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Abstract
Random multi-attribute decision-making is a finite option selection problem related to multiple attributes, and the attribute
values are random variables. Its application and supply chain risk management can transform interval decision numbers
and fuzzy decision numbers into standardised decisions. Based on this research background, the article provides a primary
method to determine the randomness of standard random variables based on expectations and variance through theoretical
analysis. Second, the article determines the range of the total utility value of each supply chain selection plan based
on the 3σ principle. Experiments have proved that this method can solve unifying opinions due to different knowledge,
experience, and preferences of evaluation experts. This provides a new method of supplier selection.

Keywords: normal random variables, mixed multi-attribute decision-making, entropy, subjective weight, objective weight, supply
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1 Introduction

The complexity of decision-making issues leads to decision-making indicators, often including quantitative
and qualitative indicators. The hybrid multi-attribute decision-making model can handle quantitative and quali-
tative indicators, which is more in line with actual decision-making situations. However, due to the complexity
of the attributes and the bounded rationality of the decision-maker, it is difficult for the weight directly given by
the decision maker’s subjective judgement to be consistent with the actual situation [1]. The article presents a
mathematical programming model that integrates decision-makers personal weight preference information and
objective decision matrix information. At the same time, we propose a combined weight algorithm that can
integrate all kinds of subjective weights and n-1 kinds of objective weights.
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2 Mixed multi-attribute decision-making problems

Suppose S = {s1,s2, · · · ,sm} is a set of solutions for a multi-attribute decision-making problem. U =
{u1,u2, · · · ,sn} is the indicator set. The weight vector of the indicator is W = {w1,w2, · · · ,wn} which is un-
known [2].

Definition 1. We define a = [aL,aU ] as a closed interval number. Among them, aL, aU ∈ R and the total number
of intervals on 0≤ aL ≤ aU , R are denoted as R.

Definition 2. We assume that [aL,aU ] is an interval number. ρ: [0,1]→ [0,1] is a function with the following
properties: ρ: (0)−0; ρ(1) = 1; if x≥ γ then ρ(x)≥ ρ(γ), and

fρ

(
[aL,aU ]

)
=

ˆ 1

0

dρ(γ)

dγ

(
aU − γ(aU −aL)

)
dγ (1)

fγ(aL,aU ]) = (aL +aU ])/2 (2)

Definition 3. We assume that R is a set of real numbers. P(R) represents the set of all fuzzy subsets on R. A
fuzzy set Ã ∈ P(R) is called a fuzzy number. If there is at least one x0 ∈ R, even uA (x0) = 1, Ã is standard [3].

Definition 4. The fuzzy maximum set is a fuzzy subset Smax = {(x,umax) |x ∈ R}, and its membership function
is:

µmin(x) =

{
1− x, 0≤ x≤ 1
0 otherwise

(3)

In this way, the fuzzy number Ã can be converted into the exact number b:

b = [µRA+1−µL(A)]/2 (4)

µR(A) = sup[µA(x)Λµmax(x)]

µL(A) = sup[µA(x)Λµmin(x)]

In this way, the mixed decision matrix A = (ai j)m×n is transformed into an exact number matrix B = (bi j)m×n
through Eqs (2) and (4).

ci j = bi j/

√
m

∑
i=1

b2
i j (5)

The positive ideal solution is A∗=
{

c1
∗, · · ·c j

∗ · · · ,cn
∗}, where c j

∗= {max
i

ci j, j ∈ J1;min
i

ci j, j ∈ J2; the negative

ideal solution is A =
{

c1, · · · ,c j · · · ,cn
}

. J1 is a profitable attribute index. J2 is the cost attribute index.

3 Algorithms for comprehensive weights

3.1 Insufficiency of the existing objective weight calculation model

After studying various methods of determining objective weights, some scholars have proposed mathemati-
cal optimisation models [4]. These models often use the following methods when solving objective weights. We
transform the exact number decision matrix A = (ai j)m×n into a standardised decision matrix B = (bi j)m×n.

bi j =
ai j−amin

j

amax
j −amin

j
, j ∈ J1; (6)
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bi j =
amax

j −ai j

amax
j −amin

j
, j ∈ J2; (7)

J1 is a profit-based indicator. J2 is a cost index. In this way, a solution model for objective weights is obtained
(8) minZ1 =

n
∑
j=1

wT Hw

s.t.eT w = 1, w j ≥ 0
(8)

H is the diagonal matrix of n×n. Its diagonal element is hi j =
m
∑

i=1
(bi j−b j

∗)2, b j
∗ = max

{
b1 j · · ·bm j

}
. Solving

model (8) can get:
w = H−1e/eT H−1e (9)

