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The main purpose of the paper is to present a statistical model-based iterative approach to the problem of image reconstruc-
tion from projections. This originally formulated reconstruction algorithm is based on a maximum likelihood method with
an objective adjusted to the probability distribution of measured signals obtained from an x-ray computed tomograph with
parallel beam geometry. Various forms of objectives are tested. Experimental results show that an objective that is exactly
tailored statistically yields the best results, and that the proposed reconstruction algorithm reconstructs an image with better
quality than a conventional algorithm with convolution and back-projection.
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1. Introduction

A key problem in computed tomography is the
reconstruction of the image from projections. In this
medical imaging system, the projections are obtained
from an x-ray scanner classified by its geometry as
one of the existing generations. There are several
reconstruction methods presented in the literature to solve
this problem. Among the most popular methods are
analytical reconstruction algorithms based on convolution
and back-projection operations (Lewitt, 1983). The
Algebraic Reconstruction Technique (ART) has also been
extensively explored (Kaczmarz, 1937) and applied
(Thibault et al., 2007) in the past. One can say that
all of the recent, practically applicable reconstruction
algorithms can be assigned to one of these two
methodologies of reconstructed image processing.

Currently, statistical reconstruction methods, such
as the Maximum Likelihood (ML) approach and a
development of this concept, the Maximum A Posterio-
ri (MAP) estimation, are presented in the literature as
being more robust and flexible than analytical inversion
methods because they allow accurate modeling of the
statistics of the projection data (Sauer and Bouman, 1993;
Bouman and Sauer, 1996; Thibault et al., 2007). The MAP
model has been incorporated in the construction of the
Model-Based Iterative Reconstruction (MBIR) algorithm
through application of the Iterative Coordinate Descent

(ICD) reconstruction method (the ICD reconstruction
method as described comprehensively by Thibault et al.
(2007), and the Non-Homogeneous ICD (NH-ICD) as
presented by Zhou et al. (2011) are based on the MAP
methodology). Because the signals obtained are adapted
to the specific statistics for a given technique, the new
algorithm yields a reduction in radiation dose during
human body examination, as in the Adaptive Statistical
Iterative Reconstruction (ASIR) algorithm (see, e.g., Silva
et al., 2010; Yanagawa et al., 2010; Ren et al., 2012).

ICD is essentially an algebraic reconstruction
technique where the image reconstruction consists of an
iterative optimization process. It is worth emphasizing at
this point that the ART reconstruction problem is very
easy to reformulate into an optimization one. That is why
it seems natural to use this technique for reconstruction
algorithms based on the MAP (and, theoretically, the
ML) model. The reconstruction algorithm proposed in
this paper, owing to its analytical origins, avoids most
of the difficulties connected with the use of the ART
methodology, namely, it is very easy to establish the
coefficients of the forward model in our method and
the reconstruction process can be performed for every
cross-section image separately, in contrast to the ART
methodology, where calculations are performed for all the
voxels in the range of the reconstructed 3D image (see,
e.g., Thibault et al., 2007; DeMan and Basu, 2004).

In this paper, we present a reconstruction method
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which is based on an optimization process. Two forms of
the objective of this optimization are established, which
are derived based on the statistics of projection data
obtained using transmission tomographic techniques (e.g.,
CT). We propose a modification of these functions so
as to limit the analytical statistical model to the ML
scheme. In the proposed reconstruction algorithm, we
formulate a shift invariant system that allows us to easily
decrease the computational complexity by transformation
of the calculation performed in the frequency domain. A
preliminary concept of this kind of image reconstruction
from projections strategy has been represented in the
literature only in the original works published by the
author of this paper, for parallel scanner geometry (e.g.,
Cierniak, 2006; 2008a; 2008b) and for fan-beam geometry
(e.g., Cierniak, 2009). The reconstruction algorithm
schemes shown in these works are two-dimensional. This
means that the actual reconstruction process is performed
in a 2D variable space representing a deblurred image.

2. Image reconstruction using
parallel-beam projections

The proposed reconstruction algorithm is based on
parallel beam tomography (see also Cierniak, 2008a;
2008b). This method can be classified as an analytical
approach and superficially resembles, but only in the
order in which the operations are performed, the so-called
ρ-filtered layergram method. A general view of our new
iterative reconstruction algorithm is presented in Fig. 1.

