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Abstract 

This paper investigates the kinematic motions of space-like and time-like curves specified by acceleration fields in 

Minkowski space ℝ2,1. Through the motion, the relationship between the acceleration fields and velocity fields is de-

termined. In this study, we focus on studying the flows of inextensible space-like curves with a space-like principal normal 

vector specified by a normal acceleration that equals the curvature of the curve. Through the motion of the inextensible 

space-like curve with normal acceleration, we prove that the position vector of the curve satisfies a one-dimensional wave 

equation. We present some novel applications and visualize the flows of curves and their curvatures. 
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1 Introduction

The topic of the motion of curves or the flows of curves has many applications in physics, such as the study
of the evolution of a front propagating along its normal vector field by a speed function of curvature, the motion
of fronts in viscous fingering in a Hele-Shaw cell, and the vortex filament motion in incompressible and inviscid
fluids [1–3].
Researchers studied the flow of curves in various spaces with different frames, such as Euclidean space, Lorentz
space, and Galilean space. The motion of curves in Euclidean space R3 and Minkowski space R2,1 was studied
by many authors: Nakayama et al. [4], studied the motion of curves given by the acceleration in R3. Nassar et
al. [5], studied the motion of curves in Rn that were described by acceleration. Bas et al. [6], studied inextensible
flows of spacelike curves (IFSPC) on oriented space-like surfaces in M3

1 and obtained the necessary and suffi-
cient conditions (NSCs) for (IFSPC) on oriented spacelike surfaces. Ergut et al. [7], studied the (IFSPC) with
Sabban frame on S2

1 and obtained partial differential equations (PDEs) in terms of these flows of the space-like
curves (SPC) that are related to the Sabban frame on S2

1. Korpinar et al. [8], constructed a novel approach to
the inextensible flow of curves in R3 by employing the Frenet frame of the given curve, and provided some
characterizations for the curvatures of the curve. Bektas et al. [9], obtained the (NSCs) for the space-like curves
(SPC) in the three-dimensional light-like cone of E4

1 to be inextensible through their study of the (IFSPC).
Arroyo et al. [10], investigated the binormal flow of curves specified by curvatures depending on velocity

and sweeping out immersed surfaces. By employing the Gauss-Codazzi equations, the filaments that evolving
by constant torsion were constructed. Yuzbasi, et al. [11], investigated the inextensible flows (IFC) on a lightlike
surface in R2,1, and obtained (NSCs) for (IFC) as a PDE involving the curvatures of the curve on a lightlike
surface. In addition, the lightlike ruled surfaces in R2,1 were classified, and the inextensible evolution of a
lightlike curve on a lightlike tangent developable surface was characterized.

The novel coupled non-linear partial differential equations (CNLPDE) were developed by Yuzbasi, et al.
[12], to obtain the temporal evolution of the curvatures of the developing curve in Galilean space. The exact
solutions were obtained for these novel CNLPDEs. These novel CNLPDE were also subjected to Lie symmetry
analysis. The algebra of their Lie point symmetries were identified. Kaymanli et al. [13], investigated the ruled
surfaces obtained by normal and binormal vectors along a time-like space curve by using the q-frame in R2,1.
The directrices of quasi-normal and quasi-binormal ruled surfaces are used to study their directional evolution.
Some geometric features, including inextensibility, developability, and minimality, of these ruled surfaces, were
investigated.

Abdo [14], obtained a relationship between the curve evolution and the soliton equations in R2,1 for the
(SPC) with a space-like principal normal vector. Yoon et al. [15], obtained the time evolution equations (TEEs)
of the curvature and torsion for evolving space-like curves in Minkowski space. Additionally, the inextensible
evolutions of time-like ruled surfaces formed by the time-like normal and space-like binormal vector fields of
space-like curves were given. The (NSCs) for the evolution of inelastic surface were also provided. Moreover,
the coefficients of the first and second fundamental forms, the Gauss, and the mean curvatures for time-like
special ruled surfaces were determined.

The quaternionic curves in R3 and R4 were described by Eren [16], and the motions of inextensible quater-
nionic curves were characterized by the modified Korteweg-de Vries (mKdV) equations. In addition, the evo-
lution of inextensible quaternionic curves with the Frenet frame was obtained. Hussien and Gaber [17], studied
the (IFC) in R3 and constructed the generated surfaces from the motion of inextensible curves. The geometric
properties of the generated surfaces were investigated and visualized. Gaber [18], studied the (IFC) in spheri-
cal space S3 and derived the (TEEs) of the orthonormal frame and curvatures. Moreover, some novel explicit
examples of motions of inextensible curves in S3 were presented. Gaber [19] studied the binormal motions of
time-like curves and space-like curves with a time-like normal vector in De Sitter space S2,1, and constructed
Hashimoto surfaces.

Recently, Gaber [20], obtained the (TEEs) for the type−1 Bishop frame and Bishop curvatures of curves
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in R3. Gaber and Sorour [21], studied the (IFC) specially time-like curves with a quasi-frame in R2,1. Gaber
and Al Elaiw [22], investigated the flows of a null Cartan curve described through the velocity and acceleration
fields and proved that the binormal velocity influences the tangential and normal velocities. In addition, the
(TEEs) were derived for the torsion of the null curves and also for the Cartan frame. Furthermore, a family of
inextensible null Cartan curves were constructed.

