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Abstract 

In the present research paper, we investigate the motion of surfaces in ℝ3
 according to their curvatures. We study the

motion of the torus of revolution via the normal velocity. We consider two cases: when the normal velocity is a function 

of both the time and the coordinates of the torus, and when it is a function of time only. We also study how the torus 

moves under different types of curvature flows, such as inverse mean curvature flow, inverse Gaussian curvature flow, 

and harmonic mean curvature flow. Moreover, we present some new applications of these flows. 
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1 Introduction

The curvature flow is a significant type of geometric flow of surfaces. The studying of the normal motion
of surfaces in R3 is governed by a law that the normal velocity is characterized by the mean curvature (MC)
and its variants such as inverse mean curvature (IMC). The normal motion with mean curvature flow (MCF) has
extensive applications in geometry, physics, and analysis. The (MCF) is a well-known example of hypersurface
geometric flow in a Riemannian manifold. If a point on a surface moves according to a normal velocity equal
to (MC), then a family of surfaces will evolve by (MC) at different time values. Curvature flow is a classical
mathematical study. In addition to resulting in fascinating systems of nonlinear partial differential equations,
they enable the accurate mathematical modeling of physical phenomena such as material interface propagation
and crystal growth. The topic of the motion of curves and surfaces is a very attractive and essential study in
differential geometry, and it is investigated by many researchers:

Leung [1] studied the (MC) evolution of hypersurfaces in Euclidean spaces, Lagrangian (MCF), and the
(MCF) of conormal bundles. Yoon et al. [2], obtained the time evolution equations (TEEs) for curvatures of a
space-like curve in Minkowski space R2,1. The evolution equations were derived for a time-like ruled surface
generated by a time-like normal vector and a space-like binormal vector of a space-like curve. Furthermore,
the necessary conditions for the evolution of inelastic surfaces were derived. Several applications of evolution
equations of curvatures for space-like curves were provided.

Kaymanli et al. [3], investigated the ruled surfaces with normal and binormal vectors along a time-like space
curve in R2,1 by employing the q-frame. The directrices of quasi-normal and quasi-binormally ruled surfaces
were used to study their directional evolution. Abd Ellah [4], studied the motion of translation surfaces and their
generated curves in R3 and derived their evolution equations.

Nakayama et al. [5] studied the kinematics of surfaces in R3 by using differential geometry, and presented
some applications of surfaces that are parameterized by the lines of curvature. Smoczyk [6] investigated the
regularity of 2-surfaces which are evolving by their (IMC) in an asymptotically 3−flat Riemannian manifold.
Eren et al. [7] employed the modified orthogonal frame to investigate the evolution of space curves and some
special ruled surfaces. Yuksel et al. [8], studied the inextensibility of tangential, normal, and binormal ruled
surfaces generated by a Salkowski curve. Some theorems related to the inextensibility of ruled surfaces in R3

were proved. A general approach for the flows of an inextensible curve lying on an oriented surface in R3 was
derived by Yildiz [9] according to the Darboux frame. Furthermore, the necessary and sufficient conditions for
the flows of inextensible curves were obtained as partial differential equations (PDEs) involving the geodesic
curvatures. Specific cases for inextensible curves were provided.

Hussien and Gaber [10], constructed new surfaces in R3 by the motion of inextensible Frenet frame curves.
Hussien et al. [11], studied the evolution of normal and binormal ruled surfaces generated by the normal and
binormal vector fields of a space curve in R3. Bas et al. [12], investigated the inextensible flows of spacelike
curves on oriented space-like surfaces in Minkowski three-space M3

1 . Gaber [13] studied the evolution of curves
with type−1 Bishop frame. The (TEEs) of the type−1 Bishop frame and the (TEEs) of Bishop curvatures were
derived.