Iterative optimization process

Collection
of the projections

Backprojection
(interpolation)

Determination
of the coefficients

  ji,~̂ 

  ji,ˆ Reconstructed image

Blurred image

jih   ,

   ,ˆ lp

Fig. 1. General view of the reconstruction algorithm.

According to the scheme of the reconstruction

algorithm shown in Fig. 1, the first step of the
reconstruction procedure is a back-projection operation
for a full revolution of the scanner. This operation is
expressed as follows:

μ̃ (x, y) =

π∫

−π
p (s, α) dα, (1)

where the function μ̃ (x, y) denotes the image obtained
after the back-projection operation, and p (s, α) is a
projection determined by measuring the x-ray intensity at
a distance s from the origin when a projection is made
at a specific angle α, as depicted in Fig. 2. The main

Fig. 2. Single projection.

purpose of the reconstruction process is to obtain the
function μ (x, y), which denotes the unknown original
image representing a cross-section of an examined body,
using projections obtained from measurements carried out
by the scanner.

It is worth noting that in practical implementations
we consider the discrete form of the image μ̂ (i, j), where
i = 1, . . . , I and j = 1, . . . , J , and perform only a
limited number of projections p (s, α) at a given angle α.
This number of projections is determined by the number
of x-ray detectors placed on the screen (these particular
places can be designated by sl, where l = −L/2, . . . , L/2
and L is an even number of detectors) and by the number
of projection angles αψ (ψ is the index of the discrete
projection angles, and ψ = 0, . . . ,Ψ − 1, where Ψ is the
total number of angles of projection performed). In the
simplest case, this could be an equiangular distribution
of intervals, where αψ = ψΔα, ψ = 0, . . . ,Ψ − 1
and the angular space between performed projections is
Δα = 2π/Ψ. Thus, it is highly likely that for any given
projection angle no ray passes through the pixel (i, j) of
the reconstructed image, and so it will be necessary to
apply interpolation to obtain the appropriate projection
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during the back-projection operation. The operation can
be expressed as follows:

p̄ (s, α) =

+∞∫

−∞
p (s̄, α) int (x cosα+ y sinα− s̄) ds̄,

(2)
where p (s, α) are projections obtained by the scanner,
p̄ (s, α) are interpolated projections and int (Δs) is an
interpolation function.

Thus, we have to replace p (s, α) in the formula
(1) by p̄ (s, α) from the relation (2). In the standard
direct approach, the image μ̃ (x, y), obtained through the
back-projection operation, includes information about the
reconstructed image μ (x, y) which is strongly blurred by
a geometrical term according to the following relation
(Jain, 1989):

μ̃ (x, y) =

+∞∫

−∞

+∞∫

−∞
μ (x̄, ȳ) · hdir (x− x̄, y − ȳ) dx̄dȳ,

(3)
where

hdir (Δx,Δy) =
(
(x− x̄)2 + (y − ȳ)2

)− 1
2
, (4)

where kernel hdir is defined with the exception of the
points (x̄, ȳ), for which x = x̄ ∧ y = ȳ.

In our approach, the reconstruction from the
projection operation is carried out by the direct recovery
of this image from the blurred image μ̃ (x, y) using an
optimization method, where the reconstruction problem is
based on the following relation, formulated originally by
us (see, e.g., Cierniak, 2009)

μ̃ (x, y) =

+∞∫

−∞

+∞∫

−∞
μ(x̄, ȳ)hint (x− x̄, y − ȳ) dx̄ dȳ,

(5)
where

hint (Δx,Δy) =
∫ π

−π
int (x cosα+ y sinα) dα. (6)

Taking into account the discrete form of the feasible
reconstruction procedure, we can present both relations
(3) and (5) as follows:

ˆ̃μ (i, j) �

∑
ī

∑
j̄

μ̂ (̄i, j̄) · hΔi,Δj, (7)

where the coefficients hΔi,Δj are

hdir
Δi,Δj

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ψ−1∑
ψ=0

Δα (Δs)
2

√
(ΔiΔs cosψΔα)2 + (ΔjΔs sinψΔα)2

if i �= ī or j �= j̄,

2π if i = ī and j = j̄,

(8)

if we take into consideration the form (4), and

hint
Δi,Δj = Δα (Δs)

