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Abstract – With the increase in the capabilities of robotic 
devices, there is a growing need for accurate and relevant 
environment maps. Current robotic devices can map their 
surrounding environment using a multitude of sensors as mapping 
sources. The challenge lies in combining these heterogeneous maps 
into a single, informative map to enhance the robustness of 
subsequent robot control algorithms. In this paper, we propose to 
perform map fusion as a post-processing step based on the 
alignment of the window of interest (WOI) from occupancy grid 
histograms. Initially, histograms are obtained from map pixels to 
determine the relevant WOI. Subsequently, they are transformed 
to align with a selected base image using the Manhattan distance 
of histogram values and the rotation angle from WOI line 
regression. We demonstrate that this method enables the 
combination of maps from multiple sources without the need for 
sensor calibration. 

 
Keywords – Heterogeneous map fusion, occupancy grid 

histograms, mapping for mobile robots. 

I. INTRODUCTION 
For robots to operate freely in the environment, they need to 

gather information about their surroundings. Through sensor 
readings, it is not only possible to understand the position of the 
robot relative to other objects but also to record this information 
and map the environment. This recorded map is crucial for 
generating motion plans. Therefore, it should be as precise and 
up-to-date as possible to optimise the robot motion and avoid 
safety-critical situations [1]. 

A variety of methods exist that record and map the 
environment by employing different kinds of sensors. Robot 
motion estimation can use dead reckoning from the robot’s 
wheels to gain the travelled distance, or IMUs can be used to 
estimate the scale of the motion [2]. In static locations, key 
point markers can help triangulate the exact location, or a 
satellite signal can be used in GPS-enabled environments [3]. 
This information is then combined with various distance 
detection sensors, such as depth cameras, radar, LiDAR, sonar, 
or similar, and used for simultaneous mapping and localisation 
(SLAM) of the environment and the positioning of the robot in 
it [4]. This has proven to work well in various applications and 
has allowed the use of SLAM systems not only to gain an initial 
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estimation of the robot’s surroundings but also to update it 
throughout its lifecycle [5]. 

However, using an unreliable source of distance information 
for mapping tasks can result in inaccurate maps, leading to 
subpar planning of robot motion. For instance, sonar and radar 
data recordings have to deal with noisy distance estimations. 
Stereo cameras are susceptible to lighting conditions and the 
number of features in the scene. Laser-enabled depth cameras 
have difficulty registering glass structures and have a limited 
field of view. 2D laser sensors can only record a single plane, 
and 3D sensors still suffer from not being able to detect light-
absorbent and transparent obstacles. Therefore, redundancy in 
mapping tasks plays a crucial role in enabling the robots to 
execute their motion in a safe and efficient manner. Sensor 
fusion can be employed to obtain such redundancy at runtime 
but requires prior knowledge about the sensor types and 
calibration to ensure proper functionality [6]. This can be 
cumbersome for systems that may include multiple sensors of 
different types. Each sensor combination requires different 
calibration before the start of the program. Alternatively, 
redundancy can be obtained by merging produced maps from 
different data sources. Elements that are not recorded from one 
data source can appear in maps of other types without the need 
for calibration and a priori knowledge of sensor interactions. 
Using post-processing of already obtained maps allows for the 
use of a dynamic number of sensor sources with a simple setup 
process for SLAM systems. Therefore, in this paper, we 
propose a method of map merging from heterogeneous sources 
for mobile robot navigation. 

II. RELATED WORK 
The task of automating the creation and merging of maps of 

the environment obtained from different heterogeneous sources 
is relevant in various fields of robotics. A system, described 
in [7], enables a mobile robot to acquire knowledge about its 
surroundings and accomplish tasks by understanding the 
environment. The mobile robot gathers information from 
camera sensors about the environment. Through a machine 
learning module, the robot can identify objects within the 
surroundings and determine its semantic positioning in the 
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environment. However, map retention and reusability are 
questionable in such situations due to possible changes in the 
environment. In [8], a map of an environment is obtained using 
mapping data generated by an independent cleaning robot 
during its initial cleaning operation. The method describes the 
transferability of mapping and behaviour information to an 
independent cleaning robot to execute a behaviour linked to the 
label during a subsequent cleaning task; however, it does not 
address subsequent map updates from new sources. The 
MRSLAM (multi-robot SLAM) technique, described in [9], 
primarily includes a resilient map merging algorithm and a 
decision-making algorithm that governs field agents. Here, a 
single map is obtained in real time from multiple robots in the 
same environment but requires similarity in mapping sensor 
sources. 

