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Abstract: The article presents the use of swarming algorithms in selecting the heat transfer coefficient, taking into account the boundary 
condition of the IV types. Numerical calculations were made using the proprietary TalyFEM program and classic form of swarming  
algorithms. A function was also used for the calculations, which, during the calculation, determined the error of the approximate solution 
and was minimalised using a pair of individually employed algorithms, namely artificial bee colony (ABC) and ant colony optimisation 
(ACO). The tests were carried out to select the heat transfer coefficient from one range. Describing the geometry for a mesh of 408 fine  
elements with 214 nodes, the research carried out presents two squares (one on top of the other) separated by a heat transfer layer  
with a κ coefficient. A type III boundary condition was established on the right and left of both edges. The upper and lower edges  
were isolated, and a type IV boundary condition with imperfect contact was established between the squares. Calculations were made  
for ABC and ACO, respectively, for populations equal to 20, 40 and 60 individuals and 2, 6 and 12 iterations. In addition, in each case, 0%, 
1%, 2% and 5% noise of the reference values were also considered. The obtained results are satisfactory and very close to the reference 
values of the κ parameter. The obtained results demonstrate the possibility of using artificial intelligence (AI) algorithms to reconstruct  
the IV type boundary condition value during heat conduction modelling. 
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1. INTRODUCTION 

Artificial intelligence (AI) is a branch of computer science of a 
practical and cognitive nature, and finds a steadily increasing 
volume of applications not only in science, technology and engi-
neering but also in everyday life. This section covers re-search on 
intelligent systems, their modelling, construction and use to sup-
port and substitute human mental work and deepen understand-
ing of human reasoning. AI methods are irreplacea-ble in a situa-
tion where it is necessary to infer further proce-dures based on 
incomplete information on a given issue. One of the elements of 
AI is optimisation issues. Optimisation problems appear in almost 
every area of science, engineering, economics and other fields of 
study. In order to solve most of today’s optimisation problems, it is 
necessary to use algorithms that adapt easily to constraints and 
do not depend on the num-ber of variables and the size of the 
solution space. Then, vari-ous types of nature-/biology-inspired 
algorithms come in handy, such as genetic algorithm (GA), differ-
ential evolution (DE), ant colony optimisation (ACO) and artificial 
bee colony (ABC), the rules of which are taken from observation 
of nature. In recent years, there has been an increase in interest 
in the class of algorithms called swarms; these algorithms are 
based on swarm intelligence. Their use has made it possible to 
signifi-cantly improve the performance of a given activity through 
its far-reaching optimisation. Even though the first optimisation 
algorithms were developed in the previous century, research-ers 
still exhibit great interest in this topic, especially with regard to 
optimisation of issues related to heat transfer [1,2]. 

AI algorithms have found many uses in solving various prob-

lems. For example, in the problem of image contrast en-
hancement, the ABC algorithm allowed obtaining better-quality 
images [3]. The use of the ACO algorithm improved the Elman 
neural network, thus leading the way for the capability to deter-
mine the state of charge of lithium-ion batteries in electric vehi-
cles. Nature-inspired algorithms are also used to navigate mobile 
robots that have to navigate over uncertain terrain [4]. 

Karaboga et al. presented a new approach to solving the in-
verse heat conduction problem and estimating an unknown heat 
source. The author formulated the problem of physical heat trans-
fer as an optimisation problem. The ABC algorithm, based on the 
intelligent behaviour of a honey bee swarm, turned out to be very 
simple and flexible compared to the existing swarming algorithms. 
The author showed that the algorithm is very stable for testing 
problems. The proposed algorithm can be used for unimodal and 
multimodal solving of numerical optimisation problems. The fea-
tures of the algorithm proposed by Karaboga became the basis for 
the present authors’ work in this article [5,6,7]. 

Physical problems modelled by mathematical models can be 
divided into direct and inverse problems [8]. Direct problems refer 
to a situation when all input data are known, and the problem is 
solved (mainly numerically) with initial-boundary assumptions [9]. 
Inverse problems consist of recreating some model parameters 
based on the experiment, which makes it possible to control its 
course and the final quality of the product [10,11]. This type of 
control is becoming more and more desirable in manufacturing 
processes. Solving the inverse heat conduction problem is more 
complex than solving the direct problem. Except in the most un-
complicated cases, it is impossible to solve the inverse problem 
with the help of analytical methods. Moreover, even if such a 
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solution exists, it is neither unequivocal nor stable. Therefore, the 
approximate method that gives a satisfactory solution is needed 
[12,13]. Conducting experimental research is laborious, time-
consuming and requires additional financial outlays. Such an 
experiment can be particularly burdensome, for example, when a 
qualitative analysis of different materials needs to be performed. 
Using efficient and optimal numerical methods makes it possible 
to perform an extensive series of tests with relatively lower 
amounts of effort and cost involved. 

