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Abstract – Deep neural networks are a tool for acquiring an 
approximation of the robot mathematical model without available 
information about its parameters. This paper compares the 
LSTM, stacked LSTM and phased LSTM architectures for time 
series forecasting. In this paper, motion sensor data from mobile 
robot driving episodes are used as the experimental data. From the 
experiment, the models show better results for short-term 
prediction, where the LSTM stacked model slightly outperforms 
the other two models. Finally, the predicted and actual trajectories 
of the robot are compared. 
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I. INTRODUCTION 
Time series forecasting is a powerful tool whose importance 

and topicality have been proven throughout the years by a high 
number of publications [1], [2] and a wide range of 
applications. One of the promising applications is predicting the 
future states of a wheeled mobile robot using historic time 
series by acquiring its imitation model. One of the motivators 
of this study is the little amount of research performed on time 
series forecasting of the mobile robot motion sensor data. 
Another reason is that algorithm testing for robots can be very 
time-consuming, and an accurate imitation model could 
decrease the time spent on testing these algorithms. 

When it comes to mobile robot system modelling, it is 
possible to develop the mathematical models of the system 
based on the dynamics and kinematics of the robot [3], [4]. 
However, these models are often idealised, and, in reality, they 
do not correspond to the actual system of the robot. 
Additionally, acquiring data of all the different factors that are 
necessary for developing the imitation model is a time-
consuming and complex task. In order to acquire a more 
realistic robot imitation model for mapping and future state 
prediction, different forecasting methods can be used. This 
allows considering the specific parameters of different robots, 
such as sensor calibration errors, internal production errors, 
imprecisions in the mechanics development, friction 
coefficients, inertia, etc. 
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There are two types of forecasting methods depending on 
whether the historic data are available [5]: (i) qualitative 
forecasting and (ii) quantitative forecasting. Quantitative 
forecasting, in turn, can be based either on time series data or 
cross-sectional data. In this paper, we focus on methods and 
models for quantitative time series forecasting. The methods for 
quantitative time series forecasting differ in their properties, 
accuracies, and costs. 

Fig. 1 presents the authors’ view on classification of different 
time series forecasting models and methods. Some well-
developed, traditional time series forecasting methods are the 
autoregressive integrated moving average (ARIMA) model [6] 
and its variations (ARMA, SARIMA, SARIMAX, etc. [7]), 
exponential smoothing, decomposition models, average 
method and the naїve method. A disadvantage of some of these 
methods is that their implementation requires complete 
knowledge about the use of the methods, and they expect linear 
data as the system input [8]. In the case of mobile robots, the 
motion sensor data are non-linear, therefore requiring a 
different approach. 

Few articles have proposed a quality overview of various 
time series forecasting methods for different applications. A 
comprehensive review of machine learning methods for time 
series forecasting is given in [9]. The paper presents different 
time series forecasting methods, such as Gaussian processes, 
convolutional neural networks (CNN), recurrent neural 
networks (RNN), deep neural networks (DNN) and multi-
horizon forecasting models for weather and climate modelling. 
In another research [10], the authors compare several machine 
learning (ML) models for time series forecasting, concluding 
that the multilayer perceptron and the Gaussian process 
regression outperform others and show the best results in the 
comparison. The authors in the paper [11], in turn, review 
techniques for building energy consumption forecasting, 
providing advantages and disadvantages of the most commonly 
used time series forecasting methods. 

One way of forecasting time series for mobile robot 
navigating indoors is proposed in [12] with an aim of enhancing 
navigation safety. The use of deep conditional generative 
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models for trajectory forecasting of table tennis robot is 
proposed in [13]. 

In this paper, we choose three different variations of the 
LSTM architecture to train a mobile robot imitation model 
using motion sensor data. First, sensor data from the mobile 
robot are acquired and sorted. Secondly, the deep neural 
network models are implemented for forecasting the motion 
sensor data. Then, the performance of these models is examined 
with different hyperparameter setups. 

Finally, the results of the obtained neural network models are 
compared and evaluated. The training of the LSTM models was  

carried out using the high-performance computing (HPC) 
infrastructure of Riga Technical University. 

The rest of the paper is organised as follows: Section II 
presents the models used for motion sensor time series 
forecasting. Section III explains the experimental setup, used 
dataset, infrastructure, training process and the performed grid 
search. Section IV presents results and discussion. Finally, 
some concluding remarks are drawn in Section V. 