In the present work, we consider the kinematic motion of (SPC) and (TIC) in R2,1. We derive the second
(TEEs) of the Frenet frame and obtain a connection between acceleration and velocity fields. We study the mo-
tion of an inextensible (SPC) with normal acceleration that equals its curvature and prove that its position vector
satisfies the (PDE) called a one-dimensional wave equation. We solve this equation for specific initial conditions,
providing novel applications for flows of inextensible (SPC). These applications include explicit parametrization
of the curve and its flows, computation of Frenet frame and curvature flows, as well as visualization of these
flows.

This paper is organized as follows: In Section [2], we give some geometric properties of curves in R2,1. In
Section [3], we provide the main results for the motions of (SPC) and (TIC) via the acceleration fields in R2,1. In
Section [4], we study the (IFSPC) with a space-like principal normal vector (SPNV) via the normal acceleration
that equals the curvature of the curve. We present some novel applications and investigate the one-dimensional
wave equation arising from the motion of inextensible (SPC) according to the normal acceleration. Finally, we
give our conclusions and a discussion.

2 Preliminaries

In this part, we outline some characteristics of vectors and curves in Minkowski space R2,1.

Definition 1. [23] The Minkowski space R2,1 is a three-dimensional R-vector space with the vectors {X =
(x0,x1,x2) | x0,x1,x2 ∈ R}. It has the following properties:

• Metric: −dx2
0 +dx2

1 +dx2
2.

• Inner product: 〈a,b〉=−a0b0 +a1b1 +a2b2 , where, a = (a0,a1,a2),b = (b0,b1,b2) ∈ R2,1.

• Vector product: a×b = (a2b1−a1b2,a2b0−a0b2,a0b1−a1b0) , a = (a0,a1,a2),b = (b0,b1,b2) ∈ R2,1.

• The vector ν ∈ R2,1 is space-like if 〈ν ,ν〉> 0, time-like if 〈ν ,ν〉< 0, and null (light-like) if 〈ν ,ν〉= 0.

• The signature of the vector ν is 1 if ν is space-like, −1 if U is time-like, and 0 if ν is light-like.

Definition 2. [23] Let R2,1 be 3−dimensional Minkowski space. Assume that β = β (u) : I→R2,1, be a regular
parameterized curve, where u ∈ I is the curve’s parameter and let β̇ (u) be the tangent vector to the curve, where
( )̇ = d

du . The curve β (u) is: space-like if 〈β̇ , β̇ 〉> 0, time-like if 〈β̇ , β̇ 〉< 0, and null (light-like) if 〈β̇ , β̇ 〉= 0.

Definition 3. [24] Consider β be a regular (SPC) or time-like curve (TIC) and let s(u) =
´ u

0 ‖β̇ (σ)‖dσ be the
arc-length of the curve β (u), we define the metric g > 0 by ds

du = ‖β̇‖ =√g. In case of ‖β̇‖ = 1, ∀u ∈ I, then
β = β (s) is called an arc-length parameterized curve.

Definition 4. [24] Let β = β (s) be (SPC) or (TIC), parameterized by arc-length, and assume that the curvature
of the curve k 6= 0. Assume that the curve β moves according to the orthonormal Frenet frame {T,N,B},
where T , N and B are the unit tangent, unit principal normal and unit binormal vector fields to the curve β (s),
respectively. The characteristics of the Frenet vectors in R2,1 are given as follows:

• sign(T ) = ε1, sign(T ′) = ε2, where β ′ = T , and ε1 =±1,ε2 =±1, ( ′) = d
ds .

• 〈N,N〉= ε2 , 〈B,B〉=−ε1ε2.
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• 〈T,N〉= 〈T,B〉= 〈N,B〉= 0.

• N×B =−ε2T , B×T =−ε1N, and T ×N = B .

Definition 5. [24] Assume that k and τ depicts the curvature and torsion of the (SPC) or (TIC) curve respec-
tively, and they are defined as follows:

k = ε2〈T ′,N〉, τ =−ε1ε2〈N′,B〉.

Lemma 1. [24] Let β = β (s) be (SPC) or (TIC), the Frenet Frame {T,N,B} for the (SPC) or (TIC) in R2,1

satisfies the following Ordinary Differential Equations (ODEs):

βs = T, Ts = kN, Ns =−ε1ε2kT + τB, Bs = ε1τN. (1)

2.1 Motions of space-like and time-like curves in R2,1 specified by the velocity fields

In this section, we summarize some important results proved by [11, 15] for the motions of (SPC) or (TIC)
in R2,1 specified by the velocity fields.

Definition 6. Let C0 = β (s,0) : I = [0, l] −→ R2,1 be the initial (SPC) or (TIC) in R2,1. Let t depicts the time
parameter for the curve flow, and assume that the (SPC) or (TIC) curves with their flows are denoted by Ct and
defined by Ct = β (s, t) : I = [0, l]× [0,∞)−→ R2,1. The kinematics motion is described in terms of the velocity
fields W,U,V of the points on the (SPC) or (TIC) as the following (PDE):

∂β

∂ t
=WT +UN +V B. (2)

Lemma 2. The first (TEEs) of the Frenet frame of (SPC) or (TIC) in R2,1 are given by:

Tt = f1N + f2B ,

Nt =−ε1ε2 f1T +ξ B ,

Bt = ε2 f2T + ε1ξ N .