2
Ψ−1∑
ψ=0

int
(
ΔiΔs cosψΔα

+ ΔjΔs sinψΔα

)
, (9)

if we consider the proposed form (6).
The formula (7) defines the 2D discrete approximate

reconstruction problem for the case of an equiangular
distribution of projection angles. When a form of
interpolation function used in the back-projection
operation is taken into account (i.e., coefficients hΔi,Δj

are determined according to the formula (9)), we obtain
an accurate model. This model is used as a starting point
for further discussion because it allows us to formulate an
ML approach to the reconstruction problem. Simulations
have shown that the use of the relation (8) leads to very
poor results.

In the discrete realization of our reconstruction
method, using the strategy of projection acquisition
presented above and based on Eqn. (1), the image obtained
after the back-projection operation can be presented as
follows:

ˆ̃μ(i, j) ∼= Δα

Ψ−1∑
ψ=0

p̄ (sij , ψΔα) , (10)

where

sij = iΔs cosψΔα + jΔs sinψΔα

is the coordinate defining the position of point (i, j) on
the screen, during a projection carried out at angle αψ =
ψΔα. Additionally, we take into account the discrete form
of Eqn. (2),

p̄ (sij , ψΔα) = Δs

∑
l

p (lΔs, ψΔα) int (sij − lΔs) .

(11)
The coefficients hΔi,Δj are determined only once,

before the reconstruction process is started, according to
the formula (9). Computer simulations performed by us
have shown that it is necessary to increase the number Ψ
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of simulated projections during this process, multiplying
it by an integer k, whose value is chosen experimentally.
This operation extends the set of simulated projection
angles to a new range, namely, to αψ = ψΔα/k, where
ψ = 0, . . . , kΨ − 1, and now the coefficients hΔi,Δj are
calculated in the following way:

hΔi,Δj
∼= (Δs)

2 Δα

k

kΨ−1∑
ψ=0

int
(
ΔiΔs cosψ

Δα

k

+ ΔjΔs sinψ
Δα

k

)
. (12)

It is worth stressing that this modification does
not have excessive costs, because these values of
hΔi,Δj are pre-calculated, and their results can be fixed
permanently for all further reconstruction processes.
These properties could make our approach very attractive
when implementing the reconstruction algorithm
presented here. Owing to these low computational real
costs, an analysis of the number of views that need
to be performed during the calculation of the hΔi,Δj

coefficients is not crucial. However, it has been shown
previously (see, e.g., Cierniak, 2011) that the parameter k
should be sufficiently large, e.g., k = 10. Regarding the
form of the interpolation function, computer simulations
have proved that, from among the forms of this function
considered, the use of linear interpolation provided the
best results.

It is expected that matrices of the coefficients hΔi,Δj

are similar for all pixels of the reconstructed image.
Thus, we can make a simplification and determine these
coefficients for only pixel (i, j) = (0, 0), assuming that

hΔi,Δj
∼= hi,j

= (Δs)
2 Δα

k

kΨ−1∑
ψ=0

int
(
iΔs cosψ

Δα

k

+ jΔs sinψ
Δα

k

)
. (13)

3. Statistical considerations for the problem
of image reconstruction from projections

Currently, the most important challenge in the field of
computed tomography is concerned with the statistical
considerations of the signals in reconstruction algorithms
(see, e.g., Thibault et al., 2007; Xu and Tsui, 2009).
Our statistical iterative reconstruction algorithm is based
on the probabilistic model of the physical phenomena
present in the x-ray measurement system. For the
purpose of constructing a new statistical approach to the
reconstruction problem, we will reformulate the statistical
conception of the ML strategy for image reconstruction
as presented, e.g., by Sauer and Bouman (1993; 1992) or
Thibault et al. (2007).

We will start the derivation of our statistical
reconstruction method with the introduction of one
of the fundamental quantities associated with x-ray
radiation—the intensity I of x-rays. This is proportional
to the number of photons n passing through unit area in
unit time. Therefore, we can write that

I ∝ n. (14)

If we examine a sample of material (such as the human
body) using x-rays, we obtain the following intensity,
registered by the x-ray detector on the other side of the
sample:

I (U) = I (0) · e
−

U∫
0
μ(x,y) du

, (15)

where I (0) is the initial x-ray intensity, I (U) is the x-ray
intensity after passing through a distance U .