II. TIME SERIES FORECASTING ARCHITECTURES 
A recurrent neural network (RNN) [14] is a network 

consisting of a linear input layer, a hidden layer and a linear 
output layer. In this paper, a modified version of recurrent 
neural networks called long short-term memory (LSTM) model 
[14] is used for time series forecasting. LSTM consists of three 
gates: forget gate, input gate and output gate. With its improved 
memory over recurrent neural network, a LSTM model can 
handle longer time series. Three variations of LSTM 
architectures used in this study are as follows: (i) original 
LSTM, (ii) stacked LSTM, and (iii) phased LSTM. These 
architectures are presented in the section below. 

A. Original LSTM 
The first model used in this paper is based on the original 

LSTM. This model consists of a linear input layer, n = 2 LSTM 
layers with a dropout d = 0.2, and a linear output layer (see 
Fig. 2). The input of the model consists of five features that are 
as follows: (i) signals from the right encoder, (ii) left encoder, 
(iii) gyroscope, (iv) right motor control value and (v) left motor 
control value. The three model outputs are the predicted right 
encoder, left encoder, and gyroscope sensor values. Two 

activation functions that are chosen for this model are rectified 
linear activation unit (ReLU) and hyperbolic tangent function 
(tanh). The ReLU function is applied before the input layer. 
While the hyperbolic tangent is applied to the output layer. 

B. Stacked LSTM 
Stacked LSTM [15] is a variation of the original LSTM 

architecture, with an exception of introducing hidden state 
connections between layers. In the case of the stacked LSTM, 

the output vectors are passed from one layer to the next, where 
the resulting output vector is the average of the output values of 
all layers.  

 

Fig. 2. The original LSTM architecture. 

An additional learning parameter added to this network is the 
initialisation value of the hidden state. This network also 
consists of two linear layers, one before and one after the two 
LSTM layers (see Fig. 3). This model uses the same activation 
functions — ReLU and tanh. 

Fig. 1. Classification of time series forecasting methods and models. 
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C. Phased LSTM with Peepholes 
Phased LSTM model [16] specialises in processing long time 

series. In this model (see Fig. 4), a time gate kt is added to the 
LSTM model that can take one of three phases: (i) opening 
phase, (ii) closing phase or (iii) closed phase. The change of 
phase is controlled by three parameters: the oscillation 
frequency τ, the ratio of the opened time ron and the phase shift 
s between each unit of the phased LSTM.  

 

Fig. 3. The stacked LSTM architecture. 

 

Fig. 4. The phased LSTM with peephole architecture. 

A special part about this model is introduction of peepholes 
[17] that prevent a situation when the output gate might exclude 
important information. A few architecture specific parameters 
are introduced here: α = 1e−3, τmax = 3.0 and ron = 5e−2. In this 
case, α is the leakage rate [16]. Peephole connections have also 
been introduced in this model. Similarly, like in previous 

models, it uses linear layers and two activation functions (ReLU 
and tanh). However, this model has only a single phased LSTM 
unit, and a dropout was not used in this network. 

III. EXPERIMENTAL SETUP 
In this section, the time series forecasting models are applied 

to the motion sensor data of a mobile robot to test whether the 
model can accurately forecast the values of wheel encoders and 
gyroscope. The models are evaluated using mean absolute error 
(MAE), mean square error (MSE) and dynamic time warping 
(DTW) methods. 

A. Software 
In the experiment, software for model training, result 

acquisition and comparison has been developed. The PyCharm 
environment and Anaconda package manager have been used 
for the algorithm implementation in Python language. The 
functionality of the software consists of several modules: 

1) data preprocessing; 
2) data uploading – preparing data for the neural network; 
3) original LSTM model; 
4) stacked LSTM model; 
5) phased LSTM with peephole model; 
6) neural network training – training models, primary 

evaluation based on metrics and saving the trained 
models; 

7) inference – evaluating the trained models; using the 
validation set to acquire sensor predictions and errors. 

The PyTorch library [18] has been used for developing neural 
network models. The dynamic time warping algorithm for 
forecasting error calculation has been implemented using the 
fastdtw library. The training of the models has been performed 
using high-performance computing (HPC) infrastructure of 
Riga Technical University. 

