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Abstract – Source code constitutes the static and human-
readable component of a software system. It comprises an array of 
artifacts and features that collectively execute a specific set of 
tasks. Coding behaviours and patterns are formulated through the 
orchestrated utilization of distinct features in a specified sequence, 
fostering inter-dependencies among these features. This study 
seeks to explore into the presence of specific coding behaviours and 
patterns within Java, which could potentially unveil the extent to 
which developers endeavour to leverage the facilities and services 
that exist in the programming language aggregatively. In pursuit 
of investigating behaviours and patterns, 436 open-source Java 
projects are selected, each having more than 150 Java files (Classes 
and Interfaces), in a semi-randomized manner. For every project, 
39 features have been chosen, and the frequency of each individual 
feature has been independently assessed. By employing linear 
regression, the interrelationships among all features across the 
complete array of projects are scrutinized. This analysis intends to 
uncover the manifestation of distinct coding behaviours and 
patterns. Based on the selected features, preliminary findings 
suggest a notable collective incorporation of diverse coding 
behaviours among programmers, encompassing Encapsulation 
and Polymorphism. The findings also point to a distinct preference 
for using a specific commenting mechanism, JavaDoc, and the 
potential existence of Code-Clone and dead code. Overall, the 
results indicate a clear tendency among programmers to strongly 
adhere to the fundamental principles of Object-Oriented 
programming. However, certain less obvious attributes of object-
oriented languages appear to receive relatively less attention from 
programmers. 

 
Keywords – Object oriented principle, source code analysis, 

source code feature extraction. 

I. INTRODUCTION 
The source code of a software system encompasses diverse 

artifacts, components, and features that empower programmers 
to configure code structures, patterns, behaviours, and styles. 

These artifacts and characteristics have unique qualities and 
purposes, but they can also show connections in certain 
situations as indicated by De Moura et al. [1]. For example, in 
object-oriented programming languages like Java [2], a class 
that contains many private fields would require a corresponding 
number of methods to manage those fields (Encapsulation). 
Java offers essential tools for creating software systems that are 
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maintainable and can be reused, provided that best practices are 
carefully followed. 

Background 
Analysing the source code of a software system, either 

individually or collectively, can reveal various details that can 
benefit developers, both for existing systems and newly created 
ones. Miltiadis et al. [3] conducted an experiment involving an 
extensive codebase, comprising approximately 352 million 
lines of Java, to analyse the complexity of a code module and 
its topical centrality within a software project. Their method 
assists in distinguishing reusable utility classes from those that 
constitute a program’s core logic, solely based on general 
information-theoretic criteria. 

O’Hare et al. [4] developed an analyser called CASE 
(Computer-Aided Software Engineering), which essentially 
functions as a reverse engineering system. It aids in discovering 
the structure of a software system from its source code. This 
analyser has the potential to assist in transforming legacy code 
into abstractions within a structured analysis methodology. 

Source code analysis also has applications in cybersecurity 
and vulnerability detection [5], [6]. In a study by Arvinder et 
al. [7], code analysers for three languages, namely C, C++, and 
Java, have been compared and discussed. 

In another study, Johnatan et al. [8] conducted an experiment 
applying source code analysis to assess developers’ skills. They 
evaluated two models designed to support the realization of 
programming skills. Their research involved a survey with 110 
developers from GitHub, conducted to assess the applicability 
of these two models for computing developers’ programming 
skills based on the metrics ‘Changed Files’ and ‘Changed Lines 
of Code’. 

Source code analysis has also application in specific-domain 
languages. Ivan et al. [9], in their work, discuss the concerns 
related to evaluate the quality of such languages and they 
propose a model-driven interoperability strategy that bridges 
the gap between the grammar formats of source code quality 
parsers and domain-specific text languages. 

Static source code analysis can help the errors and issues to 
be raised from multi-threading programming that usually is 
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clear when the application is deployed. Damian et al. [10] 
discuss some of these errors such as race condition, deadlock, 
atomicity violation and order violation. They also present a 
model that can detect such errors using static source code 
analysis techniques. 

