
Applied Computer Systems
ISSN 2255-8691 (online)
ISSN 2255-8683 (print)
December 2023, vol. 28, no. 2, pp. 221–231
https://doi.org/10.2478/acss-2023-0022
https://content.sciendo.com

221

©2023 Farshad Ghassemi Toosi.
This is an open access article licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).

Source Code Features and their Dependencies: An
Aggregative Statistical Analysis on Open-Source

Java Software Systems
Farshad Ghassemi Toosi*

Department of Computer Science, Munster Technological University, Cork, Ireland

Abstract – Source code constitutes the static and human-
readable component of a software system. It comprises an array of
artifacts and features that collectively execute a specific set of
tasks. Coding behaviours and patterns are formulated through the
orchestrated utilization of distinct features in a specified sequence,
fostering inter-dependencies among these features. This study
seeks to explore into the presence of specific coding behaviours and
patterns within Java, which could potentially unveil the extent to
which developers endeavour to leverage the facilities and services
that exist in the programming language aggregatively. In pursuit
of investigating behaviours and patterns, 436 open-source Java
projects are selected, each having more than 150 Java files (Classes
and Interfaces), in a semi-randomized manner. For every project,
39 features have been chosen, and the frequency of each individual
feature has been independently assessed. By employing linear
regression, the interrelationships among all features across the
complete array of projects are scrutinized. This analysis intends to
uncover the manifestation of distinct coding behaviours and
patterns. Based on the selected features, preliminary findings
suggest a notable collective incorporation of diverse coding
behaviours among programmers, encompassing Encapsulation
and Polymorphism. The findings also point to a distinct preference
for using a specific commenting mechanism, JavaDoc, and the
potential existence of Code-Clone and dead code. Overall, the
results indicate a clear tendency among programmers to strongly
adhere to the fundamental principles of Object-Oriented
programming. However, certain less obvious attributes of object-
oriented languages appear to receive relatively less attention from
programmers.

Keywords – Object oriented principle, source code analysis,

source code feature extraction.

I. INTRODUCTION
The source code of a software system encompasses diverse

artifacts, components, and features that empower programmers
to configure code structures, patterns, behaviours, and styles.

These artifacts and characteristics have unique qualities and
purposes, but they can also show connections in certain
situations as indicated by De Moura et al. [1]. For example, in
object-oriented programming languages like Java [2], a class
that contains many private fields would require a corresponding
number of methods to manage those fields (Encapsulation).
Java offers essential tools for creating software systems that are

* Corresponding author’s e-mail: farshad.toosi@mtu.ie

maintainable and can be reused, provided that best practices are
carefully followed.

Background
Analysing the source code of a software system, either

individually or collectively, can reveal various details that can
benefit developers, both for existing systems and newly created
ones. Miltiadis et al. [3] conducted an experiment involving an
extensive codebase, comprising approximately 352 million
lines of Java, to analyse the complexity of a code module and
its topical centrality within a software project. Their method
assists in distinguishing reusable utility classes from those that
constitute a program’s core logic, solely based on general
information-theoretic criteria.

O’Hare et al. [4] developed an analyser called CASE
(Computer-Aided Software Engineering), which essentially
functions as a reverse engineering system. It aids in discovering
the structure of a software system from its source code. This
analyser has the potential to assist in transforming legacy code
into abstractions within a structured analysis methodology.

Source code analysis also has applications in cybersecurity
and vulnerability detection [5], [6]. In a study by Arvinder et
al. [7], code analysers for three languages, namely C, C++, and
Java, have been compared and discussed.

In another study, Johnatan et al. [8] conducted an experiment
applying source code analysis to assess developers’ skills. They
evaluated two models designed to support the realization of
programming skills. Their research involved a survey with 110
developers from GitHub, conducted to assess the applicability
of these two models for computing developers’ programming
skills based on the metrics ‘Changed Files’ and ‘Changed Lines
of Code’.

Source code analysis has also application in specific-domain
languages. Ivan et al. [9], in their work, discuss the concerns
related to evaluate the quality of such languages and they
propose a model-driven interoperability strategy that bridges
the gap between the grammar formats of source code quality
parsers and domain-specific text languages.

Static source code analysis can help the errors and issues to
be raised from multi-threading programming that usually is

Applied Computer Systems
___2023/28

222

clear when the application is deployed. Damian et al. [10]
discuss some of these errors such as race condition, deadlock,
atomicity violation and order violation. They also present a
model that can detect such errors using static source code
analysis techniques.

In the course of this study, a protocol for source code analysis
has been devised, aimed at probing the extent of
interdependence among a specific set of chosen code
“features”. The principal objective of this work is to explore
contemporary coding practices within Java from a distinctive
point of view, with the intention of deriving an overview of
prevalent behaviours on an aggregate level. In essence, the
overall aim is to discover whether feature statistics can offer
insights into coding practices or programming concepts (e.g.,
Object Oriented Concepts).