B. Dataset 
In this experiment, the dataset has been acquired from the 

particular modelled robot. The mobile robot used in the 
experiment is equipped with a differential two-wheel drive, a 
gyroscope, and two encoders. The independent variables are the 
motor control signals for the right- and left-wheel drive. Sensor 
data have been obtained during driving segments, hereinafter 
referred to as episodes. Each episode is stored in a separate file 
where each row consists of sensor readings obtained at regular 
intervals. In the experiment, a total of 391 files have been 
retrieved with a different number of rows in each file. The 
shortest file has 80 sensor readings, while the longest has 
143 802 readings. The average file length is ≈ 3932.40 rows. 
Most files are shorter; 75.96 % of the file length is within the 
range [80, 4480]. 

The original dataset is stored in .csv format. The data 
preprocessing consists of identifying and handling the 
erroneous encoder values that are replaced with a mean value 
of the previous and the following actual encoder readings. 
Some data characteristics can be seen in Table I.  

Afterwards, the dataset is split into (i) a training set (80 % of 
files), (ii) a test set (18 %) and (iii) a validation set (2%). 
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The split of training and test sets applied in this article is 

80:20. This is a commonly accepted split ratio, and based on the 
relatively small dataset size, the authors consider it to be an 
appropriate ratio. The chosen validation set size is 10 % of the 
test set, and it is considered to be sufficient for this task. 

When importing data, the input parameters are batch size B, 
sequence length seq, and expected number of files npred. When 
uploading data for the model training, the limit values of all data 
are obtained and scaled to the range [−1;1]. The control values 
are shifted backwards to obtain a sample where the sensor 
values are taken at time t−1 with control values from time t. 
Samples for prediction are obtained after each epoch according 
to the above-mentioned technique. 

C. Neural Network Workflow 
The hyperparameters chosen for the neural network tuning 

are (i) sequence length, (ii) learning rate, (iii) dropout, and (iv) 
number of layers. In the training phase, prediction is performed 
after each epoch. During the prediction, several driving 
episodes are selected from the validation dataset, leaving only 
the first sample of size [seq,f], where f = 5 is the number of 
features. Neural network models predict a sequence of the same 
length, only shifted by one timestep. The original input data are 
shifted, and the last element of the model predicted sequence is 
placed in the last position. For example, if the first input 
sequence consists of the input vectors xt−1, xt ,..., xt+seq−1 and the 
last predicted vector is yt+seq, then the next input string is xt, 
xt+1,..., xt+seq−1, yt+seq. Thus, the model begins the rollout – 
predicting based on its own previous predictions. 

D. Training and Grid Search 
The following section describes the process of neural 

network training and hyperparameter tuning. The grid search 
consists of two phases. Firstly, neural network models are 
trained using all possible hyperparameter combinations. In the 
second phase, forecasting using all models is performed and the 
best model of each architecture is chosen based on the 
calculated prediction errors. The selected hyperparameters for 
the models in this study are as follows: (i) sequence length, (ii) 
learning rate and (iii) batch size. The possible values of these 
hyperparameters are presented in Table II. 

 
 
 

TABLE II 

POSSIBLE VALUES FOR HYPERPARAMETERS 

Sequence length Learning rate Batch size 

16, 32, 64, 128 3e−3, 1e−3, 3e−4, 1e−4, 3e−5, 1e−5 64, 128 
 
The model evaluation is performed in both grid search steps; 

however, in each phase, the comparison is within different 
scopes. In the first phase, all models are trained with a unique 
hyperparameter combination. Forecasting on the validation set 
and calculation of forecasting errors are performed after each 
epoch. After training each model, the weights of the epoch with 
the lowest error values are saved. Then, in the second phase, 
each saved model is used for forecasting on each driving 
episode from the validation dataset. 

E. Testing Process 
There are different methods for calculating the forecasting 

error [1]. In this study, the performance of all time series 
forecasting methods are evaluated based on three error 
measures: (i) mean absolute error (MAE) (1), (ii) mean square 
error (MSE) (2) and (iii) dynamic time warping (DTW). 
Additional to MAE and MSE, the authors in this study consider 
DTW to be a promising tool for comparing real and forecasted 
values. 
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1 N
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MAE y y
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N =
= −∑ .  (2) 

Here, ty  and ty  are the actual and predicted observation 
values at time t, and N is the size of the dataset. Dynamic time 
warping (DTW) is a method for comparing dynamic time series 
that are not always synchronous. This method is more described 
in [19]. 

IV. RESULTS AND DISCUSSION 
The models have been tested in two experiments: (i) with a 

relatively low prediction length of 600, and (ii) with a higher 
prediction length to test durability. Afterwards, the predicted 
robot positions have been compared with the actual positions. 