In [10], a method is introduced for constructing a 3D point 
cloud map using laser-measured data as the robot navigates its 
surroundings. To balance the trade-off between data size and 
terrain accuracy, a terrain-adaptive density mapping technique 
is employed, utilising local curvatures as criteria for 
simplification. This adaptive density mapping technique is then 
integrated into the map merging framework, enhancing both 
matching speed and accuracy. 

Paper [11] introduces a novel algorithm for map fusion in a 
multi-robot cooperative SLAM framework. This algorithm is 
designed to create a map of an unfamiliar environment by 
utilising multiple agile exploration robots. Two major 
challenges include the accumulation of redundant information 
in the evolving map over time and the occurrence of mapping 
errors. In [12], a comprehensive overview is provided of 
innovative strategies aimed at addressing these challenges by 
eliminating redundant information from the map and correcting 
mapping errors. 

In [13], real-time sensor fusion for SLAM is proposed 
through trajectory matching. Although the algorithm is 
lightweight, it does not consider the integration of maps 
obtained from different robots at different times. Direct sensor 
fusion from LiDAR and monocular camera sources is 
introduced in [14]. 3D LiDAR and sensor fusion is depicted in 
[15], [16]. Other methods involve sensor fusion between 
LiDAR, RADAR, ultra-wideband, monocular RGB, RGB-D, 
and other sensors [17], [18], [6]. While these methods perform 
well during the runtime and real-time collection of mapping 
data, they do not address the challenge of matching mapping 
data taken at different times and possibly from different robot 
devices. Such map fusion needs to account for synchronisation 
in both time and space across various sensors [19], [20]. 

In [21], post-processing map fusion is presented, involving 
multiple mapping sources, one of which is ground truth, and a 
prior map of the environment. An entirely robot-detected map 
merging approach is proposed in [22], where LiDAR fusion 
with monocular RGB SLAM is achieved through keypoint 
matching. In this method, the same keypoints need to be 
extracted in all map sources to align the mapping data. In [23], 
a method is proposed for merging top-down views of the 
environment with 3D LiDAR data, which is rarely available for 
indoor robot-enabled locations. In [24], a method of merging 

heterogeneous maps in a post-processing step is proposed by 
executing a set of motions by different robots in the same map, 
information that is not always available or easy to reconstruct. 
Direct pixel matching and subsequent clustering are proposed 
in [25]. 

In this article, we propose an approach for merging 2D maps 
of the environment based on the creation and use of statistical 
histograms, which, in turn, rely on occupancy grid pixels. The 
outlined approach is iterative, involving transformations on this 
data. As such, the method is generally sensor, recording time, 
and robot trajectory agnostic, allowing it to be updated 
whenever a new map of the environment becomes available. 

III. PROPOSED APPROACH 
The proposed approach utilises occupancy grid maps from 

multiple sources to generate a single, final map of the 
environment. Mapping is conducted for the entire area with 
each data source, and the recorded occupancy grids are 
employed in post-processing to derive the final map. In general, 
the map is indifferent to the sensors used in its collection and 
the robots with which it was recorded, as long as the final result 
is an occupancy grid of the same scale. The objective of the 
proposed approach is to merge the provided maps in a manner 
that maximises the alignment of map elements. 