(3)

Definition 7. The (SPC) or (TIC) in R2,1 is said to be inextensible if it preserves its arclength through the
motion. So gt = 0.

Lemma 3. Consider the motion of (SPC) or (TIC) in R2,1. The (NSCs) for the (SPC) or (TIC) to be inextensible
(gt = 0) leads to the following relationship between the velocity functions:

Ws = ε1ε2kU, (4)

and the (TEEs) for the curvature and torsion take the following form:

kt = ε1 f2τ + f1,s ,

τt = ε1ε2 f2k+ξs ,
(5)

where:

f1 = kW +Us + ε1τ V,

f2 =Vs + τ U ,

ξ =
1
k

(
∂ f2

∂ s
+ f1τ

)
.

(6)
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3 Main results

The main purpose of this section is study of the motion of the inextensible (SPC) and (TIC) in R2,1 specified 
by acceleration fields. Consider that the inextensible (SPC) or (TIC) evolves by the acceleration functions E,F , 
and G in the direction of the tangent vector, principal normal vector, and principal binormal vector. The 
acceleration functions E,F , and G are functions of the curvature, the torsion of the curve, and their derivatives. 
The evolving equation is described by the following (PDE):

∂ 2β

∂ t2 = E T +F N +G B. (7)

Lemma 4. The connection between the acceleration fields E,F and G that describe the evolving of the inexten-
sible (SPC) and (TIC) by (7) and the velocity fields W,U,V that describe the evolving of the inextensible (SPC)
and (TIC) by (2) is given by:

E =Wt − ε1ε2 f1U + ε2 f2V,

F =Ut + f1W + ε1ξV,

G =Vt + f2W +ξU.

(8)

Proof. Take the derivative of (2) with respect to t, and using (3), hence

βtt = (Wt − ε1ε2 f1U + ε2 f2V )T +(Ut + f1W + ε1ξV )N +(Vt + f2W +ξU)B. (9)

Equating (7) and (9), hence the lemma holds.

Theorem 5. The second (TEEs) for the Frenet frame vectors T,N,B are given by:

Rtt = Ω ·R, (10)

where: R =

T
N
B

 and Ω =

 ε2( f 2
2 − ε1 f 2

1 ) f1,t + ε1ξ f2 f2,t +ξ f1
ε2(−ε1 f1,t +ξ f2) ε1(−ε2 f 2

1 +ξ 2) ξt − ε1ε2 f1 f2
ε2( f2,t −ξ f1) ε1ξt + ε2 f1 f2ξ ε2 f 2

2 + ε1ξ 2

 .

Proof. Take the derivative of (3) with respect to t, and using (3), then we obtain:

Ttt = ε2( f 2
2 − ε1 f 2

1 )T +( f1,t + ε1ξ f2)N +( f2,t +ξ f1)B. (11)

Taking the derivative of the second equation of (3) with respect to the parameter t, and using (3), then we have:

Ntt = ε2(−ε1 f1,t +ξ f2)T + ε1(−ε2 f 2
1 +ξ

2)N +(ξt − ε1ε2 f1 f2)B. (12)

Taking the t−derivative of the third equation of (3), with respect to the parameter t, and using (3), then we have:

Btt = ε2( f2,t −ξ f1)T +(ε1ξt + ε2 f1 f2ξ )N +(ε2 f 2
2 + ε1ξ

2)B. (13)

Hence the theorem holds.

Theorem 6. The functions f1, f2 and ξ that defined by (6) can be given in terms of acceleration fields E,F,G as
the following system of (PDEs):

2(
√

g)t f1 +
√

g( f1,t + ε1ξ f2) = Fu +
√

g(kE + ε1τ G) ,

2(
√

g)t f2 +
√

g( f2,t +ξ f1) = Gu +
√

gτF ,

(
√

g)tt +
√

gε2( f 2
2 − ε1 f 2

1 ) = Eu− ε1ε2
√

gk F .

(14)
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Proof. Taking the derivative of (7), with respect to the parameter u, then we have

βttu =

(
Eu− ε1ε2

√
gk F

)
T +

(
Fu +
√

g(k E + ε1τ G)

)
N +

(
Gu +

√
gτ F

)
B. (15)

Since βu =
√

g βs =
√

g T , by taking the second and third derivative of this equation with respect to t, and by
using (3), then we get:

βutt =

(
(
√

g)tt +
√

gε2( f 2
2 − ε1 f 2

1 )

)
T +

(
2(
√

g)t f1 +
√

g( f1,t + ε1ξ f2)

)
N

+

(
2(
√

g)t f2 +
√

g( f2,t +ξ f1)

)
B.

(16)

Using the compatibility condition βttu = βutt , hence the theorem holds.