Numerical simulation of heat transfer processes is based on 
solutions to both direct and inverse problems. The second ap-
proach has been very popular among researchers in recent years. 
An example of the use of inverse problems and optimisation 
algorithms to reconstruct the conditions of the experiment is the 
study by Matsevityi et al. [14], in which the authors successfully 
reconstructed the heat transfer coefficient with the environment 
(Newton boundary condition) and obtained graphs of temperature 
changes over time that were very consistent with those obtained 
from experimentation. 

In the example presented in this article, selected optimisation 
swarm algorithms (ABC and ACO) are used to reconstruct the 
heat transfer coefficient between the cast and the casting mould in 
numerical modelling of the heat conduction problem. 

2. METHODS 

2.1. Heat conduction problem  

The heat transfer process is divided into: steady-state, when 
the temperature distribution in the system under consid-eration 
does not change with time, and the amount of heat is constant (in 
this case, the only variables are coordinates in space); and transi-
ent (unsteady-state), when the temperature distribution and heat 
change with respect to time. The transient heat flow is considered 
in this paper. 

During the heating and cooling process, unsteady-state heat 
conduction occurs when both bodies strive to achieve a tempera-
ture equilibrium with the environment in which they find them-
selves. According to Fourier’s law, the heat flux conduc-tion densi-
ty is directly proportional to the temperature gradient. The mathe-
matical formula of heat transfer is defined as follows: 

𝑐𝜌
𝜕𝑇

𝜕𝑡
+ ∇ ∙ (−𝜆∇𝑇) = 𝑄               (1) 

where c is specific heat [
𝐽

𝑘𝑔𝐾
], 𝜌 is density [

𝑘𝑔

𝑚3], T is temperature 

[K], t is time [s], 𝜆 is heat transfer coefficient [
𝑊

𝑚𝐾
] and Q 

represents internal heat sources [
𝑊

𝑚3]. Since the phase 

transformation was not taken into account, Q was equal to 0. 
The problem of transient heat conduction is one of the initial-
boundary issues, requiring the setting of appropriate initial and 
boundary conditions at the commencement of calculations. Initial 
conditions, called Cauchy conditions, allow giving specified 
temperature values at the initial instant for t = 0 s. 

𝑇(r, 𝑡)|𝑡=0 = 𝑇0(r)             (2) 

where r is the field vector at a given point. There are four types of 
boundary conditions that are associated with heat transfer: 
 Dirichlet boundary condition (the first type condition) assumes 

the temperature (Tz) on the 𝛤 boundary of area 𝛺. 

Γ: 𝑇 = 𝑇𝑧.             (3) 

when the measurement’s body surface temperature Tz is 
known, the boundary conditions can be formulated as Dirichlet 
boundary conditions. 

 Von Neumann boundary condition (the second type condition) 
assumes the known heat flux (qz) on the 𝛤 boundary of area 

𝛺. 

Γ: 𝑞 = 𝑞𝑧.             (4) 

 Newton boundary condition (the third type condition) assumes 

the exchanged heat with the environment on the boundary 𝛤 
of the area 𝛺. 

Γ: 𝑞 = ∝ (𝑇 − 𝑇𝑎𝑚𝑏),            (5) 

where ∝ is the coefficient of heat exchange with the 
environment, T is the temperature of the body on the 

boundary 𝛤, 𝑇𝑎𝑚𝑏  is the ambient temperature and q is the 

heat flux flowing into the Ω area when 𝑇 < 𝑇𝑎𝑚𝑏  or flowing 

from the Ω area when 𝑇 > 𝑇𝑎𝑚𝑏 . In the third boundary 
condition, the heat transfer coefficient determines the intensity 

of convection. The ∝ coefficient depends on the heat 
exchange type as well as the speed and direction of the flow 
to the body surface. 

 Continuity condition (the fourth type condition) assumes 
contact and the heat exchange between two bodies. This 
contact may be ideal or non-ideal. In the non-ideal case, there 
is a separation layer with a 𝜅 coefficient: 

𝜅 =
𝜆𝑝

𝛿
,             (6) 

where 𝜆𝑝 is the thermal conductivity coefficient of the 

separation layer and 𝛿 is the thickness of this layer. 
Using the previously described boundary conditions in the 

tested model, we find that the results are consistent with Fig. 3, 
and the area dimensions are given in Fig. 2. All boundaries (num-
bered from 1 to 8) are 0.02 m long. 

This work aims to reconstruct the heat transfer coefficient 𝜅 
through the layer separating the cast and the casting mould. 

2.2. ABC algorithm 

The first works on simulating swarming behaviour, using 
mathematical and numerical modelling, appeared in the 70s and 
80s of the previous century. However, they started to be widely 
used only in the first decade of the 21st century. For example, the 
ABC algorithm uses the intelligent behaviour of a swarm of 
honeybees. The algorithm model is based on the search for food 
by an ABC. 