We assume that the recorded maps represent the same 
environment and that their mapping is complete, i.e., they have 
captured the entirety of the area under consideration. We 
designate any map from an arbitrary source as the base map, 
denoted as Mb. For optimal performance, this map should 
exclude elements beyond the specified area, such as those 
recorded through windows or artefacts resulting from mirrors 
and glass doors. An example of such a map recorded from 
visual SLAM is shown in Fig. 1. 

 

Fig. 1. Visualisation of the base map Mb from visual SLAM source. 

Other maps allow for the presence of artefacts related to 
scanning open spaces behind windows and doors. Any other 
map from an arbitrary source is designated as Ms, where s ∈ S 
as long as s ≠ b. Here, S is all the available map sources. An 
example of such a map recorded from a 2D LiDAR source is 
shown in Fig. 2. 

 

Fig. 2. The visualisation of map Ms from a 2D LiDAR source. 
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Elements of the base map Mb will remain fixed in the 
proposed approach as we will use it to align maps from other 
sources with it. The proposed approach consists of the 
following steps: 

Step 1. To establish the bounds of the relevant map data, we 
utilise pixel histogram information. Based on the data from Mb, 
histograms of pixel distribution are created along Ox and Oy 
coordinate axes. As map data can be noisy, and single-pixel 
values might not accurately represent the actual position of the 
recorded pixel, we enhance the granularity of the histogram to 
encompass p consecutive pixels within a single bin. The bin 
intervals of pixel count values along the Ox and Oy coordinates 
are collected as follows: 

( ) ·
· ;v i p p

x vv i pbin i x= +

=
=∑  (1) 

( ) ·
·

v j p p
y vv j pbin j y= +

=
=∑ , (2) 

where binx(i) – i-th interval along Ox, biny(j) – j-th interval along 
Oy. i is the number of bins along x axis and j is the number of 
bins along y axis. xv and yv represent the pixel value at the 
coordinate, where the value is 1 if the pixel is occupied and 0 if 
not. 

Based on the histograms in binx and biny, a window of interest 
(WOI) with dimensions W×H is identified, within which the 
map is situated. Each bin value in binx and biny is iteratively 
examined, and the first and last values that exceed the 
thresholds δhist(x) and δhist(y), respectively, are chosen as the 
starting and ending values for the WOI for each axis. An 
example of histograms and the identified WOI, indicated by a 
blue frame, is shown in Fig. 3. 

 

Fig. 3. The visualisation of Mb with histograms and window of interest. Window 
of interest is visualised by the blue rectangle. Red histogram shows bins with 
pixel values along x axis. Green histogram shows bins with pixel values along 
y axis. 

The final WOI is recorded as a rectangle formed of minimal 
and maximal x and y coordinates as follows: 

[ ]min min min· , ·WOI p i p j= ; (3) 

[ ]max max max· , · ,WOI p i p p j p= + +  (4) 

where imin and jmin are the indices of the first valid bin that 
exceed δhist(x) and δhist(y), respectively. imax and jmax are the indices 
of the last valid bin that exceed δhist(x) and δhist(y), respectively. 

Step 2. For any map from an arbitrary source Ms, the same 
histogram calculation is performed as in Step 1. The histograms 

obtained from Ms using (1) and (2) are compared to the 
histograms from the base map Mb by calculating the Manhattan 
distances: 

( ) ( )b s
x x x

i
d bin i bin i= −∑ ; (5) 

( ) ( )b s
y y y

j
d bin j bin j= −∑ , (6) 

where dx is the Manhattan distance between histograms along 
Ox, dy is the Manhattan distance between histograms along Oy. 

( )b

xbin i  and ( )b

ybin j  represent the i-th and j-th histogram bins 

in base map, ( )s

xbin i  and ( )s

ybin j  represent the i-th and j-th 

histogram bins in source map. 
The position at which the sum of distances dx + dy is 

minimised is considered the optimal position for the WOI in the 
source map. This allows for the translation of the source map to 
align it with the base map. 

Step 3. To estimate the rotation angle between WOI of Mb 
and Ms, we compute linear regression functions for the data for 
each map, respectively. For the WOI of Mb, the coefficients of 
the linear function are expressed as: 

α βb by x= + , (7) 

and are calculated as follows: 

2 ·α
· .