Remark 1. Consider the arclength parameterized (SPC) or (TIC) via the acceleration fields E,F , and G. Since
Eu =

√
g Es, Fu =

√
g Fs, and Gu =

√
g Gs, and assume that the curve is inextensible (gt = 0), hence we obtain

the following relations for (IFSPC):

f1,t + ε1ξ f2 = Fs + kE + ε1τ G ,

f2,t +ξ f1 = Gs + τF ,

ε2( f 2
2 − ε1 f 2

1 ) = Es− ε1ε2kF .

(17)

3.1 Motion of (IFSPC) with space-like principal normal vector

Consider the (IFSPC) with space-like principal normal vector (SPNV) specified by the acceleration fields
E,F , and G, so ε1 = 1,ε2 = 1. Hence from Theorem 5, we obtain the next Lemma:

Lemma 7. The second (TEEs) for the Frenet frame for (IFSPC) with (SPNV) is given by:

Rtt = Ω ·R, (18)

where R =

T
N
B

 and Ω =

 f 2
2 − f 2

1 f1,t +ξ f2 f2,t +ξ f1
− f1,t +ξ f2 − f 2

1 +ξ 2 ξt − f1 f2
f2,t −ξ f1 ξt + f1 f2ξ f 2

2 +ξ 2

 .

Lemma 8. The (TEEs) for the curvatures of the (IFSPC) with (SPNV) are given by

kt = τ f2 + f1,s ,

τt = k f2 +ξ,s ,
(19)

where, the functions f1, f2 and ξ are given in terms of accelerations fields E,F and G as the following system of
PDEs:

f1,t +ξ f2 = Fs + k E + τ G,

f2,t +ξ f1 = Gs + τ F,

f 2
1 − f 2

2 =−Es + k F.

(20)

4 The one-dimensional wave equation arising from (IFSPC) with normal acceleration

Consider (IFSPC) with (SPNV) specified by the normal acceleration F = k and assume that E = 0, G = 0.
So, the evolution equation (7) that describes (IFSPC) takes the following form:

∂ 2β

∂ t2 = kN. (21)
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We study a special case for ( f2 = 0), then by substituting in (20), we get:

f1,t = ks ,

ξ f1 = τ k ,

f 2
1 = k2 .

(22)

Hence, we get f1 = k,ξ = τ .

Lemma 9. Consider (IFSPC) with (SPNV) specified by the normal acceleration F = k, and for f1 = k, f2 = 0,
and ξ = τ , then the second (TEEs) of the Frenet frame that given by (18), takes the form:

Ttt =−k2T + ktN + τkB ,

Ntt =−ktT +(−k2 + τ
2)N + τtB ,

Btt =−τkT + τtN + τ
2B .

(23)

Lemma 10. Let Ct(s, t) = β (s, t) = (β1(s, t),β2(s, t),β3(s, t)) be inextensible (SPC) with (SPNV) and its flows
specified by the normal acceleration F = k. Then the position vector β (s, t) and the Frenet frame vectors T,N,B
satisfy the one-dimensional wave equation as follows:

βss = βtt ,

Tss = Ttt ,

Nss = Ntt ,

Bss = Btt .

(24)

Proof. By taking the derivative of (1), with respect to the arclength s, and comparing the results with (21) and
(23), hence the lemma holds.

Lemma 11. Consider (IFSPC) with (SPNV) specified by a normal acceleration F = k, and for f1 = k, f2 = 0,
and ξ = τ , then the (TEEs) for curvatures that are given by (19), take the following new form:

kt = ks,

τt = τs,
(25)

this system of (PDE) represents the heat equations. The general solution takes the following form:

k(s, t) =C1(s+ t),

τ(s, t) =C2(s+ t),
(26)

where C1(s+ t) and C2(s+ t) are arbitrary functions.

4.1 Applications on one-dimensional wave equation arising from the (IFSPC)

Consider (IFSPC) with (SPNV) specified by a normal acceleration F = k. Since the position vector β (s, t) =
(β1(s, t),β2(s, t),β3(s, t)) of the (SPC) and its flows satisfies one-dimensional wave equation βss = βtt , so:

β1,ss = β1,tt ,

β2,ss = β2,tt ,

β3,ss = β3,tt .

(27)
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To solve the 1−dimensional wave equation (27), we choose some initial conditions by considering the initial
conditions: β (s,0) = (β1(s,0),β2(s,0),β3(s,0)), and βt(s,0) = (β1,t(s,0),β2,t(s,0),β3,t(s,0)), where:

β1(s,0) = φ1(s), β1,t(s,0) = ψ1(s),

β2(s,0) = φ2(s), β2,t(s,0) = ψ2(s),

β3(s,0) = φ3(s), β3,t(s,0) = ψ3(s),

(28)

with arclength parameter s≥ 0 and time t ≥ 0. Then, the 1−dimensional wave equation (27) has the following
general solution:

β1(s, t) =
1
2
(
φ1(s+ t)+φ1(s− t)+

ˆ s+t

s−t
ψ1(x)dx

)
,

β2(s, t) =
1
2
(
φ2(s+ t)+φ2(s− t)+

ˆ s+t

s−t
ψ2(x)dx

)
,

β3(s, t) =
1
2
(
φ3(s+ t)+φ3(s− t)+

ˆ s+t

s−t
ψ3(x)dx

)
,

(29)

where the solution in the formula (29) is called the d’Alamber’s formula for the initial value problem for the
one-dimensional wave equation. According to the properties of the Frenet vectors that are given by Definition
4 and Definition 5, then the functions β1(s, t),β2(s, t) and β3(s, t) satisfy the following system of (PDEs):