The algorithm ABC consists of three main components: food 
sources, unemployed bees and employed bees closely related to 
the food source. The number of solutions in the population equals 
the number of food sources. The amount of nectar in the food 
source is the value of the evaluating function associated with the 
solution. In searching for food, bees have developed various 
techniques to improve communication with other bees about the 
location of food sources. Employed bees (scout bees) randomly 
choose the direction and area to search for the best available food 
sources. Once such a source is found, the scout becomes an 
employed bee and returns to the hive. They inform the bees that 
are spectators about the direction, distance and area of the food. 
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The information is passed on in the dance. After that, the sources 
are exploited, and the employed bees become unemployed when 
exhausted [15]. 

In the ABC algorithm, the position of the food source is a 
possible solution to the optimisation problem, and the nectar 
content of the food source corresponds to the quality (efficiency) 
of the related solution. The number of employed and unemployed 
bees equals the number of solutions in the population. In the first 
step, ABC generates a random initial population P of SN 
solutions, where SN is the number of the food source. Each 
solution xi (i = 1, 2, ..., SN) is a vector of solutions to D. In the 
algorithm, D denotes the number of optimisation parameters. The 
determination of the food sources’ coordinates is subjected to 

multiple iterations C = 1, 2, , Cmax, where the iterations mean 
the update of the solutions. The employed bee updates the 
changes in position (solution) depending on local information 
(visual information) and tests the amount of nectar (efficiency) of 
the new source (new solution). If the amount of new nectar is 
higher than in the previous iteration, the bee remembers the new 
nectar position and forgets the current one. Otherwise, it retains 
the previous position in its memory. After the search process is 
complete, all employed bees share nectar information from the 
various food sources and their position information with the bees 
in the dance area. An unemployed artificial bee selects a food 
source depending on the probability value pi calculated according 
to the following formula:  

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

          for 𝑖 = 1, 2, … ,  𝑃,          (7) 

where fiti is an efficiency of ith solution, proportional to the nectar 
amount of food source, and SN equals the number of the 
employed bees. 
In the next step, the update of the coordinates of the food sources 
is carried out, which is based on the own coordinates of the bee 
and other employed bees. The above process follows the 
relationship: 

𝑣𝑖 =  𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑[−1, 1] ∙ (𝑥𝑖𝑗 − 𝑥𝑘𝑗)         (8) 

where vij is the update of the food sources’ coordinates, and i, k = 

1, 2, , SN and j = 1, 2, , D are randomly selected within the 
given range. The variable k is determined randomly, too, and it 
must be different from i. The search for the optimal solution is 
related to the iterative process of reducing the difference between 
successive updates of the position of food sources. 
The ABC algorithm uses four control parameters: (i) the global 
selection process used by unemployed bees Eq. (7), (ii) a local 
selection process carried out by the viewer bees and depends on 
local information about the adjacent food source Eq. (8), (iii) a 
local selection process, called sparse, carried out by all bees, and 
(iv) a random selection process carried out by the scout bees. 
The survival and progress of a bee colony depend on the quick 
discovery and efficient use of the best food resources. Similarly, 
successful solutions to complex engineering problems are related 
to finding reasonable solutions relatively quickly, especially for 
problems that need to be solved in real-time. 

2.3. ACO algorithm 

The ACO algorithm was presented and developed by Marco 
Dorigo et al. in the 90s of the previous century and is a part of 

metaheuristic algorithms. The inspiration comes from the world of 
ants that can find the shortest route between an anthill and an 
available food source.  

In the beginning, ants walking towards a food source choose 
the route randomly. They return to the anthill and leave a 
pheromone trail on their route, which gradually evaporates if other 
ants do not follow the path. On a shorter route, evaporation is 
slower than on longer routes, and thus subsequent ants choose 
this route more willingly than other routes, and by choosing it, they 
strengthen the pheromone trail. This phenomenon is called 
positive feedback. In an ACO algorithm, a colony of artificial 
individuals cooperates to search for optimal solutions to complex 
combinatorial problems. There is an indirect interaction between 
ants collecting some kind of experience and using it in further 
research. Each of the ants follows an identical strategy of finding 
the shortest path to the goal. Over time, the ants work together to 
work out a set of shortest paths leading them to their designated 
food sources. This is a manifestation of collective intelligence 
[16,17]. 

Finding the best solution in the classical ACO algorithm is an 
iterative process, too, similar to finding the best solution in the 
ABC algorithm. At each iteration, an ant selects a path to a food 
source depending on the probability value pij calculated according 
to the following formula: 

𝑝𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑙𝑙∈𝑁𝑖

,             (9) 

where Ni is the feasible neighbourhood of ith node for kth ant and is 
the set of nodes that she has not yet visited. At each iteration, a 
kth ant located in the ith node on the path to a food source chooses 
the jth node from the nearest neighbourhood [18]. 