TABLE I 
THE STRUCTURE AND CHARACTERISTICS OF THE DATA AFTER PREPROCESSING  

Characteristic Left motor control value Right motor control value Gyroscope Right wheel encoder Left wheel encoder 

Max value 439.00 439.00 131 594.00 15 405.00 15 417.0 
Min value −439.00 −439.00 −182 121.00 −11 329.00 −9010.00 
Median 253.00 338.00 480.00 4588.00 5282.00 
Mean 226.84 262.85 6760.57 3976.88 4578.56 
Mode 0 0 0 0 0 
Mode value count 181 250 180 339 37 554 141 508 142 910 
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The best models have been chosen based on the forecasting 
error measures. The obtained ranges of forecasting errors 
throughout the whole experiment are the following: 

• MAE: [0.2813325;0.0266407]; 
• MSE: [0.1517630;0.0022978]; 
• DTW: [128.2911085;7.4350598]. 

A. Forecasting with the Sequence Length 600 
From each architecture, one model with the best forecasting 

results has been chosen at a prediction length of 600 (see 
Table III). It can be seen that all of these models gained better 
results with the same batch size but different sequence length 
and learning rate values. 

The table above shows that the best model in the experiment 
with the lowest forecasting errors is the stacked LSTM model 
with sequence length of 128, learning rate of 1e−3 and batch size 
of 128. Although its MSE measure is slightly higher than the 
one of the phased LSTM model, its MAE and DTW measures 
are lower than for other models. It is worth mentioning that this 
evaluation highly depends on the prediction length that in this 
case was 600. The authors speculate that with a higher number 
of considered timesteps the results would differ. An example of 
sensor predictions of the stacked LSTM model for one driving 
episode is given in Fig. 5 for the left encoder, in Fig. 6 for the 
right encoder, and in Fig. 7 for the gyroscope. 

 

Fig. 5. An example of the left encoder readings – forecasted (grey) and real 
(black) values applying the stacked LSTM model. 

In these figures, it can be seen that the forecasted gyroscope 
readings have higher error throughout the time series and 
especially at the peaks, in comparison with the forecasts of the 
encoder data. An important difference is also the noise that is 
noticeable in the actual value and is missing in the forecasts. 

 

Fig. 6. An example of the right encoder readings – forecasted (grey) and real 
(black) values applying the stacked LSTM model. 

 

Fig. 7. An example of the gyroscope readings – forecasted (grey) and real 
(black) values applying the stacked LSTM model. 

B. Forecasting with Higher Sequence Length 
In real-life situations, when a mobile robot is navigating, 

there are several thousands of sensor readings per driving 
episode. Therefore, it is important to test the models with a 
higher prediction length to see if they are able to keep the low 
forecasting error for a longer period of time. For this 
experiment, the chosen prediction lengths were 1200, 3000 and 
10 000. The forecasting errors of all the models with various 
prediction length are given in Table IV. 

 
 
 

 

 

 

TABLE III 
THE BEST HYPERPARAMETERS AND FORECASTING ERRORS FOR EACH MODEL WITH PREDICTION LENGTH OF 600 

Model Batch size Sequence length Learning rate MAE MSE DTW 
Original LSTM 128 64 3e−5 0.0413085 0.0047809 11.0936524 
Stacked LSTM 128 128 1e−3 0.0266407 0.0026518 7.4350598 
Phased LSTM 128 64 1e−3 0.0276842 0.0022978 7.6637153 
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TABLE IV 
THE FORECASTING ERRORS OF ALL MODELS WITH VARIOUS PREDICTION 

LENGTH 

Model Prognosis 
length MAE MSE DTW 

Original LSTM 1200 0.0237068 0.0014218 14.4852884 
Original LSTM 3000 0.0220942 0.0010399 31.1709128 
Original LSTM 10000 0.0212946 0.0008784 145.6757562 
Stacked LSTM 1200 0.0212026 0.0011665 13.8564136 
Stacked LSTM 3000 0.0207157 0.0009960 31.9183395 
Stacked LSTM 10000 0.0218922 0.0011361 167.2592420 
Phased LSTM 1200 0.0216834 0.0011402 13.2876328 
Phased LSTM 3000 0.0208007 0.0010084 30.8149600 
Phased LSTM 10000 0.0211377 0.0011128 139.9588102 

 
The comparison of Table III and Table IV shows that in many 

cases the increased prediction length leads to an increased 
forecasting error. Secondly, the increase in the forecasting error 
of the phased LSTM is lower than the ones of the original or the 
stacked LSTM models, especially for the MSE and DTW 
measures. This result can also be observed in the sensor reading 
forecast at different prediction lengths. However, it has been 
observed that with the increase in the prediction length, the 
quality of the forecast does not decrease visibly. 