−β
2
1,s +β

2
2,s +β

2
3,s = 1,

−β
2
1,ss +β

2
2,ss +β

2
3,ss =C2

1(s+ t),

η1(s, t)β1,sss−η2(s, t)β2,sss−η3(s, t)β3,sss =C2
1(s+ t)C2(s+ t),

(30)

where,

η1(s, t) = β2,ssβ3,s−β2,sβ3,ss,

η2(s, t) = β1,ssβ3,s−β1,sβ3,ss,

η3(s, t) = β1,sβ2,ss−β1,ssβ2,s.

(31)

Application 1. Consider the (SPC) β (s, t) = (β1(s, t),β2(s, t),β3(s, t)) with (SPNV) which moves with normal
acceleration F = k(s, t) and satisfies the one-dimensional wave equation (27) with the following initial condi-
tions:

β (s,0) = (β1(s,0),β2(s,0),β3(s,0)),

βt(s,0) = (β1,t(s,0),β2,t(s,0),β3,t(s,0)).
(32)

where

β1(s,0) = φ1(s) = s , β1,t(s,0) = ψ1(s) = 0,

β2(s,0) = φ2(s) = ssin(log(s)) , β2,t(s,0) = ψ2(s) = sin(log(s))+ cos(log(s)),

β3(s,0) = φ3(s) = scos(log(s)) , β3,t(s,0) = ψ3(s) =−sin(log(s))+ cos(log(s)).

(33)

Substitute from (33) into (29), then we get the general solution:

β (s, t) =
(
s,(s+ t)sin(log(s+ t)),(s+ t)cos(log(s+ t))). (34)

The flows of the (SPC) (34) are illustrated by Figure 1.
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(a) (b)

Fig. 1: The flows of the (SPC) β (s, t) for s ∈ [0.01,2] and t ∈ [0,2]. The flows for t = 0.5,1,1.8 are depicted
by orange, black, and blue curves, respectively.

The flows of the Frenet frame are:

T (s, t) = (1,cos(log(s+ t))+ sin(log(s+ t)),cos(log(s+ t))− sin(log(s+ t))),

N(s, t) =
1√
2
(0,cos(log(s+ t))− sin(log(s+ t)),−cos(log(s+ t))− sin(log(s+ t))),

B(s, t) =
1√
2
(2,cos(log(s+ t))+ sin(log(s+ t)),cos(log(s+ t))− sin(log(s+ t))).

(35)

The Frenet frame vectors (35) coincide with the properties in Definition 4 and Definition 5. By substitute from
(34) into (30) and (31), then we obtain the curvature and torsion:

k(s, t) =C1(s+ t) =

√
2

s+ t
,

τ(s, t) =C2(s+ t) =
1

s+ t
.

(36)

The curvature and torsion of the (SPC) and their flows are illustrated by (Figure 2), (Figure.3), and (Figure.4).

(a) (b)

Fig. 2: The flows of curvature and torsion of the (SPC) for s ∈ [0.01,2] at t = 0.5,1,1.8, are depicted by
orange, black, and blue curves, respectively.
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(a) (b)

Fig. 3: The flows of the curvature for the (SPC) k(s, t) =
√

2
s+t for s ∈ [0.01,2] and t ∈ [0,2]. The flows for

t = 0.5,1,1.8 are depicted by the orange, black, and blue curves, respectively.

(a) (b)

Fig. 4: The flows of the torsion for the (SPC) τ(s, t) = 1
s+t for s ∈ [0.01,2] and t ∈ [0,2]. The flows at

t = 0.5,1,1.8 are depicted by the orange, black, and blue curves, respectively.

Graphic interpretations on application 1

• Figure 1(b) shows the three-dimensional graph (3-D) graph of the flows of the (SPC) (34) for s ∈ [0.01,2]
and t = [0,2]. The orange, black, and blue curves in Figure 1(a), and Figure 1(b), represents the flows at
t = 0.5,1,1.8, respectively.

• Figure 2(a) and Figure 2(b) depict the (2-D) graphs of the flows of curvature k(s) and torsion τ(s) for
s ∈ [0.01,2] at t = 0.5,1,1.8. The color curves (orange, black, and blue curves ) represent the flows at
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t = 0.5,1,1.8, respectively.

• In Figure 3(a) and Figure 3(b), the color curves (orange, black, and blue curves) depict the flows of the
curvature k(s, t) =

√
2

s+t at t = 0.5,1,1.8, respectively. Figure 3(b) depicts the (3-D) graph of the flows of
the curvature for s ∈ [0.01,2] and t = [0,2].

• In Figure 4(a) and Figure 4(b), the color curves (orange, black, and blue curves ) depict the flows of the
torsion τ(s, t) = 1

(s+t) at t = 0.5,1,1.8, respectively. Figure 4(b) depicts the (3-D) graph of the flows of
the torsion for s ∈ [0.01,2] and t ∈ [0,2].