In order to avoid an unlimited increase in the pheromone 
traces, pheromone pairing is added in each tth iteration in the 
algorithm. An additional matrix is created for each ant to store the 
nodes of the current traces. This matrix is called the pheromone 
array. In the first iteration, in the classic form of an algorithm, for 
each ant, the nodes on the paths from anthill to food sources are 
fixed by roulette wheel law after considering the probability 
determined by the formula in Eq. (9). It allows for the initiation of 
each ant’s trace transition matrices. After going over all the ants, 
the trace with the best quality index is found for each iteration. 
Based on this indicator, the trace for each ant is modified. Then, 
for the best transition path (the superscript of best), new nodes 
are randomly determined as a particular random deviation from 
the position of the previous nodes: 

𝑥𝑖𝑗(t) =  𝑥𝑖𝑗(𝑡 − 1) + 𝑟𝑎𝑛𝑑[0, 1] ∙ [𝑥𝑖𝑗
𝑏𝑒𝑠𝑡(𝑡 − 1) −

 𝑥𝑖𝑗(𝑡 − 1)]           (10) 

The above-mentioned algorithm steps are repeated in each 
iteration. Consequently, the traces determined in successive 
iterations get closer to the path characterised by the best quality 
indicator that all ants follow. 

3. IMPLEMENTS AND ASSUMPTIONS 

This article deals with a topic that requires the connection of 
two separate fields: thermomechanics and computer science. The 
cooling of the aluminium alloy has been selected from the 
thermomechanics field. The reconstruction of the value of one of 
the coefficients in the contact boundary condition became the 
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main point of this work. The heat transfer coefficient of the layer 
separating the cast and the casting mould is selected based on 
the available literature, as well as according to the discretion of 
the person performing numerical calculations or the employee 
responsible for making the cast in the foundry, who makes an 
ideal decision based on their field experience and the prevalent 
circumstances. In this study, an attempt was made to fill the gap in 
this research area by creating a tool enabling the reconstruction of 
the heat transfer coefficient.  

Finite element models and meshes were created in GMSH 
open source 3D finite element mesh generator [19]. Numerical 
calculations were made using an  in-house software, whose 
application was combined with that of TalyFEM library, an 
application developed previously in the literature [20,21,22], as 
well as using algorithms implemented in the C++ language. The 
finite element method facilitates the modelling of complex 
problems, and its wide application allows for easy adaptation of 
many existing computational techniques. TalyFEM is a library that 
uses the finite element method to simulate selected physical 
phenomena, containing many PETSc (the Portable, Extensible 
Toolkit for Scientific Computation) data structures such as vectors, 
matrices and ready-made solvers [23]. The tests were performed 
on a computer with the following parameters – Processor: Intel (R) 
CoreTM i5-4590 CPU @ 3.30 GHz, x86_64 architecture; 
Manufacturer ID: Genuine Intel; CPU family: 6; CPU clock speed: 
3279.890 MHz; Operating system: Linux (in distribution Ubuntu). 
In the field of AI, optimisation heuristic algorithms were used. 
These algorithms have been implemented in Python and adapted 
to the possibility of connecting them with TalyFEM [24]. 

The functional Eq. (11), determining the error of the 
approximate solution, and minimised with the use of selected 
swarming algorithms, assumes the form of the formula: 

𝐽(𝜅) =  ∑ ∑ (𝑇𝑖𝑗 − 𝑈𝑖𝑗)
2𝑁2

𝑗=1
𝑁1
𝑖=1 ,          (11) 

where N1 is the number of observing, during the experiment, finite 
element’s nodes, N2 is the number of time steps in the numerical 
experiment, Uij are the reference temperatures generated with the 
reference heat transfer coefficient 𝜅 and Tij are the temperatures 
obtained during the numerical experiment. The standard deviation 
value was used to present the variability of the temperature 
distribution, i.e. to determine the similarity of the obtained 

solutions to each other and the deviation from the mean value, 

taking into account the obtained value of the 𝜅 coefficient. 
In order to execute a numerical experiment, reconstructing the 
thermal conductivity of the separating layer, both numerical (using 
TalyFEM) and optimisation (using ABC and ACO heuristic 
algorithms) calculations were carried out. The heuristic of the 
optimisation algorithms used requires the user to run the program 
several times. In our work, all calculations were run five times for 
each configuration. During each iteration, the temporary best 

values of the 𝜿 coefficient were obtained among all individuals 
participating in the search for a food source. Finally, the 
reconstructed coefficient was the mean value of the best values 
obtained during each program run. The best heat transfer 
coefficient is the one that is closest to the reference coefficient, 
and its functional has the lowest value. The general idea of our 
software is presented in Fig. 1. 

 

Fig. 1. Scheme of the problem solution 

4. RESULTS 

The considered geometry and the finite element mesh are 
presented in Fig. 2. 