In the course of this study, a protocol for source code analysis 
has been devised, aimed at probing the extent of 
interdependence among a specific set of chosen code 
“features”. The principal objective of this work is to explore 
contemporary coding practices within Java from a distinctive 
point of view, with the intention of deriving an overview of 
prevalent behaviours on an aggregate level. In essence, the 
overall aim is to discover whether feature statistics can offer 
insights into coding practices or programming concepts (e.g., 
Object Oriented Concepts). 

II. DESIGN AND METHODS 
In this study, a total of 436 open-source Java projects were 

collected from GitHub using the GitHubBuilder [11] API. The 
GitHubBuilder API enables the search of open-source GitHub 
projects based on specified queries. The selected queries for this 
study included terms such as market, customer, algorithm, and 
network. By employing these queries, projects containing any 
of these keywords are identified. The GitHubBuilder API can 
specifically target projects written in certain programming 
languages, with Java being the language of focus in this study. 

Each detected project underwent an initial examination, and 
if it contained more than 150 Java files (Class, Abstract Class, 
and Interface), it was added to a pool of Java projects for further 
analysis. For each project, 39 features were considered, namely: 
Method-Call, All-Methods, Accessed-Variable, Declared-
Variable, All-Comment, Line-Comment, Block-Comment, 
Doc-Comment (also known as JavaDoc), Inner-Class 
(including inner and/or nested classes), LOC (Lines Of Code), 
Class-Call (object creation), Inheritance-Direct, Inheritance-All 
(covering directed and indirect inheritance, such as a 
SuperClass of a SuperClass), Exception (Try blocks), Catch 
(Catch blocks), Concrete (concrete class), Abstract (Abstract 
class), Interfaces, All-Class-Type (covering concrete, abstract, 
and interface), FinalMethod, Overloaded-Method, Overridden-
Method, Default-Method, Private-Method, Protected-Method, 
Public-Method, Static-Method, Super-Method (including 
abstract methods and those that are overridden), Variable-Final, 
Variable-Primitive, VariableDefault, Variable-Private, 
Variable-Protected, Variable-Public, Variable-Static, Ave-
Class-LOC, Ave-Method-LOC, Dead-Method (a type of dead 
code), and Package-Count. These features were chosen for their 
popularity in coding practices and their inclusion in object-
oriented mechanisms. 

The frequency of each feature is counted across the entire 
project. For example, in a given project, the count of 
Inheritance-Direct is calculated for each class and then summed 
across the entire project for all classes and interfaces. 

Given that there are a total of 436 projects, each of the 
aforementioned features can be treated as a vector with a size 
of 436. To explore the relationships between any pair of 
features, linear regression is applied. For a given pair of features 

F1 and F2, a 2D line can be drawn using these two features as x 
and y, as shown in Fig. 2. The other image in Fig. 1 depicts a 
straight line, indicating complete linear dependency between F1 

and F2; whereas the right image portrays a broken line, 
suggesting little to no linear dependency between F1 and F2. 

 

Fig. 1. An example of a straight line with a 100 % correlation between two 
features: Feature 1 and Feature 2. 

 

Fig. 2. An example of a broken line: The X-axis represents Feature 1, and the 
Y-axis represents Feature 2. 

The line’s degree of straightness is quantified using linear 
regression techniques. The Pearson Correlation Coefficient 
(PCC) [12] is a real value denoted as r, which lies within the 
range of [−1,1]. A value of −1 indicates the maximum negative 
linear correlation, while a value of 1 signifies the maximum 
positive linear correlation between two variables. Values close 
to 0 indicate a weaker linear correlation, and a value of 0 
represents no correlation. 

III. RELATIONSHIPS 
The objective of this study is to investigate interdependencies 

among features. For instance, from an object-oriented 
perspective, it is expected that a project with a higher number 
of inheritance will have a higher number of overridden 
methods. Therefore, there is an expected dependency between 
the number of inheritance (F1) and the number of overridden 
methods (F2). Through this analysis, these dependencies can be 
explored, and more relationships may be uncovered. 