Application 2. Consider the (SPC) β (s, t) = (β1(s, t),β2(s, t),β3(s, t)) with (SPNV) which moves with normal
acceleration F = k(s, t) and satisfies the one-dimensional wave equation (27) with the following initial condi-
tions:

β (s,0) = (β1(s,0),β2(s,0),β3(s,0)),

βt(s,0) = (β1,t(s,0),β2,t(s,0),β3,t(s,0)),

β1(s,0) = φ1(s) = s , β1,t(s,0) = ψ1(s) = 0,

β2(s,0) = φ2(s) =
√

2logcoshs , β2,t(s,0) = ψ2(s) =
√

2tanhs,

β3(s,0) = φ3(s) = 2
√

2arctan(tanh(
s
2
)) , β3,t(s,0) = ψ3(s) =

√
2sechs.

(37)

Substitute from (37) into (29), then we obtain the general solution:

β (s, t) =
(
s,
√

2logcosh(s+ t),2
√

2arctan(tanh(
s+ t

2
))), (38)

The flows of the (SPC) (38) are illustrated by Figure 5.

(a) (b)

Fig. 5: The flows of the (SPC) β (s, t) for s ∈ [0,5] and t ∈ [0,2]. The flows for t = 0.5,1,1.8, are depicted by
the orange, black, and blue curves, respectively. respectively.

The flows of the Frenet frame are:

T (s, t) = (1,
√

2tanh(s+ t),
√

2sech(s+ t)),

N(s, t) = (0,sech(s+ t),− tanh(s+ t)),

B(s, t) = (
√

2, tanh(s+ t),sech(s+ t)).

(39)
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We can verify that the Frenet frame vectors (39) satisfy the properties in Definition 4 and Definition 5. Substitute
from (38) into (30) and (31), then we get the curvature and torsion:

k(s, t) =C1(s+ t) =
√

2sech(s+ t),

τ(s, t) =C2(s+ t) = sech(s+ t).
(40)

We plot the curvature and torsion of the (SPC) and their flows as illustrated by (Figure 6), (Figure 7), and
(Figure 8).

(a) (b)

Fig. 6: The flows of curvature and torsion of the for s ∈ [-5,5] at t = 0.5,1,1.8, are depicted by the orange,
black, and blue curves, respectively.

(a) (b)

Fig. 7: The flows of curvature for the (SPC) k(s, t) =
√

2sech(s+ t) for s ∈ [-5,5] and t ∈ [0,2]. The flows at
t = 0.5,1,1.8, are depicted by the orange, black, and blue curves, respectively.
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(a) (b)

Fig. 8: The flows of the torsion for the (SPC) τ(s, t) = sech(s+ t) for s ∈ [-5,5] and t ∈ [0,2]. The flows at
t = 0.5,1,1.8, are depicted by the orange, black, and blue curves, respectively.

Graphic interpretations on application 2

• Figure 5(b) represents the (3-D) graph of the flows of the (SPC) (34) for s ∈ [0,5] and t ∈ [0,2]. The
orange, black, and blue curves in Figure 5(a), and Figure 5(b), represents the flows at t = 0.5,1,1.8,
respectively.

• Figure 6(a) and Figure 6(b) illustrate the (2-D) graphs of the flows of curvature k(s) and torsion τ(s)
for s ∈ [-5,5] at t = 0.5,1,1.8. The orange, black, and blue curves represent the flows at t = 0.5,1,1.8,
respectively.

• In Figure 7(a) and 7(b), the color curves (orange, black, and blue curves ) depict the flows of the curvature
k(s, t) =

√
2

s+t at t = 0.5,1,1.8, respectively. Figure 7(b) represents the (3-D) graph of the flows of the
curvature for s ∈ [-5,5] and t ∈ [0,2].

• In Figure 8(a) and 8(b), the color curves (orange, black, and blue curves ) depict the (3-D) graph of the
flows of the torsion τ(s, t) = sech(s+ t) at t = 0.5,1,1.8, respectively. Figure 8(b) illustrates the (3-D)
graph of the flows of the torsion for s ∈ [-5,5] and t ∈ [0,2].

• It is obvious that in Figure 6, Figure 7, Figure 8, the flows of curvature and torsion have a shift to the left
by increasing the time values.

Application 3. Consider the (SPC) β (s, t) = (β1(s, t),β2(s, t),β3(s, t)) with (SPNV) which moves with normal
acceleration F = k(s, t) and satisfies the one-dimensional wave equation (27) with the following initial condi-
tions:

β (s,0) = (β1(s,0),β2(s,0),β3(s,0)),

βt(s,0) = (β1,t(s,0),β2,t(s,0),β3,t(s,0)),

β1(s,0) = φ1(s) = s , β1,t(s,0) = ψ1(s) = 0,

β2(s,0) = φ2(s) =
2
3

s
3
2 , β2,t(s,0) = ψ2(s) =

√
s,

β3(s,0) = φ3(s) =
−2
3
(2− s)

3
2 , β3,t(s,0) = ψ3(s) =

√
2− s.