 
Fig. 2. Geometry and finite element mesh with denoted nodes 

However, only one was chosen at a random density of finite 
element mesh because the differences in the results for all cases 

were minor. Detailed observations of the temperature course in 

time and the determined heat transfer coefficient 𝜅 were carried 
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out for three pairs of nodes. However, only one middle pair of 
nodes 26–61 (the first number of the node in a pair belongs to the 
mould, the other to the casting) was chosen to represent 
experiment results. The nodes were chosen symmetrically in 
sensitive (from the point of view of the macroscale) places. The 
nodes at the interface between the cast and the casting mould 
have the same spatial coordinates, making finite element meshes 
easier to automatically generate and separate, which simulates a 
layer separating two areas with completely different material 
properties. The mesh was composed of 360 finite triangular 
elements (214 nodes). 

The numerical experiment for the Al-2%Cu alloy and parameter 𝜅 

from the value range 900–1,500 [
𝑊

𝑚2𝐾
] was carried out, and the 

reference temperatures Uij were obtained for 𝜅 = 100[
𝑊

𝑚2𝐾
]. The initial 

temperatures were T0 = 960 K for the cast and T0 = 590 K for the casting 
mould. Material properties are shown in Tab. 1. 

Tab. 1. Material properties to cast and casting mould. 

Property Symbol Cast Mould 

Density ρ,
kg

m3 2,824 7,500 

Specific heat c,
J

kgK
 1,077 620 

Heat transfer coefficient λ,
W

mK
 262 40 

The boundary conditions are shown in Fig. 3. In the Newton 
boundary condition (the third kind of boundary condition), 
convective heat exchange with the environment was established, 
assuming that the ambient temperature is 300 K, and the heat 

exchange coefficient with the environment is 100 [
𝑊

𝑚2𝐾
]. 

 

Fig. 3. Boundary conditions 

Calculations were performed for the presented finite element 
mesh for the ABC and ACO algorithms for a population of 20, 40 
and 60 bees/ants. A characteristic feature of heuristic algorithms 
is that they must be run more than once to give the possibility of 
narrowing down the search area and obtaining reliable calculation 
results. In this study, the algorithms were run five times in each 
case. Moreover, in each case, 0%, 1%, 2% and 5% noise of the 
reference temperatures Uij were also considered. The following 
part of the article presents the results obtained from a numerical 
experiment for a given configuration presented in Section 4. 

The tables presented in the article contain the results of the 
calculations (𝜅 represents heat transfer coefficient, σ standard 
deviation and J the value of the minimised functional) using the 
ABC and ACO algorithms at 0%, 1%, 2% and 5% noise for 2, 6 
and 12 iterations for finite element meshes with 214 nodes. Tab. 2 
shows the calculations for 20 individuals (bees/ants) of the 
population, whereas Tab. 3 shows the calculations for 60 
individuals’ selected swarming algorithms. After analysing the 
results presented in the tables, the following conclusions can be 
drawn: 

 the errors in the reconstruction of the 𝜅 coefficient are minor 
and do not exceed a few percent, 

 even for disturbed input data, the errors in the reconstruction 

of the 𝜅 coefficient do not exceed the amount of the noise 
introduced, 

 the values of standard deviations decrease for each of the 
algorithms (grey colour in Figs. 4 and 5) corresponding to an 
increase in the number of iterations, 

 similar to the size of the noise increases, the value of the 
minimised functional increases, but the values of standard 
deviations decrease for each of the algorithms, 

 a small number of iterations results in a more significant 

discrepancy between the obtained 𝜅 coefficient values and 
thus a more significant standard deviation, 

 regardless of the perturbation value introduced, increasing the 
number of iterations of the algorithm execution does not 
significantly reduce the functional value, i.e. it does not 

significantly improve the reconstructed value of the 𝜅 
coefficient. However, one could say the best representation of 

the 𝜅 coefficient was obtained for 12 iterations for each noise 
case. 
Summarising, it can be generalised that the error in 

determining 𝜅 coefficient was smaller than the percentage 
variation in the reference temperature value in all cases. There 
are no significant differences between the selected algorithms, but 
the obtained standard deviation and functional results favour the 
ACO algorithm. 