To conduct this analysis, the Pearson Correlation Coefficient 
(PCC) is employed. Schober et al. [13] discussed the details of 
the Correlation Coefficient in their work and presented Table I 
as a Conventional Approach to interpreting a Correlation 
Coefficient. Consequently, the information in Table I is used as 
a reference for interpretation. As this study aims to identify 
dependent features, features exhibiting a Strong Correlation 
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(0.70–0.89) or Very Strong Correlation (0.90–1.00) are 
discussed in detail. 

TABLE I 
INTERPRETATION OF PCC 

Absolute Value of PCC Interpretation 

0.00–0.09 Negligible correlation 

0.10–0.39 Weak correlation 

0.40–0.69 Moderate correlation 

0.70–0.89 Strong correlation 

0.90–1.00 Very strong correlation 

A. Discussion 
In this section, each feature is individually examined, and the 

most dependent features on it are listed and discussed. Table II 
presents the list of features, with each feature assigned an index. 

Figures 19 to 28 illustrate individual feature dependencies. 
As previously mentioned, these figures only show strong 
dependencies. The complete list of dependencies for all features 
can be observed in Fig. 29, and the reference indexing is 
provided in Table II. 

 

TABLE II 
LIST OF ALL FEATURES AND THEIR INDEX 

1 Method-Call 14 Exception 27 Static-Method 

2 All-Methods 15 Catch 28 Super-Method 

3 Accessed-Variable 16 Concrete 29 Variable-Final 

4 Declared-Variable 17 Abstract 30 Variable-Primitive 

5 All-Comment 18 Interfaces 31 Variable-Default 

6 Line-Comment 19 All-Class-Type 32 Variable-Private 

7 Block-Comment 20 Final-Method 33 Variable-Protected 

8 Doc-Comment 21 Overloaded-Method 34 Variable-Public 

9 Inner-Class 22 Overridden-Method 35 Variable-Static 

10 LOC 23 Default-Method 36 Ave-Class-LOC 

11 Class-Call 24 Private-Method 37 Ave-Method-LOC 

12 Inheritance-Direct 25 Protected-Method 38 Dead-Method 

13 Inheritance-All 26 Public-Method 39 Package-Count 

 
• LOC: Lines of Code simply represents the number of lines of 

code present in the software system. LOC is employed as a 
metric to measure the size of the source code or the software 
system itself [14], [15]. Figure 18 illustrates the strongly 
dependent features of LOC, with All-Methods and All-
Variables (Declared Variables) being the two most 
pronounced dependencies. Therefore, All-Methods and All-
Variables are going to be considered as project-size metrics 
for future features. 

• Encapsulation: Encapsulation is one of the fundamental 
Object-Oriented Principles. It serves as a mechanism to 
prevent direct access to class data from other classes. Instead, 
class data may be accessed through methods, allowing for 
any desirable conditions to be applied when accessing the 
data. Typically, encapsulation is realized by defining class 
fields as private variables and creating methods to access 
those private variables. Statistically, under an ideal scenario, 
the hypothesis is formulated as follows: As the size of the 
software increases, instances of encapsulation also increase. 
To validate this hypothesis, the presence of encapsulation 
instances is initially discussed. Figure 22 illustrates the 
strongly dependent features of public methods. As depicted, 
Private-Variable stands out as one of the strongly dependent 
features of PublicMethod. Although Fig. 22 indicates an 
association between the increase in Public-Method and the 
increase in Private-Variable (indicating the necessity for 
Encapsulation), it is not adequate to conclude that all projects 

universally practice encapsulation. Additionally, Fig. 22 
demonstrates that an increase in Public-Method is 
accompanied by increases in All-Methods and LOC. 
Moreover, All-Methods also rise with an increase in 
Concrete-Class instances. Consequently, the hypothesis 
gains better support by suggesting that, on average, the 
studied projects tend to practice encapsulation more as they 
grow in size. 