II. DESIGN AND METHODS
In this study, a total of 436 open-source Java projects were

collected from GitHub using the GitHubBuilder [11] API. The
GitHubBuilder API enables the search of open-source GitHub
projects based on specified queries. The selected queries for this
study included terms such as market, customer, algorithm, and
network. By employing these queries, projects containing any
of these keywords are identified. The GitHubBuilder API can
specifically target projects written in certain programming
languages, with Java being the language of focus in this study.

Each detected project underwent an initial examination, and
if it contained more than 150 Java files (Class, Abstract Class,
and Interface), it was added to a pool of Java projects for further
analysis. For each project, 39 features were considered, namely:
Method-Call, All-Methods, Accessed-Variable, Declared-
Variable, All-Comment, Line-Comment, Block-Comment,
Doc-Comment (also known as JavaDoc), Inner-Class
(including inner and/or nested classes), LOC (Lines Of Code),
Class-Call (object creation), Inheritance-Direct, Inheritance-All
(covering directed and indirect inheritance, such as a
SuperClass of a SuperClass), Exception (Try blocks), Catch
(Catch blocks), Concrete (concrete class), Abstract (Abstract
class), Interfaces, All-Class-Type (covering concrete, abstract,
and interface), FinalMethod, Overloaded-Method, Overridden-
Method, Default-Method, Private-Method, Protected-Method,
Public-Method, Static-Method, Super-Method (including
abstract methods and those that are overridden), Variable-Final,
Variable-Primitive, VariableDefault, Variable-Private,
Variable-Protected, Variable-Public, Variable-Static, Ave-
Class-LOC, Ave-Method-LOC, Dead-Method (a type of dead
code), and Package-Count. These features were chosen for their
popularity in coding practices and their inclusion in object-
oriented mechanisms.

The frequency of each feature is counted across the entire
project. For example, in a given project, the count of
Inheritance-Direct is calculated for each class and then summed
across the entire project for all classes and interfaces.

Given that there are a total of 436 projects, each of the
aforementioned features can be treated as a vector with a size
of 436. To explore the relationships between any pair of
features, linear regression is applied. For a given pair of features

F1 and F2, a 2D line can be drawn using these two features as x
and y, as shown in Fig. 2. The other image in Fig. 1 depicts a
straight line, indicating complete linear dependency between F1

and F2; whereas the right image portrays a broken line,
suggesting little to no linear dependency between F1 and F2.

Fig. 1. An example of a straight line with a 100 % correlation between two
features: Feature 1 and Feature 2.

Fig. 2. An example of a broken line: The X-axis represents Feature 1, and the
Y-axis represents Feature 2.

The line’s degree of straightness is quantified using linear
regression techniques. The Pearson Correlation Coefficient
(PCC) [12] is a real value denoted as r, which lies within the
range of [−1,1]. A value of −1 indicates the maximum negative
linear correlation, while a value of 1 signifies the maximum
positive linear correlation between two variables. Values close
to 0 indicate a weaker linear correlation, and a value of 0
represents no correlation.

III. RELATIONSHIPS
The objective of this study is to investigate interdependencies

among features. For instance, from an object-oriented
perspective, it is expected that a project with a higher number
of inheritance will have a higher number of overridden
methods. Therefore, there is an expected dependency between
the number of inheritance (F1) and the number of overridden
methods (F2). Through this analysis, these dependencies can be
explored, and more relationships may be uncovered.

To conduct this analysis, the Pearson Correlation Coefficient
(PCC) is employed. Schober et al. [13] discussed the details of
the Correlation Coefficient in their work and presented Table I
as a Conventional Approach to interpreting a Correlation
Coefficient. Consequently, the information in Table I is used as
a reference for interpretation. As this study aims to identify
dependent features, features exhibiting a Strong Correlation

Applied Computer Systems
___2023/28

223

(0.70–0.89) or Very Strong Correlation (0.90–1.00) are
discussed in detail.

TABLE I
INTERPRETATION OF PCC

Absolute Value of PCC Interpretation

0.00–0.09 Negligible correlation

0.10–0.39 Weak correlation

0.40–0.69 Moderate correlation

0.70–0.89 Strong correlation

0.90–1.00 Very strong correlation

A. Discussion
In this section, each feature is individually examined, and the

most dependent features on it are listed and discussed. Table II
presents the list of features, with each feature assigned an index.

Figures 19 to 28 illustrate individual feature dependencies.
As previously mentioned, these figures only show strong
dependencies. The complete list of dependencies for all features
can be observed in Fig. 29, and the reference indexing is
provided in Table II.