Tab. 2. Calculations for the ABC and ACO algorithm (20 bees/ants) for the 𝜅 coefficient with 0%, 1%, 2% and 5% noise of the reference temperature;  

             σ is the standard deviation value expressed as a percentage; J is the functional value 

Noise Iterations 
𝜿 σ % J 

ABC ACO ABC ACO ABC ACO 

0% 

2 1,005.42 1,002.02 1.720797 0.315057 0.005593 0.001838 

6 999.971 999.982 0.191069 0.003093 0.000811 0.000017 

12 1,000.02 1,000.00 0.021884 0.000049 0.000107 0.000000 

1% 
2 1,001.568 999.738 1.511249 0.229253 0.159742 0.159514 

6 994.17 997.505 0.680394 0.010121 0.159566 0.159503 
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12 997.594 997.65 0.023884 0.011118 0.159503 0.159503 

2% 

2 996.772 998.459 0.357987 0.405015 0.319783 0.319784 

6 996.797 997.88 0.197866 0.003302 0.319779 0.319776 

12 997.873 998.037 0.004802 0.011228 0.319776 0.319776 

5% 

2 1,002.746 1,007.952 0.388378 0.446690 0.806145 0.806146 

6 1,005.352 1,005.147 0.106457 0.022512 0.806141 0.806141 

12 1,005.287 1,005.061 0.031364 0.007003 0.806141 0.806141 

ABC, artificial bee colony; ACO, ant colony optimisation 

Tab. 3. Calculations for the ABC and ACO algorithm (60 bees/ants) for the 𝜅 coefficient with 0%, 1%, 2% and 5% noise of the reference temperature;  

             σ is the standard deviation value expressed as a percentage; J is the functional value 

Noise Iterations 
𝜿 σ % J 

ABC ACO ABC ACO ABC ACO 

0% 

2 999.772 1,000.119 0.207614 0.043968 0.000982 0.000185 

6 1,000.254 1000.00 0.073764 0.000043 0.000347 0.000000 

12 1000.025 1,000.00 0.009152 0.000000 0.000041 0.000000 

1% 

2 998.251 998.286 0.6631 0.000064 0.159548 0.159504 

6 996.963 997.609 0.058549 0.000011 0.159504 0.159503 

12 997.649 997.561 0.010208 0.000010 0.159503 0.159503 

2% 

2 999.058 997.718 0.139638 0.121819 0.319777 0.319777 

6 998.001 997.891 0.012700 0.010942 0.319776 0.319776 

12 998.037 998.008 0.014075 0.014957 0.319776 0.319776 

5% 

2 1,003.347 1,005.048 0.246709 0.039688 0.806143 0.806141 

6 1,005.028 1,005.061 0.041702 0.005901 0.806141 0.806141 

12 1,005.075 1,005.050 0.019215 0.007564 0.806141 0.806141 

ABC, artificial bee colony; ACO, ant colony optimisation

   

   

Fig. 4. Value of 𝜅 coefficient for ABC (the first row) and ACO (the second row) algorithm, 20 bees/ants, and 2, 6 and 12 iterations. The standard deviation  

            and mean values of the 𝜅 coefficient are depicted by the grey color of the line and points. The exact value of the 𝜅 coefficient is 1,000.  

            ABC, artificial bee colony; ACO, ant colony optimisation
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Fig. 5. Value of 𝜅 coefficient for ABC (the first row) and ACO (the second row) algorithm, 60 bees/ants, and 2, 6 and 12 iterations. The standard deviation  

           and mean values of the 𝜅 coefficient are depicted by the grey colour of the line and points. The exact value of the 𝜅 coefficient is 1,000.  
           ABC, artificial bee colony; ACO, ant colony optimisation

4.1. Analysis of the results obtained using the ABC 
algorithm 

Figs. 6–9 show the temperature courses over time for the 
middle pair of nodes (26–61) in the finite element mesh of the 
studied geometry. In the case of ABC algorithm this figures visu-
alise 0%, 1%, 2% and 5% disturbance for 20, 40 and 60 bees 
corresponding to 2, 6, and 12 iterations, respectively. The left 
panel tallies with the mould, and the right panel with the cast. The 
temperature distribution is physically correct in each case. The 
corresponding differences between the values of the temporary 

temperature Tij and the reference temperature Uij in the last row 
of each figure are shown. After about 20 s, it can be seen that the 
temperatures in the cast and the casting mould level out. 

Moreover, there are unseen differences in the obtained tem-
peratures, regardless of the ABC algorithm’s iteration number. 
However, these differences do not exceed 1 K in any of the cas-
es. It can be concluded from the graphs that there are no slight 
visible differences in the obtained temperatures, regardless of the 
number of individuals in the population and the number of itera-
tions using the ABC algorithm. The time in the figures starts with 
the first time step, which is 0.05 s. 
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(c) 

 

(d) 