• Polymorphism: Polymorphism, meaning “many forms”, is 
another crucial Object-Oriented Principle. Polymorphism 
has different types and forms such as Ad hoc polymorphism, 
Generics polymorphism, Overriding, and Overloading. The 
focus of this work would be on two common polymorphism 
types: Overriding and Overloading. Therefore, 
polymorphism is categorized into two distinct types: 
Overriding and Overloading. 

The first category, Overriding, involves a process where a 
subclass re-implements a method already present in the 
superclass. This ability enables software to offer different 
levels of functionality for a method within an inheritance 
chain. On the other hand, Overloading refers to the process 
of defining multiple methods with the same name in a single 
class, each serving a different purpose. 

Figure 20 showcases the features that strongly depend on 
Overloaded methods. The first feature is LOC, which serves 
as a conventional measure of software system size [16]. This 
suggests that, on average, developers tend to employ the 
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Overloading mechanism, and as the project’s size increases, 
the number of overloaded methods also tends to rise. 
Conversely, Overridden methods exhibit a robust 
dependency on ClassInheritance and Super-methods, 
aligning with expectations, as illustrated in Fig. 21. However, 
there is not substantial evidence to support the idea that the 
Overriding mechanism is practiced more as software systems 
grow in size. 

• Inheritance: Inheritance stands as one of the four core 
Object-Oriented Principles. It empowers classes to acquire 
attributes such as fields, methods, and behaviours from a 
shared superclass, fostering code reusability, modular 
design, and enhanced maintainability of the codebase. 
Through inheritance, classes can circumvent the need for 
redundant code, leading to more efficient development, 
simplified upkeep, and a more organized code structure. 
Figure 15 illustrates the features strongly dependent on the 
inheritance principle, encompassing both direct inheritance 
(e.g., super-class → sub-class, as depicted in Fig. 16) and 
indirect inheritance (e.g., super-class → super-class → sub-
class). However, the features strongly reliant on inheritance 
do not provide definitive evidence of a correlation between 
inheritance and project size. Consequently, it can be 
concluded that larger projects do not necessarily adhere more 
to number of super-classes. 

• Commenting: Nearly all programming languages incorporate 
a commenting mechanism that assists programmers in 
providing insights for the written code at various levels. 

Pooja et al. [17] delve into the roles of comments in 
Object-Oriented programming languages such as Java, 
Python, and Smalltalk, discussing aspects like Code 
Summary, Code Ownership, Code Usage, Deprecation 
details, Rationale behind the code, Development Notes, 
Parameters details, Code Intent, Collaborator, Examples, 
Class reference, Key implementation points, Key message, 
and more. In the case of Java, three distinct syntaxes for 
comments are available: 1) Line Comment; 2) Block 
Comment; 3) Java Doc. Typically, line comments suit brief 
comments requiring a line or less, block comments are ideal 
for more extensive comments needing greater detail, and 
Java doc is fitting for providing metainformation about the 
software, encompassing ownership, legal details, release 
updates, and related subjects. 

Figure 5 offers an overview of the strongly dependent 
features related to the trio of comment types. Notably, Block-
Comment does not display strong dependence on any feature, 
including All-Comments, implying that it is not as widely 
used as Line-Comments and Java-Doc among programmers. 
Although Line-Comment is strongly reliant on All-
Comments, it does not exhibit significant reliance on other 
features (see Fig. 7). In contrast, Java-Doc (Fig. 8) exhibits 
strong dependence on multiple features such as Overloaded-
Methods, All-Methods, and Dead-Methods. This points to 
programmers’ inclination to utilize Java-Doc to provide 
details about Overloaded-Methods, All-Methods, and Dead-
Methods. Notably, the correlation between Java-Doc and 
Dead-Methods suggests programmers might employ Java-

Doc to clarify outdated methods, though this conjecture 
necessitates further investigation. Since All-Methods is 
considered one of the measures of project size, an increase in 
project size consequently results in a higher usage of Java-
Doc as well. 