TABLE II
LIST OF ALL FEATURES AND THEIR INDEX

1 Method-Call 14 Exception 27 Static-Method

2 All-Methods 15 Catch 28 Super-Method

3 Accessed-Variable 16 Concrete 29 Variable-Final

4 Declared-Variable 17 Abstract 30 Variable-Primitive

5 All-Comment 18 Interfaces 31 Variable-Default

6 Line-Comment 19 All-Class-Type 32 Variable-Private

7 Block-Comment 20 Final-Method 33 Variable-Protected

8 Doc-Comment 21 Overloaded-Method 34 Variable-Public

9 Inner-Class 22 Overridden-Method 35 Variable-Static

10 LOC 23 Default-Method 36 Ave-Class-LOC

11 Class-Call 24 Private-Method 37 Ave-Method-LOC

12 Inheritance-Direct 25 Protected-Method 38 Dead-Method

13 Inheritance-All 26 Public-Method 39 Package-Count

• LOC: Lines of Code simply represents the number of lines of

code present in the software system. LOC is employed as a
metric to measure the size of the source code or the software
system itself [14], [15]. Figure 18 illustrates the strongly
dependent features of LOC, with All-Methods and All-
Variables (Declared Variables) being the two most
pronounced dependencies. Therefore, All-Methods and All-
Variables are going to be considered as project-size metrics
for future features.

• Encapsulation: Encapsulation is one of the fundamental
Object-Oriented Principles. It serves as a mechanism to
prevent direct access to class data from other classes. Instead,
class data may be accessed through methods, allowing for
any desirable conditions to be applied when accessing the
data. Typically, encapsulation is realized by defining class
fields as private variables and creating methods to access
those private variables. Statistically, under an ideal scenario,
the hypothesis is formulated as follows: As the size of the
software increases, instances of encapsulation also increase.
To validate this hypothesis, the presence of encapsulation
instances is initially discussed. Figure 22 illustrates the
strongly dependent features of public methods. As depicted,
Private-Variable stands out as one of the strongly dependent
features of PublicMethod. Although Fig. 22 indicates an
association between the increase in Public-Method and the
increase in Private-Variable (indicating the necessity for
Encapsulation), it is not adequate to conclude that all projects

universally practice encapsulation. Additionally, Fig. 22
demonstrates that an increase in Public-Method is
accompanied by increases in All-Methods and LOC.
Moreover, All-Methods also rise with an increase in
Concrete-Class instances. Consequently, the hypothesis
gains better support by suggesting that, on average, the
studied projects tend to practice encapsulation more as they
grow in size.

• Polymorphism: Polymorphism, meaning “many forms”, is
another crucial Object-Oriented Principle. Polymorphism
has different types and forms such as Ad hoc polymorphism,
Generics polymorphism, Overriding, and Overloading. The
focus of this work would be on two common polymorphism
types: Overriding and Overloading. Therefore,
polymorphism is categorized into two distinct types:
Overriding and Overloading.

The first category, Overriding, involves a process where a
subclass re-implements a method already present in the
superclass. This ability enables software to offer different
levels of functionality for a method within an inheritance
chain. On the other hand, Overloading refers to the process
of defining multiple methods with the same name in a single
class, each serving a different purpose.

Figure 20 showcases the features that strongly depend on
Overloaded methods. The first feature is LOC, which serves
as a conventional measure of software system size [16]. This
suggests that, on average, developers tend to employ the

Applied Computer Systems
___2023/28

224

Overloading mechanism, and as the project’s size increases,
the number of overloaded methods also tends to rise.
Conversely, Overridden methods exhibit a robust
dependency on ClassInheritance and Super-methods,
aligning with expectations, as illustrated in Fig. 21. However,
there is not substantial evidence to support the idea that the
Overriding mechanism is practiced more as software systems
grow in size.

• Inheritance: Inheritance stands as one of the four core
Object-Oriented Principles. It empowers classes to acquire
attributes such as fields, methods, and behaviours from a
shared superclass, fostering code reusability, modular
design, and enhanced maintainability of the codebase.
Through inheritance, classes can circumvent the need for
redundant code, leading to more efficient development,
simplified upkeep, and a more organized code structure.
Figure 15 illustrates the features strongly dependent on the
inheritance principle, encompassing both direct inheritance
(e.g., super-class → sub-class, as depicted in Fig. 16) and
indirect inheritance (e.g., super-class → super-class → sub-
class). However, the features strongly reliant on inheritance
do not provide definitive evidence of a correlation between
inheritance and project size. Consequently, it can be
concluded that larger projects do not necessarily adhere more
to number of super-classes.

• Commenting: Nearly all programming languages incorporate
a commenting mechanism that assists programmers in
providing insights for the written code at various levels.