Some scholars pointed out that the weight distribution mechanism as well as the meaning of model (8) is not
precise, and it does not conform to the principle of entropy model weight distribution. Through case analysis,
it is found that small changes in the decision matrix will lead to significant changes in weights, so the weight
distribution mechanism of the model (8) is unreasonable. So, we proposed an entropy model to solve the
objective weights [5]. The main methods are as follows:

w j = d j/
n

∑
j=1

d j (10)

d j = 1−E j, E j =−

(
n

∑
i=1

pi j ln pi j

)
/ lnnpi j = ai j/

m

∑
i=1

ai j

To assign weights, the entropy model is guided by the following principle. If the evaluation value of each scheme
under the j attribute tends to be more consistent, then the weight of the j attribute will be smaller. The entropy
model also has some unreasonable points in assigning weights as follows:

1. The weight distribution is not flexible. The entropy model defines d j = 1−E j, so can d j = 2−E j or other
functions of E j being set?

2. It is easy to cause too much weight difference. In actual decision-making, when an indicator is introduced
into the evaluation system, it can generally be considered that it cannot exceed and equal to zero [6]. That
is, the maximum weight cannot be >10 times the minimum weight.

The construction of a suitable mathematical model requires a deep understanding of the specific situation
and rich mathematical experience of the issues involved in the decision-making problem. This isn’t easy. To
judge the rationality of the objective weight model, we give Judgement Theorem 1.

Judgement Theorem 1. The objective weight obtained by this model can reflect the information of the decision
matrix. When the decision matrix changes, the degree of weight change should be consistent with the degree of
change of the decision matrix.

3.2 Entropy coefficient model

Based on the model (8) and entropy model (10), we transform the exact number decision matrix A= (ai j)m×n
into a standardised decision matrix C = (ci j)m×n. Among them:

ci j =
ai j

amax
j

, j ∈ J1; (11)

ci j =
amin

j

ai j
, j ∈ J2; (12)
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J1 is a profit-based indicator and J2 is a cost index;

amax
j = max

{
a1 j,a2 j, · · · ,am j

}
, j = 1, · · · ,n; (13)

amin
j = min

{
a1 j,a2 j, · · · ,am j

}
, j = 1, · · · ,n;

Definition 5. For the normalised matrix C = (ci j)m×n, the entropy of the j attribute is defined as:

h j = ρ−E j (14)

E j =−
(

n
∑

i=1
ci j lnci j

)
/ lnn, ρ is the system parameter (ρ ≥max{E1, · · ·E j · · ·En}). Then the entropy coefficient

model for solving the objective weight is: 
minZ2 = wT Kw
s.t.eT w = 1
w≥ 0

(15)

where K is the diagonal matrix of n×n. Its diagonal elements are ki j = ρ−E j, ki j > 0, j = 1, · · · ,n; the remaining
elements are zero. We assume that L = wT Kw− λ

(
eT w−1

)
, then ∂L

∂w j
= 2Kw− λ = 0, ∂L

∂λ
= eT w− 1 = 0.

Calculate to get w = K−1e/eT K−1e.

Property 1. The weight distribution principle of the entropy coefficient model is the same as that of the entropy
model. If the evaluation value of each scheme under the jth attribute tends to be more consistent, then the weight
of the jth attribute will be smaller.

Property 2. The entropy coefficient model has certain flexibility [7]. The decision-maker can set the size of
the system parameter ρ according to specific actual needs to adjust the degree of the weight difference between
attributes. The larger the ρ , the smaller the system attribute weight difference.

3.3 Comparison between models (8), (10), and (14)

Here are two examples to illustrate the difference between the entropy coefficient model (14), the model (8),
and the entropy model (10):

Example 1. Suppose there is a decision matrix Am×n =

a11 · · · a1n
...

...
...

am1 · · · amn

. We use model (8) to normalise A to

get matrix B, then w j =
(h j j)

−1

n
∑
j=1
(h j j)

−1 can be obtained according to formula (9). If the evaluation value of each

scheme under the j attribute tends to be the same [8]. That is, bi j → b j
∗ (i = 1,2, · · · ,m) is hi j → 0, so w j =

lim
h→0

j j

(h j j)
−1

n
∑
j=1
(h j j)

−1 = 1. Model (8) may cause the weight of the j attribute to be too large.

We use the entropy model (10) to calculate. If the evaluation value of each scheme under the jth attribute
tends to be the same, that is, pi j → 1/n(i = 1,2 · · ·m) is d j → 0, so w j =

d j
n
∑
j=1

d j

→ 0. When assigning weights,

the degree of weight difference may be too large.