• Declared Variable/Class Fields: In this study, the class fields 
or variables at the class level are specifically focused, that 
exclude local variables (those declared within methods). The 
following sections will delve into various coding practices 
associated with variables: 
1. Primitive Variables: Java encompasses various primitive 

variable types, including int, double, float, Boolean, char, 
byte, long, and short. As the name suggests, these variable 
types are primarily employed to store simple, non-
complex fundamental data types, where the data are 
represented with a singular magnitude. Consequently, 
primitive data tend to occupy less memory compared to 
complex data (i.e., variables with class types). 

Figure 26 illustrates two features that exhibit strong 
dependence on Primitive Variables: 1) Static Variables 
and 2) Default Variables. Static Variables hold 
information about the class structure, rather than 
individual instances (objects), and are shared among all 
instances of the class. Due to their lasting presence in 
memory, proper management is crucial to avoid memory 
overflow. The strong correlation between Primitive 
Variables and Static Variables indicates the proficient 
utilization of Static Variables by programmers on average. 

The second feature strongly linked to Primitive 
Variables is Default Variables, which restricts the 
variable’s visibility to the declaring class and all other 
classes within the same package. The reason for this 
dependency requires further analysis. However, this result 
does not provide evidence that the number of primitive 
variables increases as the project size grows. 

2. Accessed Variables: Accessed Variables in this study refer 
to any non-primitive variable that is accessed by an 
identifier. The identifier can be: 1) the class name (when 
accessing a static variable from another class), 2) the 
object name (when accessing a non-static variable from 
either the same class or another class), or 3) “this” (used 
as an identifier when accessing a field from the same 
class). 

Figure 3 displays the strongly dependent features of 
Accessed Variables. The strongest dependent feature of 
Accessed Variables is Public Method. This observation 
could be linked to the encapsulation scenario, where 
Public Methods access variables from the same class 
(using the “this” identifier). This can be further supported 
by the fact that Private Variables are also strongly 
dependent features of Accessed Variables. 

3. Final: Final Variables offer advantages in Object-Oriented 
programming, such as enhanced clarity and readability 
[18], [19], and in addition, they can substantially improve 
program performance, sometimes even up to 25 times 
higher [20]. 
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Final-Variables behave like constant variables, meaning 
once a value is assigned to them, it remains unchanged. 
According to the findings in Fig. 13, programmers seem to 
be leaning towards increased usage of Final-Variables as 
the software system becomes larger. However, the exact 
intention behind this increase requires more research. 

• Exception Handling: Modern programming languages are 
equipped with elaborate mechanisms to manage unforeseen 
situations that might arise due to various reasons, such as 
incompatible external inputs, limited resources, and poor-
quality code structure. Java features an Exception-Handling 
mechanism that helps capture and address exceptions and 
errors. The Exception Handling mechanism in Java consists 
of four parts: 1) Try Block, 2) Catch Block, and 3) Finally 
Block. The last block is optional, while the first two are 
mandatory. The Try Block encapsulates the code susceptible 
to triggering an exception or error, while the Catch Block 
provides a handling solution. It is worth noting that most 
languages, including Java, allow a Try Block to have more 
than one Catch Block [21], indicating that the code within the 
Try Block might not be specific to just one vulnerability. This 
can be considered a code smell [22], [23]. 

Figure 14 depicts the features dependent on exceptions. 
Each exception is permitted to have only one Try Block, 
Figure 14 illustrates the dependent features of the Try Block. 
The most significant feature dependent on the Try Block is 
the Catch Block, showing a dependency of over 97 %. This 
high dependency implies that only a very small portion of the 
entire Exception Handling structure utilizes multiple Catch 
Block, which could be indicative of a code smell. 
Furthermore, the Exception block demonstrates a strong 
dependency on Comments, possibly indicating 
programmers’ tendencies to provide explanatory comments 
for Exception Blocks. Declared Variable and Overloaded 
Method are two other features exhibiting strong 
dependencies with Exception Handling. 