Pooja et al. [17] delve into the roles of comments in
Object-Oriented programming languages such as Java,
Python, and Smalltalk, discussing aspects like Code
Summary, Code Ownership, Code Usage, Deprecation
details, Rationale behind the code, Development Notes,
Parameters details, Code Intent, Collaborator, Examples,
Class reference, Key implementation points, Key message,
and more. In the case of Java, three distinct syntaxes for
comments are available: 1) Line Comment; 2) Block
Comment; 3) Java Doc. Typically, line comments suit brief
comments requiring a line or less, block comments are ideal
for more extensive comments needing greater detail, and
Java doc is fitting for providing metainformation about the
software, encompassing ownership, legal details, release
updates, and related subjects.

Figure 5 offers an overview of the strongly dependent
features related to the trio of comment types. Notably, Block-
Comment does not display strong dependence on any feature,
including All-Comments, implying that it is not as widely
used as Line-Comments and Java-Doc among programmers.
Although Line-Comment is strongly reliant on All-
Comments, it does not exhibit significant reliance on other
features (see Fig. 7). In contrast, Java-Doc (Fig. 8) exhibits
strong dependence on multiple features such as Overloaded-
Methods, All-Methods, and Dead-Methods. This points to
programmers’ inclination to utilize Java-Doc to provide
details about Overloaded-Methods, All-Methods, and Dead-
Methods. Notably, the correlation between Java-Doc and
Dead-Methods suggests programmers might employ Java-

Doc to clarify outdated methods, though this conjecture
necessitates further investigation. Since All-Methods is
considered one of the measures of project size, an increase in
project size consequently results in a higher usage of Java-
Doc as well.

• Declared Variable/Class Fields: In this study, the class fields
or variables at the class level are specifically focused, that
exclude local variables (those declared within methods). The
following sections will delve into various coding practices
associated with variables:
1. Primitive Variables: Java encompasses various primitive

variable types, including int, double, float, Boolean, char,
byte, long, and short. As the name suggests, these variable
types are primarily employed to store simple, non-
complex fundamental data types, where the data are
represented with a singular magnitude. Consequently,
primitive data tend to occupy less memory compared to
complex data (i.e., variables with class types).

Figure 26 illustrates two features that exhibit strong
dependence on Primitive Variables: 1) Static Variables
and 2) Default Variables. Static Variables hold
information about the class structure, rather than
individual instances (objects), and are shared among all
instances of the class. Due to their lasting presence in
memory, proper management is crucial to avoid memory
overflow. The strong correlation between Primitive
Variables and Static Variables indicates the proficient
utilization of Static Variables by programmers on average.

The second feature strongly linked to Primitive
Variables is Default Variables, which restricts the
variable’s visibility to the declaring class and all other
classes within the same package. The reason for this
dependency requires further analysis. However, this result
does not provide evidence that the number of primitive
variables increases as the project size grows.

2. Accessed Variables: Accessed Variables in this study refer
to any non-primitive variable that is accessed by an
identifier. The identifier can be: 1) the class name (when
accessing a static variable from another class), 2) the
object name (when accessing a non-static variable from
either the same class or another class), or 3) “this” (used
as an identifier when accessing a field from the same
class).

Figure 3 displays the strongly dependent features of
Accessed Variables. The strongest dependent feature of
Accessed Variables is Public Method. This observation
could be linked to the encapsulation scenario, where
Public Methods access variables from the same class
(using the “this” identifier). This can be further supported
by the fact that Private Variables are also strongly
dependent features of Accessed Variables.

3. Final: Final Variables offer advantages in Object-Oriented
programming, such as enhanced clarity and readability
[18], [19], and in addition, they can substantially improve
program performance, sometimes even up to 25 times
higher [20].

Applied Computer Systems
___2023/28

225

Final-Variables behave like constant variables, meaning
once a value is assigned to them, it remains unchanged.
According to the findings in Fig. 13, programmers seem to
be leaning towards increased usage of Final-Variables as
the software system becomes larger. However, the exact
intention behind this increase requires more research.

• Exception Handling: Modern programming languages are
equipped with elaborate mechanisms to manage unforeseen
situations that might arise due to various reasons, such as
incompatible external inputs, limited resources, and poor-
quality code structure. Java features an Exception-Handling
mechanism that helps capture and address exceptions and
errors. The Exception Handling mechanism in Java consists
of four parts: 1) Try Block, 2) Catch Block, and 3) Finally
Block. The last block is optional, while the first two are
mandatory. The Try Block encapsulates the code susceptible
to triggering an exception or error, while the Catch Block
provides a handling solution. It is worth noting that most
languages, including Java, allow a Try Block to have more
than one Catch Block [21], indicating that the code within the
Try Block might not be specific to just one vulnerability. This
can be considered a code smell [22], [23].

Figure 14 depicts the features dependent on exceptions.
Each exception is permitted to have only one Try Block,
Figure 14 illustrates the dependent features of the Try Block.
The most significant feature dependent on the Try Block is
the Catch Block, showing a dependency of over 97 %. This
high dependency implies that only a very small portion of the
entire Exception Handling structure utilizes multiple Catch
Block, which could be indicative of a code smell.
Furthermore, the Exception block demonstrates a strong
dependency on Comments, possibly indicating
programmers’ tendencies to provide explanatory comments
for Exception Blocks. Declared Variable and Overloaded
Method are two other features exhibiting strong
dependencies with Exception Handling.