Finding the logarithm of both the sides of Eqn.
(15), we obtain a quantity, called the projection, which
has fundamental significance for image reconstruction
algorithms. In addition, in order to obtain an image of the
cross-section of an object in the plane of the projection, we
need to identify parameters for the quantity p, as shown in
Fig. 2. According to the relation (15), we can write

p (s, α) = ln
(
I (0)
I (U)

)
= ln

(
n0

ns,α

)
, (16)

where n0 is the initial number of x-ray photons (we
assume that n0 is the same for all projections), ns,α is
the number of x-ray photons after passing through the
distance U . In statistical approaches, the number ns,α
of photons registered by a detector at a given projection
angle is represented by a random variable Ns,ψ. It is
a generally accepted assumption that Ns,ψ represents a
Poisson-distributed random variable. Thus, the probability
of registering ns,ψ x-ray photons at the detector is the
following:

Pr (Ns,ψ = ns,ψ) =
n∗
s,α

ns,α

ns,α!
e−n

∗
s,α , (17)

where n∗
s,α is the expected value of Ns,α.

The following log form of the probability described
by (17) is often used (it is only a rescaling of this
expression) (see, e.g., Sauer and Bouman, 1993):

L1 (ns,α) = ln (P (N = ns,α))
= ns,α ln(n∗

s,α) − ln(ns,α!) − n∗
s,α. (18)

If we use Stirling’s approximation of lnnψ! for nψ � 0,

ln(ns,α!) � ns,α ln(ns,α) − ns,α, (19)

then we obtain a formula for evaluating the error in
emission tomography,

L2 (ns,α) = ns,α ln
(n∗

s,α

ns,α

)
+ ns,α − n∗

s,α. (20)
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The above form of divergence could be a very interesting
starting point for the formulation of reconstruction
algorithms dedicated to emission tomography techniques.
However, x-ray computed tomography, which we are
considering here, is a transmission tomography and
therefore we can take into account the relations

ns,α = n0e−p(s,α) (21)

and
n∗
s,α = n0e−p

∗(s,α), (22)

which come directly from the definition (16), in the
relation (20). In this way we can derive the following
formula for the evaluation of the error in transmission
tomography:

L3 (p (s, α)) (23)

= n0e−p(s,α) (p (s, α) − p∗ (s, α))
+ n0e−p(s,α) − n0e−p

∗(s,α).

Expanding the term n0e−p
∗(s,α) in a second-order Taylor

series around p (s, α), where Δp = p∗ (s, α) − p (s, α),
we can obtain the following approximation (for details,
see Appendix):

L4 (p (s, α)) = −1
2
n0e−p(s,α) (p∗ (s, α) − p (s, α))2 ,

(24)
where

p∗ (s, α) = ln
(
n0

n∗
s,α

)
(25)

can be interpreted as the expected value of the projection
measurement.

The relation (24) describes the statistical nature
of only one projection in x-ray computed tomography,
i.e., that registered by a specific x-ray detector at a
fixed distance s from the origin of the scanner and
at a specific projection angle α. In the reconstruction
algorithm proposed by us, the reconstruction procedure
begins with the back-projection operation, as shown by
Eqn. (10). This can be written as follows:

pΣ (i, j) = Δα

Ψ−1∑
ψ=0

p (sij , αψ) , (26)

where sij = iΔs cosαψ + jΔs sinαψ is the coordinate
defining the position of point (i, j) on the screen, during a
projection carried out at angle αψ.

On the other hand, the back-projection operation,
based on real measurements, results in a blurred image,
and, regarding the relation (10), we can assign

pΣ (i, j) = ˆ̃μ (i, j) . (27)

It is easy to interpret our reconstruction method as a
search for an expected attenuation value in a cross-section

of the examined body to match the reconstructed image.
We are then fully justified in stating that if we were to
detect an expected projection value on the screen, we
would deal with it as if it were an expected value of
the attenuation coefficient inside the observed object. By
analogy with the relation (27), taking into account the
properties of the back-projection operation and the basic
formula (7), we can write the following:

p∗Σ (i, j) = ˆ̃μ∗ (i, j) ∼=
∑
ī

∑
j̄

μ̂∗ (̄i, j̄) · hΔi,Δj, (28)

where μ̂∗ (i, j) is the expected value of attenuation
coefficients μ̂ (i, j).