• Dead Code: Dead code refers to any piece of code that would 
never be executed due to various reasons. Dead code can 
encompass methods/functions, classes, interfaces, or any 
blocks of code like loops or conditional statements. Code 
becomes dead when it remains uninvoked by other code or 
when it is situated under conditions that are impossible or 
incorrect (e.g., if(4%3 == 0)). A common cause of dead code 
arises when existing code is rewritten to alter its behaviour, 
effectively disconnecting the old code from the rest of the 
system. This phenomenon is often referred to as clone 
code [24]. In this study, our focus is exclusively on dead 
methods, which represent a subset of dead code. A method is 
considered dead if it satisfies the following criteria: 1) It is 
not invoked by any other method or constructor, and 2) It 
does not serve as a super method or an abstract method. 
Figure 12 illustrates the strongly dependent features of dead 
methods. As indicated, the most influential dependent feature 
of dead methods is All-Method, followed by Public-Method. 
The prominence of Public-Method among the features 
dependent on dead methods implies that public methods have 
undergone more changes compared to other methods (such 

as private, default, and protected methods). This suggests 
that insufficient attention might have been given to obsolete 
methods. In an ideal scenario, obsolete methods should be 
removed from the source code to prevent code cloning and 
maintenance confusion especially with the presence of 
version-control platforms such as Git. Another noteworthy 
finding is the correlation between dead methods and Doc 
Comments. This correlation can be interpreted as an attempt 
to provide comments for either the obsolete method itself or 
the newly introduced substitute. 

B. Non-Conforming Features 
Among all the features experimented with, as listed in 

Table II, a few features exhibit independent behaviour and 
appear to have random effects. These features are discussed in 
the following section: 
• Block-Comment: Block comments do not exhibit a strong 

dependency on any particular feature. The feature most 
dependent on Block comments is All-comment, which 
demonstrates a Pearson Correlation Coefficient (PCC) of 
67 %. This is followed by Line-comment and Doc-comment 
with PCC values of 56 % and 54 %, respectively. 
Considering that Line comments and Doc comments have 
previously shown strong dependencies on other features, it 
can be inferred that Block Comments are not the preferred 
choice of comment type among developers. 

• Abstract Class: An abstract class is a mechanism that enables 
developers to create a class that combines both implemented 
and unimplemented elements, providing flexibility for future 
behaviours. While designed to enhance software system 
quality by curbing maintenance costs, it is noteworthy that 
the Abstract Class does not exhibit any dependency on other 
features. In other words, the presence of a larger number of 
abstract classes does not necessarily correlate with larger 
software systems. 

Furthermore, Abstract Classes do not display a 
dependency on the total number of classes either. This 
suggests that the utilization of Abstract classes is primarily 
dictated by specific use cases rather than systematic trends. 
The most dependent feature, Interface, displays a Pearson 
Correlation Coefficient (PCC) of 44 %, yet it does not 
indicate a strong dependency on the Abstract class. 

• Interface: The interface is another mechanism that holds the 
potential to enhance the maintainability of a software system. 
The primary distinction between an abstract class and an 
interface lies in the fact that an interface can solely contain 
unimplemented methods, also known as signature methods. 
Interestingly, an interface does not exhibit a strong 
dependency on any particular feature. However, the feature 
most dependent on an interface is the Inner-Class, displaying 
a Pearson Correlation Coefficient (PCC) of 66 %. 

A plausible explanation for this moderate dependency 
could be that classes inheriting from an interface, or multiple 
interfaces, are, to some extent, tied to the behaviour outlined 
by those interface(s). The use of inner classes could provide 
a means to compensate such ties and introduce alternative 
types of behaviour within the class [25]. 
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• Final Method: The final modifier applied to methods 
indicates that the method cannot be overridden if the owning 
class is inherited by another class. This feature, Final 
Method, does not demonstrate a strong dependency on any 
other feature. However, it does exhibit an average 
dependency with the following features: 1) LOC, 2) 
Protected Method, 3) Overloaded Method, 4) All-Comment, 
and 5) Variable-Final. 