(41)
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Substitute from (41) into (29), then we obtain the general solution:

β (s, t) =
(
s,

2
3
(s+ t)

3
2 ,−2

3
(2− s− t)

3
2 ). (42)

The flows of the (SPC) (42) are illustrated by Figure 9.

(a) (b)

Fig. 9: Flows of the (SPC) β (s, t) for s∈ [0.1,0.9] and t ∈ [0.5,1]. The orange, black, and blue curves depict
the flows at t = 0.5,0.7,1, respectively.

The flows of the Frenet frame are:

T (s, t) = (1,
√

s+ t,
√

2− s− t),

N(s, t) = (0,
√

2− s− t√
2

,−
√

s+ t√
2

),

B(s, t) = (
√

2,
√

s+ t√
2

,

√
2− s− t√

2
).

(43)

The Frenet frame vectors (43) satisfy the properties in Definition 4 and Definition 5. Substitute from (42) into
(30) and (31), then we get the curvature and torsion:

k(s, t) =C1(s+ t) =
1√

2(s+ t)(2− s− t)
,

τ(s, t) =C2(s+ t) =
1

2
√

(s+ t)(2− s− t)
.

(44)

We plot the curvature and torsion of the (SPC) and their flows as illustrated by (Figure 10), (Figure 11), and
(Figure 12).
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(a) (b)

Fig. 10: The orange, black, and blue curves depict the flows of the curvature and torsion of the (SPC) for
s ∈ [0.1,0.9] at t = 0.5,0.7,1, respectively.

(a) (b)

Fig. 11: The flows of curvature for the (SPC) k(s, t) = 1√
2(s+t)(2−s−t)

for s ∈ [0.1,0.9] and t ∈ [0.5,1]. The

flows at t = 0.5,0.7,1, are depicted by the orange, black, and blue curves, respectively.
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(a) (b)

Fig. 12: The flows of torsion for the (SPC) τ(s, t) = 1
2
√

(s+t)(2−s−t)
for s ∈ [0.1,0.9] and t ∈ [0.5,1]. The

orange, black, and blue curves represent the flows at t = 0.5,0.7,1, respectively.

Graphic interpretations on application 3

• Figure 9(b) represents the (3-D) graph of the flows of the (SPC) (42) for s ∈ [0.1,0.9] and t ∈ [0.5,1].
The orange, black, and blue curves in Figure 9(a), and Figure 9(b), represents the flows at t = 0.5,0.7,1,
respectively.

• Figure 10(a) and Figure 10(b) represent the (2-D) graphs of the flows of curvature k(s) and torsion τ(s) for
s ∈ [0.1,0.9] and t = 0.5,0.7,1. The orange, black, and blue curves represent the flows at t = 0.5,0.7,1.,
respectively.

• In Figure 11(a) and Figure 11(b), the color curves (orange, black, and blue curves ) represent the flows
of the curvature k(s, t) = 1√

2(s+t)(2−s−t)
at t = 0.5,0.7,1, respectively. Figure 11(b) represents the (3-D)

graph of the flows of the curvature for s ∈ [-5,5] and t ∈ [0,2].

• In Figure 12(a) and 12(b), the color curves (orange, black, and blue curves ) represent the flows of the
torsion τ(s, t) = 1

2
√

(s+t)(2−s−t)
at t = 0.5,0.7,1, respectively. Figure 12(b) represents the (3-D) graph of

the flows of the torsion for s ∈ [0.1,0.9] and t ∈ [0.5,1].

Application 4. Consider the (SPC) β (s, t) = (β1(s, t),β2(s, t),β3(s, t)) with (SPNV) which moves with normal
acceleration F = k(s, t) and satisfies the one-dimensional wave equation (27) with the following initial condi-
tions:

β (s,0) = (β1(s,0),β2(s,0),β3(s,0)),

βt(s,0) = (β1,t(s,0),β2,t(s,0),β3,t(s,0)),

β1(s,0) = φ1(s) = log(secs+ tans) , β1,t(s,0) = ψ1(s) = secs,

β2(s,0) = φ2(s) =
√

2s , β2,t(s,0) = ψ2(s) = 0,

β3(s,0) = φ3(s) = log(secs) , β3,t(s,0) = ψ3(s) = tans.

(45)

Substitute from (45) into (29), then we obtain the general solution:

β (s, t) =
(
log(sec(s+ t)+ tan(s+ t)),

√
2s, log(sec(s+ t)). (46)
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The flows of the (SPC) (46) are illustrated by Figure 13.

(a) (b)

Fig. 13: The flows of the (SPC) β (s, t) for s ∈[- 0.7,-0.21] and t ∈ [0,0.5]. The orange, black, and blue
curves represent the flows at t = 0,0.2,0.5, respectively.

The flows of the Frenet frame are:

T (s, t) = (sec(s+ t),
√

2, tan(s+ t)),

N(s, t) = (tan(s+ t),0,sec(s+ t)),

B(s, t) = (−
√

2sec(s+ t),−1,−
√

2tan(s+ t)).