• Dead Code: Dead code refers to any piece of code that would
never be executed due to various reasons. Dead code can
encompass methods/functions, classes, interfaces, or any
blocks of code like loops or conditional statements. Code
becomes dead when it remains uninvoked by other code or
when it is situated under conditions that are impossible or
incorrect (e.g., if(4%3 == 0)). A common cause of dead code
arises when existing code is rewritten to alter its behaviour,
effectively disconnecting the old code from the rest of the
system. This phenomenon is often referred to as clone
code [24]. In this study, our focus is exclusively on dead
methods, which represent a subset of dead code. A method is
considered dead if it satisfies the following criteria: 1) It is
not invoked by any other method or constructor, and 2) It
does not serve as a super method or an abstract method.
Figure 12 illustrates the strongly dependent features of dead
methods. As indicated, the most influential dependent feature
of dead methods is All-Method, followed by Public-Method.
The prominence of Public-Method among the features
dependent on dead methods implies that public methods have
undergone more changes compared to other methods (such

as private, default, and protected methods). This suggests
that insufficient attention might have been given to obsolete
methods. In an ideal scenario, obsolete methods should be
removed from the source code to prevent code cloning and
maintenance confusion especially with the presence of
version-control platforms such as Git. Another noteworthy
finding is the correlation between dead methods and Doc
Comments. This correlation can be interpreted as an attempt
to provide comments for either the obsolete method itself or
the newly introduced substitute.

B. Non-Conforming Features
Among all the features experimented with, as listed in

Table II, a few features exhibit independent behaviour and
appear to have random effects. These features are discussed in
the following section:
• Block-Comment: Block comments do not exhibit a strong

dependency on any particular feature. The feature most
dependent on Block comments is All-comment, which
demonstrates a Pearson Correlation Coefficient (PCC) of
67 %. This is followed by Line-comment and Doc-comment
with PCC values of 56 % and 54 %, respectively.
Considering that Line comments and Doc comments have
previously shown strong dependencies on other features, it
can be inferred that Block Comments are not the preferred
choice of comment type among developers.

• Abstract Class: An abstract class is a mechanism that enables
developers to create a class that combines both implemented
and unimplemented elements, providing flexibility for future
behaviours. While designed to enhance software system
quality by curbing maintenance costs, it is noteworthy that
the Abstract Class does not exhibit any dependency on other
features. In other words, the presence of a larger number of
abstract classes does not necessarily correlate with larger
software systems.

Furthermore, Abstract Classes do not display a
dependency on the total number of classes either. This
suggests that the utilization of Abstract classes is primarily
dictated by specific use cases rather than systematic trends.
The most dependent feature, Interface, displays a Pearson
Correlation Coefficient (PCC) of 44 %, yet it does not
indicate a strong dependency on the Abstract class.

• Interface: The interface is another mechanism that holds the
potential to enhance the maintainability of a software system.
The primary distinction between an abstract class and an
interface lies in the fact that an interface can solely contain
unimplemented methods, also known as signature methods.
Interestingly, an interface does not exhibit a strong
dependency on any particular feature. However, the feature
most dependent on an interface is the Inner-Class, displaying
a Pearson Correlation Coefficient (PCC) of 66 %.

A plausible explanation for this moderate dependency
could be that classes inheriting from an interface, or multiple
interfaces, are, to some extent, tied to the behaviour outlined
by those interface(s). The use of inner classes could provide
a means to compensate such ties and introduce alternative
types of behaviour within the class [25].

Applied Computer Systems
___2023/28

226

• Final Method: The final modifier applied to methods
indicates that the method cannot be overridden if the owning
class is inherited by another class. This feature, Final
Method, does not demonstrate a strong dependency on any
other feature. However, it does exhibit an average
dependency with the following features: 1) LOC, 2)
Protected Method, 3) Overloaded Method, 4) All-Comment,
and 5) Variable-Final.

The Line of Code (LOC) is a versatile feature that can
easily demonstrate dependencies with numerous other
features. Among the features dependent on Final Method,
Protected Method shows the highest level of dependency.
While further investigation is necessary to ascertain the
nature of this dependency, the average relationship between
Final Method and Protected Method can be understood as
developers prioritizing heightened source code security,
particularly when both mechanisms are appropriately
utilized.

The average dependency between Final Method and
Overloaded Method could be attributed to programmers’
endeavours to safeguard methods with similar names from
accidental override in the future. The dependence of All-
Comment on Final Method could signify developers’
inclination to provide detailed explanations for their chosen
modifiers. The average dependency with Variable-Final
indicates a similar trend.