Accordingly, taking into account the error measure
(24), fundamental for x-ray tomography, we can derive an
appropriate loss function for the algorithm presented in
this paper,

L5 = −1
2
n0e−pΣ(i,j) (p∗Σ (i, j) − pΣ (s, α))2

= −1
2
n0e−

ˆ̃μ(i,j)
(

ˆ̃μ∗ (i, j) − ˆ̃μ (i, j)
)2

. (29)

The loss function L5 from the relation (29) takes into
account only one pixel (i, j) from the reconstructed
image. To take into account all I · J pixels in the
reconstructed image, it is necessary to extend the error
measure (29) as a summation of the participation of all the
pixels, each in part expressed by (29). Taken all together
this gives us

L6 = −n0

2

I∑
i=1

J∑
j=1

1
σ2 (i, j)

(e (i, j))2 , (30)

where

e (i, j) =
∑
ī

∑
j̄

μ̂∗ (̄i, j̄) · hΔi,Δj − ˆ̃μ (i, j) (31)

and

σ2 (i, j) =
1√

ep(sij ,0) + ep(sij ,1) + · · · + ep(sij ,Ψ−1)
.

(32)
Taking into account the observation that the projections
p (sij , ψ) are close to each other for a specific pixel (i, j),
we can simplify the relation (32) to the following form:

σ2 (i, j) =

√
e−p(sij ,0)

Ψ
. (33)

But if we have to use a reconstruction methodology based
on a pure ML scheme, without the regularizing a prio-
ri term, we have to prevent certain instabilities of the
reconstruction process which arise in this case. To do this,
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Fig. 3. Form of the derivative of the function (35).

we propose the modifying criterion (30) and replacing the
loss function L6 with the following error measure:

L7 = −n0

2

I∑
i=1

J∑
j=1

1
σ (i, j)

·f
⎛
⎝∑

ī

∑
j̄

μ̂∗ (̄i, j̄) · hΔi,Δj − ˆ̃μ (i, j)

⎞
⎠ , (34)

where we propose the following form of the function f (·):

f (e (i, j)) = λ2 · ln cosh
(
e (i, j)
λ

)
, (35)

where λ is a slope coefficient.

It is worth stressing that the derivative of the function
(35) has the well-known form of the hyperbolic tangent
function, namely,

f ′ (e (i, j)) = c · tanh
(
e (i, j)
λ

)
= c

1 − e−e(i,j)/λ

1 + e−e(i,j)/λ
,

(36)
presented graphically in Fig. 3.

The probability measure (34) can be used to
formulate a maximum-likelihood estimation method (see,
e.g., Sauer and Bouman, 1992). We will manipulate the
values of μ∗ (i, j) so as to maximize the divergence
defined in Eqn. (34). This procedure can be written
mathematically as

μ∗
max = arg max

μ∗ (L7) . (37)

It is easy to see that (37) is an optimization problem and,
as usually in this case, can be easily transformed into a

more convenient form for finding the minimum

μ∗
min

= arg min
μ∗

(n0

2

I∑
i=1

J∑
j=1

1
σ2 (i, j)

· f
⎛
⎝∑

ī

∑
j̄

μ̂∗ (̄i, j̄) · hΔi,Δj − ˆ̃μ (i, j)
)⎞
⎠ . (38)

We propose the gradient descent method to solve
the optimization problem described by the formula (38)
because of its simplicity. Contrary to other possible
optimization algorithms, such as the Newton–Raphson or
the Levenberg–Marquard methods, this method is much
less time consuming, and at the same time fast enough
in converging to the solution. In this case, the pixels in
the reconstructed image will take values according to the
following very easy iterative procedure:

μ∗(t+1) (i, j)

= μ∗(t) (i, j)

−
I∑
ī=1

J∑
j̄=1

1
σ2

Σ (̄i, j̄)
f ′

(
e(t) (̄i, j̄)

)
hΔi,Δj,

(39)

where f ′ is a function from (36) and, based on (31),

e(t) (̄i, j̄) =
∑
i

∑
j

μ̂∗(t) (i, j) · hΔi,Δj − ˆ̃μ (̄i, j̄) . (40)

4. Experimental results

In our experiments, we adapted the well-known
Shepp–Logan phantom of the head. We proposed a
mathematical model of a head consisting of relevant
ellipses given by Shepp and Logan (1974), as depicted in
Table 1.