3. We use the entropy coefficient model (15) for solving objective weight. According to formula (15), we

can get: w j =
(k j j)

−1

n
∑
j=1
(k j j)

−1 . If the evaluation value of each scheme under the jth attribute tends to be the same,

that is, ci j→ 1(i = 1,2, · · · ,m) is E j→ 0. So k j j = ρ−E j→ ρ , then
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w j = lim
k→ρ

j j

(k j j)
−1

n
∑
j=1

(k j j)
−1

=
ρ−1

n
∑

i6= j
(k j j)

−1 +ρ−1
(16)

In this way, we can set the system parameters ρ according to the specific decision-making situation so that the
entropy coefficient model (15) has a certain degree of flexibility [9].

There is a decision matrix A4×4. To simplify, we assume that its attribute indicators are all income indicators

A =


P1 P2 P3 P4

S1 30 30 38 29.0
S2 19 54 86 29.0
S3 19 15 85 28.9
S4 68 70 60 29.0

 (17)

1. Using model (8), we can get: w = (0.1384, 0.2232, 0.2783, 0.3601).

2. Using the entropy model (10), we can get: w = (0.4630, 0.3992, 0.1378, 0).

3. Using the entropy coefficient model (14), when the system parameter is ρ = 0.8, we can get w = (0.7875,
0.1296, 0.0576, 0.0253). When the system parameters are used, ρ = 1 can get w = (0.4404, 0.2795,
0.1806, 0.0996). When the element a34 of the matrix A changes from 28.9 to 29.1, we can get the matrix
A1:

A1 =


P1 P2 P3 P4

S1 30 30 38 29.0
S2 19 54 86 29.0
S3 19 15 85 28.9
S4 68 70 60 29.0

 (18)

1. Using model (8), we can get w=(0.1821, 0.2937, 0.3662, 0.1579).

2. Using the entropy model (10), we can get w=(0.4630, 0.3992, 0.1378, 0).

3. Use the entropy coefficient model (14). When the system parameter is ρ = 0.8, w = (0.7874, 0.1296,
0.0576, 0.0254) can be obtained. When the system parameters are used, ρ = 1 can be w = (0.4402,
0.2793, 0.1805, 0.1).

When a34 undergoing a small change, the weight change obtained using model (8) is too large [10]. The
weight of the particular attribute P4 has changed from 0.3601 to 0.1579. The weights obtained by using the
entropy model (10) have not changed. This cannot reflect a slight change in the decision matrix. Using the
entropy coefficient model (14), the weight change obtained is relatively small, consistent with the slight chance
of the matrix. From the aforementioned two examples, the entropy coefficient model can adapt to different
decision-making situations by adjusting the value of the system parameter ρ , and the weight obtained is more
reasonable than the model (8) and the entropy model (10).

3.4 Comprehensive weight calculation method

Suppose that the decision-maker directly gives the emotional weight of the attribute as W (0)=
(

w(0)
1 , · · · ,w(0)

j ,

· · ·w(0)
n

)
, 0≤ w(0)

j ≤ 1 and
n
∑
j=1

w(0)
j = 1. The total weight of the attribute:

W ∗ = (w1
∗, · · · ,w j

∗, · · ·wn
∗) (19)

w j
∗ = βw(0)

j +(1−β )w j

n

∑
j=1

w j
∗ = β

n

∑
j=1

w(0)
j +(1−β )

n

∑
j=1

w j = 1
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β (0≤ β ≤ 1) is the weighted trade-off coefficient. If the ranking of the schemes is highly sensitive to weight
changes, the reliability of the evaluation results is difficult to guarantee. It is also tricky for decision-makers to
make choices [11]. To judge the rationality of the total weights, Judgement Theorem 2 is proposed.

Judgement Theorem 2. If the scheme ranking is less sensitive to changes in the total weight, then the total
weight is relatively reasonable.

4 Scheme ordering steps

1. The distance from the first plan to the positive ideal plan is:

di
∗ =

√
n

∑
j=1

(w j
∗)2(ci j− c j

∗)2 (20)

2. The distance from the i plan to the negative ideal plan is:

di
− =

√
n

∑
j=1

(w j
∗)2(ci j− c j

−)2 (21)

3. The relative closeness of the i scheme to the positive ideal scheme is:

Di =
d−i

d−i +d∗i
(22)

The larger the i = 1 · · ·m, j = 1 · · ·n, Di better than i plan.