 
Fig. 6. Temperature over time distribution at 0% disturbance, for the ABC algorithm, with 20, 40 and 60 bees for 2, 6 and 12 iterations, respectively. The left  
            panel depicts data obtained for node number 26 belonging to the mould, whereas the right panel for node no 61 belonging to the cast. Temperature  
            vs. time courses concerning the reference temperature for (a) the mould and (b) the cast are shown. The corresponding difference between values  
            of temporary temperature Tij and the reference temperature Uij for (c) the mould and (d) the cast is depicted. ABC, artificial bee colony 
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Fig. 7. Temperature over time distribution at 1% disturbance, for the ABC algorithm, with 20, 40 and 60 bees for 2, 6 and 12 iterations, respectively. The left  
            panel depicts data obtained for node number 26 belonging to the mould and the right panel for node number 61 belonging to the cast. Temperature  
            vs. time courses concerning the reference temperature in (a) the mould and (b) the cast for the entire time of the numerical experiment, whereas (c)  
            and (d) for the first 5 s, are shown. Furthermore, the corresponding difference between values of the temporary temperature Tij and the reference  
            temperature Uij for (e) the mould and (f) the cast is depicted. ABC, artificial bee colony. 
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Fig. 8. Temperature over time distribution at 2% disturbance, for the ABC algorithm, with 20, 40 and 60 bees for 2, 6 and 12 iterations, respectively. The left  
            panel depicts data obtained for node number 26 belonging to the mould and the right panel for node number 61 belonging to the cast. Temperature  
            vs. time courses concerning the reference temperature in (a) the mould and (b) the cast for the entire time of the numerical experiment, whereas (c)  
            and (d) for the first 5 s, are shown. Furthermore, the corresponding difference between values of the temporary temperature Tij and the reference  
           temperature Uij for (e) the mould and (f) the cast is depicted. ABC, artificial bee colony 
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(f) 

 

Fig. 9. Temperature over time distribution at 5% disturbance, for the ABC algorithm, with 20, 40 and 60 bees for 2, 6 and 12 iterations, respectively. The left  
            panel depicts data obtained for node number 26 belonging to the mould and the right panel for node number 61 belonging to the cast. Temperature  
            vs. time courses concerning the reference temperature in (a) the mould and (b) the cast for the entire time of the numerical experiment, whereas (c)  
            and (d) for the first 5 s, are shown. Furthermore, the corresponding difference between values of the temporary temperature Tij and the reference  
            temperature Uij for (e) the mould and (f) the cast is depicted. ABC, artificial bee colony 

4.2. Analysis of the results obtained using the ACO algorithm 

Figs. 10–13 show the temperature courses over time for the 
middle pair of nodes (26–61) in the finite element mesh of the 
studied geometry. In the case of ACO algorithm this figures 
visualise 0%, 1%, 2% and 5% disturbance for 20, 40 and 60 ants 
corresponding to 2, 6, and 12 iterations, respectively. The left 
panel tallies with the mould, and the right panel with the cast. The 
temperature distribution is physically correct in each case. The 
corresponding differences between values of the temporary 
temperature Tij and the reference temperature Uij in the last row of 
each figure are shown. After about 20 s, it can be seen that the 

temperatures in the cast and the casting mould level out. 
Moreover, there are unseen differences in the obtained 

temperatures, regardless of the ACO algorithm’s iteration number. 
However, these differences do not exceed 1 K in any of the cases. 
It can be concluded from the graphs that there are no slight visible 
differences in the obtained temperatures, regardless of the 
number of individuals in the population and the number of 
iterations using the ABC algorithm. The time in the figures starts 
with the first time step, which is 0.05 s. 
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(c) 

 

(d) 

 
Fig. 10. Temperature over time distribution at 0% disturbance, for the ACO algorithm, with 20, 40 and 60 ants for 2, 6 and 12 iterations, respectively. Left  
               panel depicts data obtained for node number 26 belonging to the mould and right panel for node number 61 belonging to the cast. Temperature vs.  
              time courses with respect to the reference temperature for (a) the mould and (b) the cast. Corresponding difference between values of the  
              temporary temperature Tij and the reference temperature Uij for (c) the mould and (d) the cast. ACO, ant colony optimisation 
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Fig. 11. Temperature over time distribution at 1% disturbance, for the ACO algorithm, with 20, 40 and 60 ants for 2, 6 and 12 iterations, respectively. The  
             left panel depicts data obtained for node number 26 belonging to the mould and the right panel for node number 61 belonging to the cast.  
             Temperature vs. time courses concerning the reference temperature in (a) the mould and (b) the cast for the entire time of the numerical  
             experiment, whereas (c) and (d) for the first 5 s, are shown. Furthermore, the corresponding difference between values of the temporary  
             temperature Tij and the reference temperature Uij for (e) the mould and (f) the cast is depicted. ACO, ant colony optimisation 
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Fig. 12. Temperature over time distribution at 2% disturbance, for the ACO algorithm, with 20, 40 and 60 ants for 2, 6 and 12 iterations, respectively.  
              The left panel depicts data obtained for node number 26 belonging to the mould and the right panel for node number 61 belonging to the cast.  
             Temperature vs. time courses concerning the reference temperature in (a) the mould and (b) the cast for the entire time of the numerical  
             experiment, whereas (c) and (d) for the first 5 s, are shown. Furthermore, the corresponding difference between values of the temporary  
             temperature Tij and the reference temperature Uij for (e) the mould and (f) the cast is depicted. ACO, ant colony optimisation 
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(c) 