Because we are only simulating a statistical
estimation of the projections, all the values of the

Table 1. Parameters of the ellipses making up the mathematical
model of the head phantom.

No. Coordinates Semi-major Semi-minor Angle μ
of the centre axis axis of rot.
x0 y0 a b α0 [°] 10−2

I 0.00 0.0000 0.6900 0.9200 0.0 2.00
II 0.00 -0.0184 0.6624 0.8740 0.0 -0.98
III 0.22 0.0000 0.1100 0.3100 -18.0 -0.02
IV -0.22 0.0000 0.1600 0.4100 18.0 -0.02
V 0.00 0.3500 0.2100 0.2500 0.0 0.01
VI 0.00 0.1000 0.0460 0.0460 0.0 0.01
VII 0.00 -0.1000 0.0460 0.0460 0.0 0.01
VIII -0.08 -0.6050 0.0460 0.0230 0.0 0.01
IX 0.00 -0.6050 0.0230 0.0230 0.0 0.01
X 0.06 -0.6050 0.0230 0.0460 0.0 0.01
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Fig. 4. Values of coefficients hΔi,Δj .

attenuation coefficients placed in the last column of
Table 1 were divided by a factor 102 to facilitate
the calculations. The model formed in this way was
used to generate projections with a Poisson probability
distribution. In every case we start our simulations from
a calculation of the accurate values of the projection
p∗ (s, α) in the traditional way, and then values of
radiation intensity I∗ are established according to the
following relation:

ln (I∗ (U)) = ln (I (0)) − p∗ (s, α) , (41)

where I (0) is the same initial x-ray intensity for all
projections (in our experiments I (0) = 106).

After the determination of the I∗ value, we generated
the statistical value of the intensity I (U) with a Poisson
probability distribution with the expected value I∗ (U),
and using this value we back-calculated the projections
p (s, α). These projections were used in our reconstruction
algorithm.

In all our experiments, we fixed the following
parameters: L = 170 measurement points (detectors) on
the screen, the number of the angles Ψ = 519, and the
size of the processed image I × J = 128 × 128 pixels.

Coefficients hΔi,Δj were pre-computed using the
relation (13) before we started the reconstruction process,
and these coefficients were fixed for the subsequent
processing. They were determined with the value k =
1000, which was chosen experimentally. If, in Eqn. (13),
we use the linear interpolation function, the values of the
coefficients hΔi,Δj obtained are presented in Fig. 4.

After the determination of the coefficients hΔi,Δj ,
we can start the reconstruction procedure. Firstly,
we perform the back-projection operation using the
relationships (11) and (10) to get a blurred image of the
x-ray attenuation distribution in a given cross-section of
the investigated object. The result of this operation is
presented in Fig. 5.

 

Fig. 5. Distorted image of the mathematical model obtained
after the operation of back-projection.

Secondly, the iterative optimization process is
performed. During this process, the optimization is carried
out using a gradient descent method. The optimization
procedure, being indeed a reconstruction process, is
described by the relations (39) and (40), which are based
on the objective L7 described by (34). It is worth noting
that we used λ = 10−2 and c = 3.33 · 10−5, chosen
experimentally. Other combinations of these values are
possible, but with the constraint that expression λc
should not exceed approximately 3.3 · 10−7 to avoid
instabilities during performance of the reconstruction
process. Because the measureL7 is a convex function, this
optimization process converges to a unique solution.