The Line of Code (LOC) is a versatile feature that can 
easily demonstrate dependencies with numerous other 
features. Among the features dependent on Final Method, 
Protected Method shows the highest level of dependency. 
While further investigation is necessary to ascertain the 
nature of this dependency, the average relationship between 
Final Method and Protected Method can be understood as 
developers prioritizing heightened source code security, 
particularly when both mechanisms are appropriately 
utilized. 

The average dependency between Final Method and 
Overloaded Method could be attributed to programmers’ 
endeavours to safeguard methods with similar names from 
accidental override in the future. The dependence of All-
Comment on Final Method could signify developers’ 
inclination to provide detailed explanations for their chosen 
modifiers. The average dependency with Variable-Final 
indicates a similar trend. 

• Default Method: The default modifier applied to methods 
(note that the default modifier itself has no keyword) restricts 
the visibility of methods to within their package. This 
feature, Default Method, does not exhibit a strong 
dependency on any other feature. The most significant 
feature associated with Default Method is InnerClass, 
showing a Pearson Correlation Coefficient (PCC) of 50 %. 
However, this coefficient does not point to a substantial 
connection between Default Method and any other feature. 

• Private Method: The private method is a feature that 
demonstrates a moderately strong dependency with All-
Methods (PCC 69 %), DeclaredVariable (PCC 68 %), and 
Variable-Final (PCC 66 %). The interrelation between 
Private Method and All-Methods suggests a notably 
significant utilization of private methods by developers. 
Since private methods are accessible only within their 
respective class containers, the relatively high dependency 
between Private Method and Declared-Variable might be 
attributed to developers’ efforts to handle data internally 
within the class through private methods. 

• Protected Methods: Protected methods share similarities 
with default methods, but they come with a distinction: 
protected methods can be accessed by all subclasses of the 
defining class. Protected methods do not demonstrate any 
notable dependency on other features. However, a relatively 
strong dependency exists between Protected Methods and 
LOC (PCC 69 %), All-Comments (PCC 66 %), and 
Declared-Variable (PCC 65 %). 

• Static Method: Static methods are categorized as class 
methods rather than object methods. This implies that there 
is precisely one instance of any static method, which can be 

accessed via the class itself, and not necessarily through an 
object. The most significant dependencies of Static Method 
are Variable-Primitive (PCC 60 %) and Variable-Static 
(PCC 55 %). This pattern can be understood as developers’ 
intention to execute auxiliary processes using static methods 
in conjunction with static and primitive variables. 

• Variable-Protect: The protected variable stands out as one of 
the features that lacks a discernible pattern in relation to other 
features. The most notable feature dependent on Protected 
Variable is Doc-Comment, with a Pearson Correlation 
Coefficient (PCC) of 29 %. However, this coefficient does 
not suggest any substantial or meaningful connection. 

• Variable-Public: Public variables exhibit an average level of 
dependency on several other features, including Declared-
Variable (PCC 65 %), Variable-Final (PCC 59 %), and 
Public-Method (PCC 57 %). The 65 % Pearson Correlation 
Coefficient (PCC) between Public Variable and Declared-
Variable can be attributed to the relatively high frequency of 
public variables in comparison with other visibility 
modifiers. Additionally, the average dependence of Final 
Variables on Public Variables might suggest that on average 
Final Variables are also declared as public. 

• Average Method and Class LOC: In addition to the overall 
Line of Code (LOC), this study evaluates two other features: 
the average Line of Code across all methods and the average 
Line of Code across all classes and interfaces. The average 
method LOC does not exhibit noteworthy dependency on any 
feature, with the highest correlation being with Variable-
Default (PCC 39 %). 

The average class LOC also does not show significant 
dependency on any other feature. However, the features most 
dependent on average class LOC are LOC (PCC 65 %), Doc-
Comment (PCC 62 %), and Exception (PCC 61 %). 