 

(d) 
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(f) 

 

Fig. 13. Temperature over time distribution at 2% disturbance, for the ACO algorithm, with 20, 40 and 60 ants for 2, 6 and 12 iterations, respectively.  
              The left panel depicts data obtained for node number 26 belonging to the mould and the right panel for node number 61 belonging to the cast.  
             Temperature vs. time courses concerning the reference temperature in (a) the mould and (b) the cast for the entire time of the numerical  
             experiment, whereas (c) and (d) for the first 5 s, are shown. Furthermore, the corresponding difference between values of the temporary  
             temperature Tij and the reference temperature Uij for (e) the mould and (f) the cast is depicted. ACO, ant colony optimisation 

4.3. Comparative analysis of the results for the ABC  
and ACO algorithms 

Fig. 14 shows the temperature courses over time for the 
middle pair of nodes (mould-cast) in the finite element mesh of the 
studied geometry with a 2% disturbance of the temperature 
reference value for the second, sixth, and twelfth iterations and 60 
bees/ants in ABC/ACO algorithm. Similar to the previous figures, 
after about 20 s, it can be seen that the temperatures in the cast 

and the casting mould level out. Moreover, the graph shows tiny 
differences (practically unseen) in the obtained temperatures 
between the ABC and the ACO algorithms. However, these 
differences do not exceed 0.2 K. 

Both the ABC and the ACO algorithms meet the expectations 

for the correct determination of the 𝜅 coefficient and the correct 
course of temperature over time, consistent with the physics of the 
phenomenon. 
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(c) 

 

(d) 

 
(e) 

 

(f) 

 

Fig. 14. Temperature over time distribution at 2% disturbance, for the ABC and ACO algorithms, with 60 bees/ants and for 2, 6 and 12 iterations. The left  
              panel depicts data obtained for node number 26 belonging to the mould and the right panel for node number 61 belonging to the cast. Temperature  
              vs. time courses concerning the reference temperature in (a) the mould and (b) the cast for the entire time of the numerical experiment, whereas (c)  
              and (d) for the first 5 s, are shown. Furthermore, the corresponding difference between values of the temporary temperature Tij and the reference  
             temperature Uij for (e) the mould and (f) the cast is depicted. ABC, artificial bee colony; ACO, ant colony optimisation 

The possibility of using AI algorithms in problems in the field of 
thermomechanics was presented. In reconstructing the heat 
transfer coefficient of the layer separating the cast and the casting 
mould, no significant difference was observed between the ABC 
algorithm and the ACO algorithm. The graphs of temperature 
variability over time show a very good representation of reality for 
both swarming algorithms. After analysis of the results obtained 
with the ABC and ACO algorithms, it can be concluded that: for 
simple geometry and the same number of individuals, slight differ-

ences in the obtained values of the 𝜅 coefficient and the values of 
the minimised functional may speak in favour of the ant colony 
algorithm. The conducted research has shown that both the ABC 
and ACO algorithms are promising tools that can be successfully 
used to determine the value of the thermal conductivity coefficient. 

The errors in the reconstruction of the 𝜅 coefficient and the stand-
ard deviation are very similar between the algorithms. Equally 
important, they are smaller, or at worst, comparable to the dis-
turbance of the input data. It has been shown that both algorithms 
select the desired coefficient at a satisfactory level. For each 
algorithm, the obtained temperature results were very similar or 
identical to the values assumed as the standard ones. 

5. SUMMARY 

The investigated problem consisted of reconstructing the heat 
transfer coefficient at the interface between the cast and the 
casting mould based on a numerical experiment using artificial 

bee and ant colonies algorithms for optimisation. The presented 
solution has been described and tested to assess its stability and 
the accuracy of the results obtained. The numerical experiment 
demonstrated an excellent reconstruction of the sought coefficient 
as well as perfect and physically similar consistency of tempera-
ture distribution over time. In each case of the input data and 
frequency of measurements taken, the errors in the mapping of 
the heat conduction coefficient and temperature were lower or 
comparable with the input data errors. The proposed solution is 
stable, and the obtained results are satisfactory, which bodes well 
for the future use of our research to recreate the experimental 
conditions for the solidification and cooling of non-ferrous metal 
alloy castings. 

It is important to mention the possibility for recreation of the 
heat conduction coefficient of the layer separating the mould and 
the casting in the form of several intervals, i.e., by obtaining sev-
eral numerical values; this is an arena of study that has not been 
explored in the present article, but it would be interesting to ex-
plore it as part of future work. Also, the possibility of obtaining a 
continuous variation in the value of the heat transfer coefficient 
through the layer separating the mould and the casting can be 
mentioned as another potential direction for further research. The 
suggested study of the impact of the distribution of nodes in which 
the error value was calculated is also a possible direction for 
further research. 
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