Because we should not rely only on a subjective
evaluation of the results of the reconstruction algorithm,
we also used objective measures, i.e., the well-known
MSE and SNR error measures defined as follows:

MSE =
1
I2

I∑
i=1

I∑
j=1

(
μ̂∗(t) (i, j) − μ̂ (i, j)

)2

, (42)

SNR = 10 log10

∑I
i=1

∑I
j=1 (μ̂ (i, j))2∑I

i=1

∑I
j=1

(
μ̂∗(t) (i, j) − μ̂ (i, j)

)2 ,

(43)
where μ̂∗(t) (i, j) is the reconstructed image after
t iterations, μ̂ (i, j) is the original image of the
Shepp–Logan mathematical phantom, and a new
parameter proposed by us establishing the variation of
the image in the region of the ellipse III (a completely
smooth element), with the following form:

VARIII =

∑
(i,j)III

(
μ̂∗(t) (i, j) − μ̂

∗(t)
mIII

)2

MIII
, (44)

where μ̂∗(t)
mIII is the mean value inside ellipse III in the

reconstructed image after t iterations, MIII is the number
of pixels inside element III.
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Fig. 6. Results of the reconstruction process dependent on the
number of projections during the calculation of the re-
constructed image, evaluated by the MSE measure (see
Eqn. (43)) in the case of deterministic signals.

This parameter has to evaluate the ability of the
reconstruction algorithm to decrease the influence of the
noise present in the measurements of the image obtained
in the reconstruction process. The smaller the parameter
VARIII for the homogeneous region inside ellipse III,
the greater our ability to perceive any possible details
appearing in this area.

We can observe the results of the performed
investigations in Fig. 6 for deterministic signals, and in
Fig. 7 for signals in the presence of noise. Views of the
reconstructed images of the mathematical phantom in the
cross-section after t iterations are presented in Fig. 8(c)
when deterministic signals are taken into consideration,
and in Figs. 9 and 10(b),(c) for stochastic signals. One
can compare the results obtained using the original
phantom image (Fig. 8(a)) and the image reconstructed
by a standard reconstruction method (Figs. 8(b), 9(a) and
10(a)) (Jain, 1989).

It is worth noting that the rim near the bones of
the skull in the reconstructed image is caused, in our
interpretation, by the overfitting effect. This phenomenon
is strongly associated with places in the reconstructed
image where our model expressed by (7) is the most
inaccurate, i.e., at the edges (e.g., borders between bones
and other tissues). The problem of how to prevent these
artifacts will be further investigated. Probably, a way to
avoid this effect in the reconstructed image is to accelerate
the optimization process for pixels where the errors (31)
are the largest (at the edges).

One can observe in Fig. 7 that errors MSE and
VARIII decrease quickly with the number of iterations
specific for the given approach, and then both errors
slowly increase after they have reached their minimums.
We should stop the reconstruction process at this
point because these error measures (especially parameter

10-6

102

1

2

(a)

102

1

2

10-9

(b)

Fig. 7. Results of the reconstruction process dependent on the
number of projections during the calculation of the re-
constructed image, evaluated by the MSE measure (a),
the VARIII measure (b), in the case of stochastic si-
gnals.

VARIII ) describe the quality of the reconstructed image
in the regions of the investigated cross-section which are
interesting from a diagnostic point of view.

5. Conclusion

The main goal of the presented paper was to present
a statistical model-based iterative approach to the
problem of image reconstruction from projections. In our
approach, the formulation of the image reconstruction
from projections problem is consistent with an analytical
scheme of image processing defining the class of
reconstruction algorithm. Accordingly, it is possible
to avoid the fundamental difficulties associated
with approaches based on the algebraic concept
of the performed image processing. Generally, the
reconstruction problem as formulated by us is very
compact, and can be classified as a shift-invariant system.
Elements of this system can be pre-calculated before
we start the reconstruction procedure. Additionally,
we showed how to make our approach an optimal
reconstruction method which considers the statistical
properties of the signals measured by a real x-ray
computed tomography scanner. A form of objective has
been derived, which is optimal for our approach taking
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Image MSE[
10−6]

(a) —–

(b) 1.135

(c) 0.893

Fig. 8. View of the images (window: C = 0.0102, W =
0.0011) when the signals registered by the detectors are
deterministic: original image (a), reconstructed image
using the standard convolution/back-projection method
with rebinning and the Shepp–Logan kernel (b), recon-
structed image using the method described in this paper
at t = 75000 (c).

into account the statistical conditions. This objective is
fundamental for the design of our iterative reconstruction
procedure based on a maximum likelihood estimation
method. Simulations were performed which show that our
reconstruction procedure is stable without the introduction
of any additional regularization term, in contrast to the
maximum a posteriori probability estimation. During
the computer simulations, the reconstructed image
of the cross-section of a mathematical phantom was
investigated. The reconstruction algorithm designed by us
yields an image with high accuracy when compared with