• Package-Count: Another feature displaying no strong 
dependency on any other feature is Package-Count. The 
feature most dependent on Package-Count is Concrete 
Classes with a Pearson Correlation Coefficient (PCC) of 
61 %. While this dependency is not robust, it aligns with 
expectations. Given that Package-Count exhibits no 
significant dependence on any other feature, it can be 
inferred that packaging plays a relatively minor role in 
developers’ architectural decisions. 

 

Fig. 3. Accessed-Variables details. 
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Fig. 4. All-Class-Type details. 

 

Fig. 5. All-Comments details. 

 

Fig. 6. All-Methods details. 

 

Fig. 7. Line-Comments details. 

 

Fig. 8. Doc-Comments details. 

 

Fig. 9. Catch details. 

 

Fig. 10. Class-Call details. 

 

Fig. 11. Concrete details. 

 

Fig. 12. Dead-Method details. 

 

Fig. 13. Declared-Variable details. 
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Fig. 14. Exception details. 

 

Fig. 15. Inheritance-All details. 

 

Fig. 16. Inheritance-Direct details. 

 

Fig. 17. Inner-Classes details. 

 

Fig. 18. LOC details. 

 

Fig. 19. Method-Call details. 

 

Fig. 20. Overloaded-Methods details. 

 

Fig. 21. Overridden-Methods details. 

 

Fig. 22. Public-Method details. 

 

Fig. 23. Super-Method details. 
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Fig. 24. Variable-Default details. 

 

Fig. 25. Variable-Final details. 

 

Fig. 26. Variable-Primitive details. 

 

Fig. 27. Variable-Private details. 

 

Fig. 28. Variable-Static details. 

IV. CONCLUSION 
In this study, a statistical analysis of a collection of Java 

software projects (each containing a minimum of 150 Java files) 
has been conducted. This analytical work involves targeting and 
computing various features (39 features in total, as outlined in 
Table II) for each project. The primary objective of this study 
has been to unveil the interdependencies among source code 
features, aiming to uncover structural intricacies within the 
source code. 

Figure 29 provides a comprehensive view of the 
dependencies among all the features (Note that all values are 
colour-coded from the highest – dark green to the lowest – dark 
red). Those features displaying strong dependencies are 
discussed in Figs. 3–28. The analysis results suggest that 
developers, on average, adhere to the requisite practices for 
implementing Object-Oriented Principles (excluding 
Abstraction, which cannot be assessed using the designated 
methodology). Furthermore, the analysis reveals that Line 
Comments are the most frequently employed type of comments 
among programmers. However, the utilization of Block 
Comments does not exhibit any discernible pattern. 

On average, developers have made efforts to evade a 
particular code smell associated with Exception Handling, 
notably, the use of multiple Catch blocks for a single Try block. 
Interestingly, an increase in the size of method bodies and class 
bodies does not necessarily correlate with an increase in other 
features. Another noteworthy observation pertains to the 
utilization of Interfaces and Abstract Classes, which does not 
see a proportional rise with project size. This holds true, even 
more remarkably, for Abstract Classes. It is worth noting that 
there is no average, strong, or very strong negative dependency 
between any pair of features. The result of this study, in general, 
may assist developers in monitoring the evolution of the 
project. A Java software system is a complex and 
multidimensional entity where, in large systems, maintaining 
the quality of the code at a satisfactory level becomes 
challenging. The findings of this paper provide an overview of 
how one feature of the source code increases or decreases in 
relation to another. For instance, the general finding shows that 
the number of dead methods increases with the increase of 
public methods. Furthermore, the findings of this work reveal 
the importance of utilizing a static code analyser to observe 
changes over the course of development for any in-vivo 
software system. 
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Fig. 29. The complete inter-dependency of all 39 features with each other. 

V. FUTURE WORK 
This study has been based solely on the statistical 

characteristics of a few hundred open-source Java projects. 
Consequently, it might uncover only specific types of details. 
As part of future endeavours, more in-depth analyses of 
software projects could be conducted to unveil finer-grained 
structural intricacies. 
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