset 

Epoch, Nvidia 
DAVE-2 and 
VGG16 Driving 
Models 

None of the defense 
models can completely 
defend against the 
investigated attacks 

2020 [52] To implement a robust model for 
traffic light classification. 

The model was trained using a 
dataset with adversarial and non-
adversarial data. 

Defensive distillation. 

Updating the 
data 

Updating the 
model 

Traffic light 
dataset collected 
from CARLA 
simulator 

The model was 
marginally successful 
against spatial attack, but 
not robust to the C&W 
attack. 

2017 [53] To implement an adversarially 
robust traffic sign classification 
model. 

A collaborative approach of FGSM 
and the JSMA attacks-based 
adversarial training with the 
Defensive distillation method. 

Updating the 
data 

Updating the 
model 

GTSRB Able to get an average of 
91 % testing accuracy for 
adversarial samples. 

2020 [55] To implement an adversarially 
robust traffic sign classification 
model. 

Proposed singular value 
decomposition, 5G, and MEC-based 
approach. 

For the investigation, I-FGSM, 
JSMA, C&W, and Deep fool attacks 
were used. 

Auxiliary 
tool-based 

defense 

GTSRB Able to defend against the 
attacks at a sufficient 
level.  

Allows for real-time 
combating of adversarial 
attacks. 

2020 [56] To implement an adversarially 
robust image classification model               
(Targeted Model – Traffic sign 
recognition)  

Proposed autoencoder-based 
adversarial noise removing method. 

Auxiliary 
tool-based 

defense 

GTSRB An average of 97 % 
restoration rate was 
obtained for the FGSM 
adversarial perturbations 

2020 [57] To implement a robust object 
detection model. 

Proposed defense approach based on 
adversarial training with a novel 
regularization term. 

Updating the 
model 

KITTI Robustness to PGD and 
FGSM attacks is higher 
than the traditional 
adversarial training 
approach. 

2017 [58] To evaluate the robustness of the 
adversarial perturbations to traffic 
sign object detectors under the 
physical world constraints. 

Assessed the reliability of the 
adversarial perturbations under the 
viewing angles and distances using 
the YOLO object detection network. 

Updating 
Data 

MS-COCO 

GTSRB 

Demonstrates that the 
attack success rate was 
degrading under the 
changes in the viewing 
distance and viewing 
angles.  

B. Improving the Robustness of the Machine Learning Models 
For the defense methods discussed above, most works used 

FGSM based or collaborative adversarial training approaches 
and defensive distillation strategies. It is clear that none of those 
works is fully robust against adversarial attacks. Research by 
Madry et al. shows that FGSM based adversarial training does 
not increase the robustness against the adversarial attacks for 
large epsilon ϵ  values and networks can over-fit on the 
adversarial examples. Additionally, they demonstrate that 
adversarial training using projected gradient descent (PGD) 
adversarial perturbations: Equation (4) is more efficient [15]. 

𝑥𝑥adv𝑡𝑡  =  Π𝜖𝜖  (𝑥𝑥 𝑡𝑡−1  +  α . sign(∇𝑥𝑥ℓ(ℎ(𝑥𝑥 𝑡𝑡−1),𝑦𝑦))) ,   (4) 

where 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡   the adversarial sample in step t and Π the project to 
the ball of interest (Clipping values between values [− 𝜖𝜖, 𝜖𝜖]). 

Furthermore, the information contained in image 
representations can be utilised as means to generate more 
transformations and to have a deep semantic understanding of 

the scene during the training phase defenses. A study by 
Mahendran et al. [67] has demonstrated that several layers of 
convolutional neural networks have retained representations of 
an image to a high level of geometric invariances. These 
transformations can further augment the training process of the 
models.  

Recent research has identified that deep learning models in 
AVs are vulnerable not only to adversarial attacks but also to 
physical world adversaries such as transposing brightness, 
noise and blur [68]. In [69], the researchers show that these 
physical conditions cause a decrease in the performance of the 
traffic sign recognition models in AVs. Moreover, these natural 
corruptions may manifest single instances or compositions of 
multiple corruptions. As a result, it is essential to evaluate DL 
models on both types of corruption [69].  

Therefore, when implementing the deep learning models and 
defense models for AVs, the researchers have to concentrate on 
these natural corruptions as well. To overcome this problem, 
several data augmentation/transformation and sensor fusion 
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approaches are proposed [70], [71]. However, using sensor-
based approaches improves the complexity of the system and 
the performance vs the cost of those approaches have to be 
assessed. Implementing hybrid defense models using existing 
defense approaches to improve the robustness of the machine 
learning models would be an ideal solution. Moreover, we hope 
that using cutting-edge technologies like reinforcement 
learning and explainable AI would be a novel solution to 
improve robustness.  