4. Arrange the pros and cons of the schemes in descending order of Di value.

5. Use the weighted trade-off coefficient β to perform sensitivity analysis on the ranking of the schemes.

5 Case study

A company’s production line needs to choose robots among the four submitted models. Now four suppliers
are providing four solutions: s1, s2, s3, s4. Each program has six attributes [12]. The specific data are shown in
Table 1. u5 and u6 are qualitative indicators. According to the relationship between fuzzy numbers and language
variables, we use fuzzy triangular numbers and trapezoidal fuzzy numbers to represent:

Table 1 The six attribute values of the four robots
u1 u2 u3 u4 u5 u6

s1 2 2.5 [55,56] [94,114] Normal (0.4, 0.5, 0.6) Very high (0.85, 0.9, 0.95, 1)
s2 2.5 2.7 [30,40] [84,104] Low (0.2, 0.3, 0.4) Normal (0.3, 0.4, 0.6, 0.7)
s3 1.8 2.4 [50,60] [100,120] High (0.6, 0.7, 0.8) High (0.5, 0.6, 0.8, 0.9)
s4 2.2 2.6 [35,45] [90,110] Normal (0.4, 0.5, 0.6) Normal (0.3, 0.4, 0.6, 0.7)

Subjective weight W (0) = (0.2, 0.2, 0.1, 0.1, 0.2, 0.2). The weight compromise factor β is 0.4. We use
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formulas (1)–(3) to standardise the evaluation matrix A to obtain a standardised matrix C,

CT =



0.4671 0.5839 0.4204 0.5139
0.4897 0.5289 0.4701 0.5093
0.5873 0.3704 0.5820 0.4233
0.5090 0.4600 0.5383 0.4894
0.4845 0.3101 0.6590 0.4845
0.6592 0.3833 0.5212 0.3833

 (23)

The positive ideal solution is A∗ = (0.4204, 0.5289, 0.5873, 0.4600, 0.6590, 0.6592).

1. Use model (14). If we set the system parameter ρ = 1, we can get the objective weight W = (0.149,
0.1131, 0.1559, 0.1203, 0.2291, 0.2326). Then the comprehensive weight W ∗ = β ×W (0)+(1−β )×W
W ∗ = (0.1694, 0.1479, 0.1335, 0.1122, 0.2175, 0.2196).

2. The distance from each plan to the positive ideal plan is
d∗1 = 0.0396 d∗2 = 0.1050
d∗3 = 0.0327 d∗4 = 0.0765

, respectively.

3. The distance from each plan to the negative ideal plan is
d−1 = 0.0797 d−2 = 0.0124
d−3 = 0.0908 d−4 = 0.0411

, respectively.

4. The relative closeness of each scheme to the positive ideal scheme is
D1 = 0.6683 D2 = 0.1053
D3 = 0.7350 D4 = 0.3496

.

5. So, the sorting result: s3 � s1 � s4 � s2.

6. Sensitivity analysis. Sensitivity analysis observes the influence of the trade-off coefficient β on the ranking
of plans [13]. The results are shown in Table 2 and Figure 1.

When the system parameter is ρ = 0.6, the sensitivity analysis is shown in Figure 2.

2. Using model (8), we can get the objective weight W=(0.0777,0.5411,0.0392,0.3091,0.0157,0.0171). The
sensitivity analysis is shown in Figure 3.

From Figure 3, the weight is more sensitive to the change of the program ranking, and it is difficult for
decision-makers to choose. The main reason is that the objective weight is not very reasonable, and the evalua-
tion value of each scheme under the second attribute is the most consistent. This causes the weight of the second
attribute to be too large and it exceeds 50%. It is 35 times the minimum weight. In Figures 1 and 2, the pros and
cons of the scheme are more pronounced, so it is easier for decision-makers to judge.

Fig. 1 The influence of β on the order of the schemes
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Table 2 β influence on the closeness of each plan
β s1 s2 s3 s4
0 0.6726 0.0944 0.7366 0.3451
0.2 0.6705 0.0994 0.7358 0.3472
0.4 0.6683 0.1053 0.735 0.3496
0.6 0.666 0.1118 0.734 0.3522
0.8 0.6637 0.1191 0.7329 0.355
1 0.6613 0.1296 0.7316 0.358

Fig. 2 The influence β on the ordering of the schemes

Fig. 3 The influence β on the order of the schemes

6 Conclusion

This article studied the mixed multi-attribute decision-making problem with quantitative and qualitative in-
dicators and converts interval and fuzzy numbers into exact numbers to obtain a standardised judgement matrix.
This method can resolve some of the issues involved with the mixed decision-making problem and simplify
the calculation with the undefined index being the non-linear fuzzy number. We have established an entropy
coefficient model for solving the objective weights of attributes. This model has a certain degree of flexibility,
and the obtained weights are relatively reasonable.
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