C. Actual vs Predicted Trajectories 
To test the suitability of the trained models for the imitation 

model task, trajectories of the robot navigation using actual and 
predicted sensor data have been calculated. Two ways of 
calculating the mobile robot heading (angle) are based on (i) 
gyroscope and (ii) encoder values. The robot used in the 
experiment calculates its heading using data from the 
gyroscope. Therefore, this technique has been applied first for 
the forecasted trajectory calculation. The results of one example 
show that the curvatures of both trajectories are similar; 
however, they are slowly diverging in time (the angle error 
increases) (see Fig. 8). These trajectories have been calculated 
based on the sensor data shown in Figs. 6–8. 

 
Fig. 8. The actual (1) vs predicted (2) trajectory of the robot, using the predicted 
sensor data from the stacked LSTM model (prediction length of 600). 

The initial experiment results have shown better forecasting 
of the encoder data instead of the gyroscope. Therefore, another 

method for trajectory calculation – calculating heading based 
on the encoder data – has been tested. Fig. 9 compares the 
predicted and actual robot trajectories where the angle is 
calculated based on a) the gyroscope and b) encoder values. The 
method of calculating the angle based on the encoder values 
shows the improved results with a lower angle error. 

D. Discussion 
There are a few factors that could have led to imprecise 

sensor reading predictions. Firstly, the forecasting errors for the 
same model (the same prediction length) on different data 
varied a lot. That could be explained by the insufficient size of 
the dataset and the possible inability of the model to generalise. 

 

 

Fig. 9. Trajectories calculating heading based on the a) gyroscope and b) 
encoder values (prediction length of 1200), where 1 – actual trajectory and 2 – 
forecasted trajectory from the stacked LSTM data. 

However, it is an inevitable problem that there might occur 
some situations when the models would not be able to predict 
sensor values precisely. One reason could be that the dataset 
was acquired during robot testing, following specific testing 
protocols. 

Secondly, the choice of hyperparameters could be discussed. 
The most successful model in this experiment was acquired for 
prediction length of 600. However, the phased LSTM model 
with higher prediction length showed more resistance against 
the increase in the error. Although forecasting for longer 
driving episodes meets better real-life situations, the models 
used in this study are not suitable for long-term imitation of the 
mobile robot. The authors of this paper are of the opinion that 
the increased size of the dataset and the improved deep neural 
network architecture would aid in successful use of the models 
for long-term episodes. Since the data are of high aleatoric 
uncertainty, performing the same forecasting n times, the 
predicted sensor values will differ. A possible enhancement 
could be achieved by applying Bayesian neural networks that 
would also predict standard deviation. 

Finally, the accumulation of the forecasting error for longer 
time series explains why the trajectory calculation based on the 
encoder readings produces lower error when forecasting for a 
smaller number of timesteps. Since the encoder data are 
predicted with a higher accuracy, the rate of displacement error 
accumulation is lower when compared to the gyroscope data. 
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V. CONCLUSION 
In this paper, three variations of different LSTM time series 

forecasting architectures (original LSTM, stacked LSTM and 
phased LSTM with peepholes) have been implemented and 
their performance compared. Sensor readings of a gyroscope 
and two encoders of a wheeled mobile robot driving episodes 
have been used as the experimental data. 

The experiment has shown improved results when applying 
the stacked LSTM architecture for short-term predictions. It has 
also been observed that the forecasted encoder values are closer 
to the actual data than the gyroscope forecasted values. When 
comparing the actual and forecasted trajectories, the heading 
calculation method based on the encoder values shows superior 
results over the gyroscope calculation method. The chosen 
prediction sequence length is one of the factors that could affect 
the resulting outcome. Another aspect to consider is a variety of 
data collected in the dataset. In this research, the data have been 
collected from a wheeled robot navigating in a limited number 
of rooms several times. Having possibly similar trajectories in 
the dataset could lead to less credible trained models. 

Future research should consider collecting a larger and more 
diverse dataset to improve the credibility of the trained models. 
Also, other neural network architectures could be applied to the 
existing dataset to possibly improve the forecasting results. 
Another idea for future research is implementing Bayesian 
neural networks for improving the prediction outcome. Finally, 
a possible advancement would be predicting the future robot 
coordinates instead of the sensor readings. 
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