• Default Method: The default modifier applied to methods
(note that the default modifier itself has no keyword) restricts
the visibility of methods to within their package. This
feature, Default Method, does not exhibit a strong
dependency on any other feature. The most significant
feature associated with Default Method is InnerClass,
showing a Pearson Correlation Coefficient (PCC) of 50 %.
However, this coefficient does not point to a substantial
connection between Default Method and any other feature.

• Private Method: The private method is a feature that
demonstrates a moderately strong dependency with All-
Methods (PCC 69 %), DeclaredVariable (PCC 68 %), and
Variable-Final (PCC 66 %). The interrelation between
Private Method and All-Methods suggests a notably
significant utilization of private methods by developers.
Since private methods are accessible only within their
respective class containers, the relatively high dependency
between Private Method and Declared-Variable might be
attributed to developers’ efforts to handle data internally
within the class through private methods.

• Protected Methods: Protected methods share similarities
with default methods, but they come with a distinction:
protected methods can be accessed by all subclasses of the
defining class. Protected methods do not demonstrate any
notable dependency on other features. However, a relatively
strong dependency exists between Protected Methods and
LOC (PCC 69 %), All-Comments (PCC 66 %), and
Declared-Variable (PCC 65 %).

• Static Method: Static methods are categorized as class
methods rather than object methods. This implies that there
is precisely one instance of any static method, which can be

accessed via the class itself, and not necessarily through an
object. The most significant dependencies of Static Method
are Variable-Primitive (PCC 60 %) and Variable-Static
(PCC 55 %). This pattern can be understood as developers’
intention to execute auxiliary processes using static methods
in conjunction with static and primitive variables.

• Variable-Protect: The protected variable stands out as one of
the features that lacks a discernible pattern in relation to other
features. The most notable feature dependent on Protected
Variable is Doc-Comment, with a Pearson Correlation
Coefficient (PCC) of 29 %. However, this coefficient does
not suggest any substantial or meaningful connection.

• Variable-Public: Public variables exhibit an average level of
dependency on several other features, including Declared-
Variable (PCC 65 %), Variable-Final (PCC 59 %), and
Public-Method (PCC 57 %). The 65 % Pearson Correlation
Coefficient (PCC) between Public Variable and Declared-
Variable can be attributed to the relatively high frequency of
public variables in comparison with other visibility
modifiers. Additionally, the average dependence of Final
Variables on Public Variables might suggest that on average
Final Variables are also declared as public.

• Average Method and Class LOC: In addition to the overall
Line of Code (LOC), this study evaluates two other features:
the average Line of Code across all methods and the average
Line of Code across all classes and interfaces. The average
method LOC does not exhibit noteworthy dependency on any
feature, with the highest correlation being with Variable-
Default (PCC 39 %).

The average class LOC also does not show significant
dependency on any other feature. However, the features most
dependent on average class LOC are LOC (PCC 65 %), Doc-
Comment (PCC 62 %), and Exception (PCC 61 %).

• Package-Count: Another feature displaying no strong
dependency on any other feature is Package-Count. The
feature most dependent on Package-Count is Concrete
Classes with a Pearson Correlation Coefficient (PCC) of
61 %. While this dependency is not robust, it aligns with
expectations. Given that Package-Count exhibits no
significant dependence on any other feature, it can be
inferred that packaging plays a relatively minor role in
developers’ architectural decisions.

Fig. 3. Accessed-Variables details.

Applied Computer Systems
___2023/28

227

Fig. 4. All-Class-Type details.

Fig. 5. All-Comments details.

Fig. 6. All-Methods details.

Fig. 7. Line-Comments details.

Fig. 8. Doc-Comments details.

Fig. 9. Catch details.

Fig. 10. Class-Call details.

Fig. 11. Concrete details.

Fig. 12. Dead-Method details.

Fig. 13. Declared-Variable details.

Applied Computer Systems
___2023/28

228

Fig. 14. Exception details.

Fig. 15. Inheritance-All details.

Fig. 16. Inheritance-Direct details.

Fig. 17. Inner-Classes details.

Fig. 18. LOC details.

Fig. 19. Method-Call details.

Fig. 20. Overloaded-Methods details.

Fig. 21. Overridden-Methods details.

Fig. 22. Public-Method details.

Fig. 23. Super-Method details.

Applied Computer Systems
___2023/28

229

Fig. 24. Variable-Default details.

Fig. 25. Variable-Final details.

Fig. 26. Variable-Primitive details.

Fig. 27. Variable-Private details.

Fig. 28. Variable-Static details.

IV. CONCLUSION
In this study, a statistical analysis of a collection of Java

software projects (each containing a minimum of 150 Java files)
has been conducted. This analytical work involves targeting and
computing various features (39 features in total, as outlined in
Table II) for each project. The primary objective of this study
has been to unveil the interdependencies among source code
features, aiming to uncover structural intricacies within the
source code.