C. Introducing General Adversarial Defense Solutions 
Implementing a general defense framework that addresses 

the vulnerability of both man-made adversarial attacks and 
physical world adversarial corruptions at the same time would 
be a promising open research problem, because it would save 
the cost and the complexity of the system. Gurel et al. proposed 
an approach named “Knowledge enhanced machine learning 
pipeline against diverse adversarial attacks” (KEMLP), which 
performs the main task integrated with several auxiliary tasks 
to improve domain knowledge of the prediction via different 
factors. This could be identified as recent research on general 
adversarial robustness [72]. However, since this method uses 
multiple auxiliary networks during the inference phase, 
resource consumption of this approach has to be evaluated. This 
is due to the fact when it comes to the AVs improving the 
general resilience without using any supporting tools in the 
inference is essential due to the resource constraints [73].  

We hope that a composite approach of adversarial training 
and data transformation with proper optimizations will be a 
possible solution for the general adversarial robustness because 
it will lead to a better-trained model resilient to both man-made 
and physical world adversaries. This ensures the plug-and-play 
doctrine, which does not necessitate any other dependencies 
during the inference phase of the model when deployed. Thus, 
no resource overheads would appear in the inference. Besides, 
general robustness to adversarial attacks and physical 
corruption is not a limited research area for AVs [74].   

D. Improving the Security of the Machine Learning Model Data 
The AV domain is one of the main big data-generating 

sectors. Deep learning models are data-hungry and their 
performance relies on the size of the training dataset. Owing to 
that fact, deep learning models in AVs are trained for a huge 
amount of data. Besides, reinforcement learning is used to 
improve the dynamic decision-making capabilities of the AVs 
where the model is learned by failures and data gathered by the 
AV itself [75]. Therefore, improving the security of those 
datasets is necessary because the performance, security and 
control of AVs rely on these data. At present, the data generated 
by AVs are stored in a distributed manner, which raises a 
question about the faultlessness of those data.  

 Moreover, according to the Eliot Framework [76] and 
contemporary literature works [77], the ecosystem of AVs will 
be based on federated machine learning and the trained machine 
learning and deep learning models can be updated via the cloud 
infrastructure. This means that there is a security threat on 
machine learning artifacts and their data when storing them in 
the cloud as well. For this reason, finding a secure way to store 

machine learning models and datasets is an essential open 
research problem.  

E. Increasing the Speed and Efficiency of the Defense Models 
The ecosystem of the AVs is connected to cloud computing 

technology. As discussed in defense methods introduced in 
AVs, some defense methods get considerable time to perform 
against adversarial attacks. However, real-time combating of 
adversarial perturbations is essential in a safety-critical domain 
like AVs. To improve the efficiency of executing adversarially 
robust machine learning models, this paper has proposed using 
innovative technologies like 5G. Moreover, since AVs have 
complicated intelligent components, building lightweight 
adversarial defense methods and improving the resilience of the 
existing models naturally without changing the network 
architecture or without using any supporting tool in the 
inference would be some promising research areas.  

V. CONCLUSION 
Recent research on adversarial attacks raises a question on 

the security and the effectiveness of AVs, which purely run on 
machine learning and deep learning technologies, such as object 
classification and detection, semantic segmentation, etc. This 
paper has presented a comprehensive analysis of the adversarial 
attacks and a survey of adversarial defense models specially 
introduced to machine learning components in AVs in the 
literature. Previous analysis shows that most of the research to 
date has focused on implementing new attacks and that the 
defense models introduced are not fully robust against 
adversarial attacks. Finally, the authors have discussed the open 
research areas in AVs and adversarial machine learning related 
to improving the robustness, securing the machine learning and 
training data of AVs, and improving the efficiency of executing 
defense models. The authors have particularly highlighted the 
importance of a general defense approach for improving the 
resistance against both adversarial attacks and physical 
corruptions as a unified solution. Moreover, several methods, 
which help launch new adversarial attacks on the ecosystem of 
autonomous driving, have also been discussed.  

The authors hope that this paper will help the community 
identify research gaps to be addressed by those who are going 
to undertake further research on adversarial attacks and defense 
technologies for autonomous driving machines. 
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