β
k kb k k kk k

kb k kk

x yx x
yx k

          =              

∑∑ ∑
∑∑

 (8) 

 

 

Fig. 4. The visualisation of the rotation procedure of the window of interest of 
Ms relative to the window of interest of Mb. 

For the WOI of Ms, the coefficients of the linear function are 
expressed as: 

α βs sy x= + , (9) 
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and are calculated analogously as for Mb with (8). 
The angle between the linear functions (7) and (9) represents 

the rotation angle of Mb relative to Ms and is computed as 
follows: 

( ) ( )θ arctan α arctan αs b= − , (10) 

where θ is the rotation angle. Figure 4 illustrates the operation 
of the map rotation procedure using the WOI of each respective 
map. 

Step 4. After performing the translation and rotation 
transformations, the source map Ms is updated and becomes Ms′. 
We evaluate if the translation and rotation are sufficient to fulfil 
the map fusion criteria. For this purpose, the equation results 
from (5), (6), and (10) must fall under a given threshold for each 
respective value: 

θ

ε
ε
ε

x x

y y

d
d

 < < θ <

, (11) 

where εx and εy are threshold values for the translation 
coefficients and εθ is the threshold value for the rotation angle. 

If the condition is not met, Steps 1 to 3 are repeated for the 
new values of Ms′. Execution of the method is completed once 
the criteria in (11) are met or when the iteration count becomes 
larger than a pre-set value: 

maxNiter iter> , (12) 

where iterN is the N-th iteration of the method, and itermax is the 
maximum number of iterations. 

Full method implementation for the map Ms with pre-
computed values for Mb is described in Algorithm 1. 

 
Algorithm 1. Map Fusion Algorithm 
1: iterN = 0                                        ▷Set iteration count 
2: while iterN > itermax do 
3:     Step 1: 
4:     Calculate histograms with (1) and (2) 
5:     Obtain WOI with (3) and (4) 
6:     Step 2: 
7:     Calculate Manhattan distance with (5) and (6) 
8:     Translate WOI by dx and dy 
9:     Step 3: 

10:     Calculate linear function coefficients with (8) 
11:     Calculate rotation angle with (10) 
12:     Rotate WOI by θ 
13:     Step 4: 
14:     if (11) is True then 
15:         Map fusion complete 
16:         Break 
17:     else 
18:         iterN = iterN + 1 
19:     end if 
20: end while 
 

IV. EXPERIMENTS 
To validate the proposed method, we conducted experiments 

by fusing maps recorded by a mobile robot SLAM system from 
multiple sources. The base map utilises a visual SLAM 
recorded map, as shown in Fig. 1. The map fused with the base 
map is obtained from a 2D LiDAR SLAM and is visualised 
in Fig. 2. During the experiment, two iterations were carried out 
to move and rotate data from Ms relative to Mb. The result of the 
map merging can be seen in Fig. 5. As observed, the data from 
Ms coincide with the data from Mb where possible. 

 

Fig. 5. The visualisation of map fusion. The Mb is shown in blue colour pixels 
overlaid over the Ms map. 

A. Validation on SLAM Maps 
To further evaluate the validity of the approach, a mapping 

of real-world environments was carried out in two distinct 
industrial environments. We refer to these as exp1 and exp2, 
respectively. For both of these experiments, the base map was 
recorded using a visual SLAM and the source map with LiDAR 
SLAM. 

For exp1 the Mb is visualised in Fig. 6. The Ms is depicted 
in Fig. 7. The final merged map, after executing the algorithm, 
is shown in Fig. 8. Here, the overlapping pixels are depicted in 
blue colour. The pixels from the Mb are shown with red, and 
pixels from Ms are shown in green pixels. The final map is a 
combination of both map information that adds additional 
information from both SLAM sources. We also record the 
number of pixels generated in the final map. Only the pixel 
values that represent occupied grids are used for this purpose, 
as they are the basis for map fusion. Additionally, we show the 
added data in pixel count that appears from visual and LiDAR 
SLAM separately. The data is given in Table I. We can see that 
in exp1 we gain an overlap of map data of 92.2 %. The visual 
SLAM data gives an additional 2.3 % amount of data that would 
not be recorded using just LiDAR SLAM. LiDAR SLAM, 
however, accounts for 5.5 % of additional data that would not 
be obtained by using only visual SLAM. 