Image Locale enlargement

(a)
MSE = 1.172 · 10−6

SNR = 39.56

V ARIII = 4.332 · 10−9

(b)
MSE = 1.032 · 10−6

SNR = 40.12

V ARIII = 3.728 · 10−9

(c)
MSE = 0.982 · 10−6

SNR = 40.33
V ARIII = 4.340 · 10−9

Fig. 9. View of the images (window: C = 0.0102, W =
0.0011) when the signals registered by the detectors
are stochastic: reconstructed image using the standard
convolution/back-projection method with rebinning and
the Shepp–Logan kernel (a), reconstructed image using
the method described in this paper at t = 8000 (b), and
at t = 38000 (c), using the relations (30) and (32).

the standard method, as measured objectively using the
quality measures (43) and (44).

Thanks to the formulation of our reconstruction
problem as a shift-invariant system we can decrease
the computational complexity of our method by
transformation of the performed calculation in the
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Image Locale enlargement

(a)
MSE = 1.172 · 10−6

SNR = 39.56

V ARIII = 4.332 · 10−9

(b)
MSE = 1.043 · 10−6

SNR = 40.07

V ARIII = 3.726 · 10−9

(c)
MSE = 0.982 · 10−6

SNR = 40.19
V ARIII = 4.258 · 10−9

Fig. 10. View of the images (window: C = 0.0102, W =
0.0011) when the signals registered by the detectors
are stochastic: reconstructed image using the stan-
dard convolution/back-projection method with rebin-
ning and the Shepp–Logan kernel (a), reconstructed
image using the method described in this paper at t =
20000 (b), and at t = 80000 (c), using the relations
(30) and (33).

frequency domain. This therefore reduces the number
of operations of every iteration of the performed
optimization process to the level of O (

2I2 log2 I
)
. In

comparison with the algebraic approach represented
by the ICD algorithm, where the computational

complexity of every iteration of the optimization
process is proportional to I2 × Ψ × L (approximately
I4), this method produces a huge acceleration. Of
course, our method is much slower than the standard
convolution/back-projection algorithm, but that method
does not have the property of adaptation to the statistical
nature of the CT technique.

Having a solution to the image reconstruction
from projections for parallel beams, we can extend our
results to other projection geometries: fan-beams and
cone-beams, in particular those incorporated in spiral
tomography. Particularly, it was shown that it is possible
to extend our results to techniques based on methods such
as the SSR method (see, e.g., Noo et al., 1999; Bruder
et al., 2000) or methods based on the principles of the
ASSR algorithm (see, e.g., Kachelriss et al., 2000; 2001;
2004), as was presented by Cierniak (2010).
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Częstochowa University of Technology, Poland.
From 1991 to 1996 he was with the Institute of
Electronics and Control Systems, and in the pe-
riod from 1996 to 2013 with the Institute of Com-
putational Intelligence. He has recently become a

full professor at this institute. His main interests include neural networks,
biomedical applications of artificial intelligence, computer vision and
image processing.

Appendix

The derivation of the objective L4 can be initialized by
returning to the relation (24),

L3 (p (s, α))

= n0e−p(s,α) (p (s, α) − p∗ (s, α))

+ n0e−p(s,α) − n0e−p
∗(s,α). (A1)

If we expand the term e−p
∗(s,α) in a second-order Taylor

series around p (s, α), where Δp = p∗ (s, α) − p (s, α),
we can obtain the following approximation:

e−p
∗(s,α)

∼= e−p(s,α) − e−p(s,α) (p∗ (s, α) − p (s, α))

+
1
2
e−p(s,α) (p∗ (s, α) − p (s, α))2 . (A2)

Taking the above approximation into account in the
relation (A1), we can perform the following derivation:

L3 (p (s, α))
∼= L4 (p (s, α)) (A3)

+ n0e−p(s,α) (p (s, α) − p∗ (s, α)) + n0e−p(s,α)

− n0e−p(s,α) − n0e−p(s,α) (p (s, α) − p∗ (s, α))

− 1
2
n0e−p(s,α) (p∗ (s, α) − p (s, α))2

= −1
2
n0e−p(s,α) (p∗ (s, α) − p (s, α))2 .
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