(47)

The Frenet frame vectors (47) satisfy the properties in Definition 4 and Definition 5. Substitute from (46) into
(30) and (31), then we get the curvature and torsion:

k(s, t) =C1(s+ t) = sec(s+ t),

τ(s, t) =C2(s+ t) =−
√

2sec(s+ t).
(48)

We plot the flows of the curvature and torsion of the (SPC) as illustrated by (Figure 14), (Figure 15), and (Figure
16).

(a) (b)

Fig. 14: The orange, black, and blue curves represent the flows of curvature and torsion of the (SPC) for
s ∈[- 0.7,-0.21] at t = 0,0.2,0.5, respectively.
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(a) (b)

Fig. 15: The flows of curvature for the (SPC) k(s, t) = sec(s+ t) for s ∈[- 0.7,-0.21] and t ∈ [0,0.5]. The
orange, black, and blue curves represent the flows at t = 0,0.2,0.5, respectively.

(a) (b)

Fig. 16: The flows of torsion for the (SPC) τ(s, t) =−
√

2sec(s+ t). for s ∈[- 0.7,-0.21] and t ∈ [0,0.5]. The
orange, black, and blue curves represent the flows at t = 0,0.2,0.5, respectively.

Graphic interpretations on application 4

• Figure 13(b) represents the (3-D) graph of the flows of the (SPC) (46) for s∈ [−0.7,−0.21] and t ∈ [0,0.5]
The orange, black, and blue curves in Figure 13(a), and Figure 13(b), represents the flows at t = 0,0.2,0.5,
respectively.

• Figure 14(a) and Figure 14(b) represent the (2-D) graphs of the flows of curvature k(s) and torsion τ(s)
for s ∈ [−0.7,−0.21] and t = 0,0.2,0.5 with orange, black, and blue curves, respectively.
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• In Figure 15(a) and Figure 15(b), the color curves (orange, black, and blue curves) represent the flows
of the curvature k(s, t) = sec(s+ t) for s ∈ [−0.7,−0.21], and t = 0,0.2,0.5, respectively. Figure 15(b)
represents the (3-D) graph of the flows of the curvature for s ∈ [−0.7,−0.21] and t ∈ [0,0.5].

• In Figure 16(a) and 16(a), the color curves (orange, black, and blue curves) represent the flows of the
torsion τ(s, t) = −

√
2sec(s+ t) for s ∈ [−0.7,−0.21] , and t = 0,0.2,0.5, respectively. Figure 16(b)

represents the (3-D) graph of the flows of the torsion for s ∈ [−0.7,−0.21] and t ∈ [0,0.5].

5 Conclusions and discussion

In this work, the flows of inextensible (SPC) and (TIC) specified by the acceleration functions are investi-
gated according to the equation of motion ∂ 2β

∂ t2 = E T +F N +G B. This work is restricted to the study of the
flows of inextensible (SPC) with the (SPNV) that is described by the normal acceleration F = k. We obtained
some new results, listed as follows:

1. The relationship between the motions according to velocity fields and acceleration fields is obtained
(Lemma 4).

2. The second (TEEs) of the Frenet frame are obtained (Theorem 5).

3. The flows of (SPC) with (SPNV) described by a normal acceleration that equals the curvature of the curve
are investigated by (21) and the position vector of the (SPC) satisfied the one-dimensional wave equation
(24).

4. We present four novel applications to discuss the flows of (SPC) with (SPNV) and we graph the flows of
the (SPC) and the flows of its curvatures.

5. In application 1, the flows of an inextensible (SPC) is given by the parametrization β (s, t) =
(
s,(s +

t)sin(log(s+ t)),(s+ t)cos(log(s+ t))), with Frenet frame (35). We obtained the flows of curvatures
k(s, t) =

√
2

s+t , and τ(s, t) = 1
(s+t) .

6. In application 2, the flows of the inextensible (SPC) are given by the parametrization β (s, t)=
(
s,
√

2logcosh(s+
t),2
√

2arctan(tanh( s+t
2 ))) with Frenet frame (39). We obtained the flows of curvatures are k(s, t) =√

2sech(s+ t), and τ(s, t) = sech(s+ t).

7. In application 3, the flows of the inextensible (SPC) are given by the parametrization β (s, t) =
(
s, 2

3(s+
t)

3
2 ,−2

3(2−s−t)
3
2 ), with Frenet frame (43). The flows of curvatures are obtained by k(s, t)= 1√

2(s+t)(2−s−t)
,

and τ(s, t) = 1
2
√

(s+t)(2−s−t)
.

8. In application 4, the flows of the inextensible (SPC) are given by the parametrization β (s, t)=
(
log(sec(s+

t) + tan(s+ t)),
√

2s, log(sec(s+ t)), with Frenet frame (47). The flows of curvatures are obtained by
k(s, t) = sec(s+ t), and τ(s, t) =−

√
2sec(s+ t).
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Abbreviations

The abbreviations used in this manuscript are listed as follows:
IFC Inextensible Flows of Curve
IFSPC Inextensible Flows of Space-like Curve
2-D two-dimensional
3-D three-dimensional
NSC(s) necessary and sufficient conditions
ODE Ordinary Differential Equation(s)
PDE(s) Partial Differential Equation(s)
SPC Space-like Curve
SPNV Space-like Principal Normal Vector
TIC Time-like Curve
TEEs Time Evolution Equations
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