The Mb recorded with a visual SLAM for exp2 is visualised 
in Fig. 9. The Ms recorded with a LiDAR SLAM is visualised 
in Fig. 10. The final, combined map is visualised in Fig. 11. 
Blue pixels represent the overlapping pixels, red represents the 
pixels from Mb, and green from Ms. For exp2, the pixel coverage 
data is given in Table II. Here, even more data can be obtained 
in the final map by fusing multiple sources. 9 % of unique pixel 
values account for coming entirely from the visual SLAM 
source and 21 % uniquely from the LiDAR SLAM source. 
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Fig. 6. Recorded map from visual SLAM for exp1. 

 

Fig. 7. Recorded map from LiDAR SLAM for exp1. 

 

Fig. 8. Final result of fused map for exp1. Blue pixels represent an overlap of 
visual and LiDAR SLAM maps. Red pixels represent the visual SLAM pixels, 
and green – LiDAR SLAM pixels. 

TABLE I 
MAP PIXEL COVERAGE IN EXP1 

 Visual SLAM LiDAR 
SLAM Overlap Total 

Nr. of Pixels 4250 10 166 169 804 184 220 

% of Pixels 2.3 % 5.5 % 92.2 % - 

 

 

Fig. 9. Recorded map from visual SLAM for exp2. 

 

Fig. 10. Recorded map from LiDAR SLAM for exp2. 

 

Fig. 11. Final result of fused map for exp2. Blue pixels represent an overlap of 
visual and LiDAR SLAM maps. Red pixels represent the visual SLAM pixels, 
and green – LiDAR SLAM pixels. 

TABLE II 
MAP PIXEL COVERAGE IN EXP2 

 Visual SLAM LiDAR 
SLAM Overlap Total 

Nr. of Pixels 40 640 94 241 314 396 449 277 

% of Pixels 9 % 21 % 70 % - 
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V. CONCLUSION 
The experimental results demonstrate the effectiveness of the 

proposed approach on real examples of maps obtained from 
robot sensors. It is possible to iteratively update the map 
translation and rotation to fuse maps generated from different 
sources. The proposed method is agnostic to the map generation 
method as long as recorded information is preserved in the form 
of an occupancy grid. Additionally, it is possible to extend the 
method to use multiple maps by independently fusing them with 
the base map information. This means that the proposed method 
does not require intrinsic or extrinsic calibration between 
sensors and allows the fusion of maps obtained from different 
robots as well as at different times. Using histograms as the 
basis for map region estimation provides a lightweight solution 
for estimating map bounds and fusing such information. 

However, the proposed approach relies on several 
assumptions, one of which is that the recording pixel size is 
equal across multiple SLAM tasks. This allows for the use of 
the same scale assumption in the current implementation of the 
proposed method. Another assumption is that the mapped 
environment is complete, and the fused environment is fully 
mapped to the best possible extent. However, it might be 
possible that only a part of the map is available for some 
sources, making it difficult to obtain a proper WOI in such 
cases. 

Here, more intelligent methods for estimating relevant WOI 
patches would need to be implemented, such as estimation by 
pixel overlap or employing Hough Transforms to estimate key 
line overlaps. Another issue to consider is merging maps from 
lifelong mapping systems in dynamic or changing 
environments. In this case, the map age could be taken into 
account, and occupancy grid pixels corresponding to newer 
maps could be weighted. This would enable the use of older 
maps in the environment to estimate missing elements in 
subsequent mapping steps and update the possible base map 
information through lifelong mapping, even if different sensor 
sources are used. These ideas will be explored in our future 
research. 
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