Figure 29 provides a comprehensive view of the
dependencies among all the features (Note that all values are
colour-coded from the highest – dark green to the lowest – dark
red). Those features displaying strong dependencies are
discussed in Figs. 3–28. The analysis results suggest that
developers, on average, adhere to the requisite practices for
implementing Object-Oriented Principles (excluding
Abstraction, which cannot be assessed using the designated
methodology). Furthermore, the analysis reveals that Line
Comments are the most frequently employed type of comments
among programmers. However, the utilization of Block
Comments does not exhibit any discernible pattern.

On average, developers have made efforts to evade a
particular code smell associated with Exception Handling,
notably, the use of multiple Catch blocks for a single Try block.
Interestingly, an increase in the size of method bodies and class
bodies does not necessarily correlate with an increase in other
features. Another noteworthy observation pertains to the
utilization of Interfaces and Abstract Classes, which does not
see a proportional rise with project size. This holds true, even
more remarkably, for Abstract Classes. It is worth noting that
there is no average, strong, or very strong negative dependency
between any pair of features. The result of this study, in general,
may assist developers in monitoring the evolution of the
project. A Java software system is a complex and
multidimensional entity where, in large systems, maintaining
the quality of the code at a satisfactory level becomes
challenging. The findings of this paper provide an overview of
how one feature of the source code increases or decreases in
relation to another. For instance, the general finding shows that
the number of dead methods increases with the increase of
public methods. Furthermore, the findings of this work reveal
the importance of utilizing a static code analyser to observe
changes over the course of development for any in-vivo
software system.

Applied Computer Systems
___2023/28

230

Fig. 29. The complete inter-dependency of all 39 features with each other.

V. FUTURE WORK
This study has been based solely on the statistical

characteristics of a few hundred open-source Java projects.
Consequently, it might uncover only specific types of details.
As part of future endeavours, more in-depth analyses of
software projects could be conducted to unveil finer-grained
structural intricacies.

REFERENCES
[1] C. De Souza, J. Froehlich, and P. Dourish, “Seeking the source: software

source code as a social and technical artifact,” in Proceedings of the 2005
International ACM SIGGROUP Conference on Supporting Group Work,
Nov. 2005, pp. 197–206. https://doi.org/10.1145/1099203.1099239

[2] K. Sharan and A. L. Davis, Beginning Java 17 Fundamentals: Object-
Oriented Programming in Java 17, Springer, 2021.

[3] M. Allamanis and C. Sutton, “Mining source code repositories at massive
scale using language modeling,” in 2013 10th Working Conference on
Mining Software Repositories (MSR), San Francisco, CA, USA, May
2013, pp. 207–216. https://doi.org/10.1109/MSR.2013.6624029

[4] A. Marcus and J. I. Maletic, “Identification of high-level concept clones
in source code,” in Proceedings 16th annual international conference on
automated software engineering (ASE 2001), San Diego, CA, USA, Nov.
2001, pp. 107–114. https://doi.org/10.1109/ASE.2001.989796

[5] P. Zeng, G. Lin, J. Zhang, and Y. Zhang, “Intelligent detection of
vulnerable functions in software through neural embedding-based code
analysis,” International Journal of Network Management, vol. 33, no. 3,
2023, Art. no. e2198. https://doi.org/10.1002/nem.2198

[6] A. Puspaningrum, M. A. A. Hilmi, M. Mustamiin, M. I. Ginanjar, and
Darsih, “Vulnerable source code detection using sonarcloud code
analysis,” arXiv, preprint arXiv:2307.02446, 2023.
https://doi.org/10.48550/arXiv.2307.02446

[7] A. Kaur and R. Nayyar, “A comparative study of static code analysis tools
for vulnerability detection in C/C++ and Java source code,” Procedia
Computer Science, vol. 171, 2020, pp. 2023–2029.
https://doi.org/10.1016/j.procs.2020.04.217

[8] J. Oliveira, M. Souza, M. Flauzino, R. Durelli, and E. Figueiredo, “Can
source code analysis indicate programming skills? A survey with
developers,” in International Conference on the Quality of Information
and Communications Technology, Sep. 2022, pp. 156–171.
https://doi.org/10.1007/978-3-031-14179-9_11

[9] I. Ruiz-Rube, T. Person, J. M. Dodero, J. M. Mota, J. M. Sánchez-Jara,
“Applying static code analysis for domain-specific languages,” Software
and Systems Modeling, vol. 19, no. 1, Apr. 2020, pp. 95–110.
https://doi.org/10.1007/s10270-019-00729-w

[10] D. Giebas and R. Wojszczyk, “Detection of concurrency errors in
multithreaded applications based on static source code analysis,” IEEE
Access, vol. 9, pp. 61298–61323, Apr. 2021.
https://doi.org/10.1109/ACCESS.2021.3073859

[11] K. Kawaguchi, “Java API for GitHub.” [Online]. Available:
https://github.com/hub4j/github-api. Accessed on: Aug. 13, 2023.

[12] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang,
and I. Cohen, “Pearson correlation coefficient,” in Noise Reduction in
Speech Processing. Springer Topics in Signal Processing, vol. 2.
Springer, Berlin, Heidelberg, 2009, pp. 1–4. https://doi.org/10.1007/978-
3-642-00296-0_5

[13] P. Schober, C. Boer, and L. A. Schwarte, “Correlation coefficients:
appropriate use and interpretation,” Anesthesia & Analgesia, vol. 126,
no. 5, May 2018, pp. 1763–1768.

 https://doi.org/10.1213/ANE.0000000000002864
[14] K. Bhatt, V. Tarey, P. Patel, K. B. Mits, and D. Ujjain, “Analysis of source

lines of code (SLOC) metric,” International Journal of Emerging
Technology and Advanced Engineering, vol. 2, no. 5, May 2012, pp. 150–
154. https://www.researchgate.net/profile/Kaushal-Bhatt-
5/publication/281840565_Analysis_Of_Source_Lines_Of_CodeSLOC_
Metric/links/55fab79608aeba1d9f37bcac/Analysis-Of-Source-Lines-Of-
CodeSLOC-Metric.pdf

[15] E. Morozoff, “Using a line of code metric to understand software rework,”
IEEE Software, vol. 27, no. 1, Sep. 2009, pp. 72–77.
https://doi.org/10.1109/MS.2009.160

[16] R. Park, “Software size measurement: A framework for counting source
statements,” Tech. Rep. CMU/SEI-92-TR-020, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1992. [Online].
Available:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d3f9
9e79a92ba536f90ffae0a1272424751ae6ea

Applied Computer Systems
___2023/28

231

[17] P. Rani, S. Panichella, M. Leuenberger, A. Di Sorbo, and O. Nierstrasz,
“How to identify class comment types? A multi-language approach for
class comment classification,” Journal of Systems and Software, vol. 181,
2021, Art. no. 111047. https://doi.org/10.1016/j.jss.2021.111047

[18] D. Greenfieldboyce and J. S. Foster, “Type qualifier inference for Java,”
in Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Objectoriented Programming Systems, Languages and Applications, Oct.
2007, pp. 321–336. https://doi.org/10.1145/1297027.1297051

[19] M. Coblenz, J. Sunshine, J. Aldrich, B. Myers, S. Weber, and F. Shull,
“Exploring language support for immutability,” in Proceedings of the
38th International Conference on Software Engineering, May 2016,
pp. 736–747. https://doi.org/10.1145/2884781.2884798

[20] D. Strmecki and D. Strmecki, “The Java final keyword – impact on
performance – baeldung,” May 2021. [Online]. Available:
https://www.baeldung.com/java-final-performance

[21] S. Nakshatri, M. Hegde, and S. Thandra, “Analysis of exception handling
patterns in Java projects: An empirical study,” in Proceedings of the 13th
International Conference on Mining Software Repositories, May 2016,
pp. 500–503. https://doi.org/10.1145/2901739.2903499

[22] S. Tarwani and A. Chug, “Illustration and detection of exception handling
bad smells,” in 2021 8th International Conference on Computing for
Sustainable Global Development (INDIACom), New Delhi, India, Jun.
2021, pp. 804–810. https://ieeexplore.ieee.org/document/9441470

[23] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,
Pearson Education, 2009.

[24] C. Na, Y. Choi, J.-H. Lee, “DIP: Dead code insertion based black-box
attack for programming language model,” in Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics, vol. 1,
Toronto, Canada, Jul. 2023, pp. 7777–7791.
https://doi.org/10.18653/v1/2023.acl-long.430

[25] Y. Smaragdakis, “Interfaces for nested classes,” in The 8th International
Workshop on ObjectOriented Languages (FOOL8), 2001. [Online].
Available:
https://www.cis.upenn.edu/~bcpierce/FOOL/FOOL8/yannis.pdf

Farshad Ghassemi Toosi earned his PhD in
Computer Science from the University of
Limerick in Ireland in 2017. His doctoral research
focused on data visualization, particularly in the
domain of Graph Drawing, and the application of
Genetic Algorithms in this field. Following the
completion of his PhD, he served as a Post-
Doctorate for approximately two years,
concentrating on Software Engineering with a
specific emphasis on Source Code Manipulation
and Feature Location. Subsequently, he assumed
the role of a full-time Lecturer at the Department

of Computer Science of Munster Technological University in Cork starting
from 2019. Farshad Ghassemi Toosi is an esteemed academic member of Lero,
the SFI Research Centre for Software in Ireland.
E-mail: farshad.toosi@mtu.ie
ORCID iD: https://orcid.org/0000-0002-1105-4819

	Background
	A. Discussion
	B. Non-Conforming Features