Korpinar et al. [14], studied the inextensible flows for the tangent developable surfaces in R3 and obtained
some novel results related to the minimal tangent developable surfaces. Tapia [15] obtained the evolution equa-
tions for the Riemann tensor, the Ricci tensor, and the scalar curvature specified by (MCF). Asil et al. [16],
investigated inextensible flows of novel type surfaces generated by the first principle direction curve in R3. In
addition, the (GC) and (MC) of these surfaces were obtained. Yuzbasi, et al. [17], investigated the flows of an
inextensible spacelike curve on a lightlike surface in R2,1. A necessary and sufficient condition for the flows
to be inextensible was derived as a (PDE) in terms of the curvatures of the curve. Furthermore, the lightlike
ruled surfaces in R2,1 were classified. The inextensible evolution of a lightlike curve on the lightlike tangent
developable surface was characterized.

The present paper focuses on the study of the normal motion of surfaces by taking the torus of revolution

Samah Gaber, Norah Alfadhli and Elsayed I. Mahmoud. Applied Mathematics and Nonlinear Sciences, 9(1) 
(2024) 1-18

2

https://www.sciendo.com


as an application. The evolution of the torus is investigated, and the time evolutions of the first and second
fundamental quantities are derived. We give some special cases for normal motion with velocity as a function
of the coordinates of the surface and the time parameter. In addition, we study the case for normal motion
with velocity as a function of time only. Furthermore, we investigate the classification of the normal motion of
the torus by its curvature flows and give some novel applications for the normal motion via the inverse mean
curvature flow, the inverse Gaussian curvature flow, and the harmonic mean curvature flow.

This work is outlined as follows: Section 2 presents geometric preliminaries about surfaces and their motion
in R3. In Section 3, we obtain the results and discussion on studying the evolution of surfaces in R3 and provide
the torus of revolution as an application of the normal motion of surfaces. In Section 4 and Section 5, we give
some new applications on the normal motion of the torus by its curvature flows. Finally, we present conclusions.

2 Geometric Preliminaries

In this section, we present a short review for some geometric concepts of surfaces and their motions in
R3 [5, 18, 19].

2.1 The Geometry of surfaces in R3

Let U be an open subset of R2, and define the function

X : U ⊂ R2→ R3

Consider a surface Σ : X(u1,u2) in R3 evolves with local coordinates (u1,u2) at a point q on the surface Σ. Let t
be the time parameter and X(u1,u2, t) be the position vector at a point q on Σ.

Definition 1. Let Xµ and Xν be the tangent vectors at a point q on the surface Σ. The metric gµν on the surface
Σ is defined by:

gµν = Xµ ·Xν , µ,ν = 1,2, (1)

where Xµ are the tangent vectors and defined by:

Xµ =
∂X
∂uµ

, µ = 1,2. (2)

Let gµν be the inverse metric tensors of gµν , where

gµν ·gµk = δ
k
ν =

{
1 if k = ν ,
0 if k 6= ν .

(3)

Definition 2. The unit normal vector N at regular points is defined by the linear independent tangent vectors X1
and X2 as follows:

N =
X1×X2

|X1×X2|
. (4)

Definition 3. The second fundamental quantities (curvature tensors) Lµν are defined by:

Lµν = 〈Xµν ,N〉, µ,ν = 1,2. (5)

Definition 4. The Gaussian curvature (GC) and the mean curvature (MC) of the surface Σ are defined, respec-
tively by:

G = κ1 ·κ2 =
L11L22− (L12)

2

g11g22− (g12)2 , (6)

H =
κ1 +κ2

2
=

L11g22−2L12g12 +L22g11

2(g11g22− (g12)2)
, (7)

where κ1 and κ2 are the principal curvatures at a point q on the surface Σ.
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Definition 5. The covariant derivatives ∇ν of the covariant vector Xµ and contravariant vector X µ are defined,
respectively by:

∇νXµ = Xνµ −XkΓ
k
νµ , (8)

∇νX µ = X µ

ν +Xk
Γ

µ

νk, (9)

where Γk
νµ are Christoffel’s symbols of the second kind and they are defined by:

Γ
k
νµ =

1
2

gkr
(

∂gµr

∂uν
+

∂gνr

∂uµ
−

∂gµν

∂ur

)
. (10)

Definition 6. The Gauss Weingarten equations are defined by the form:

Xµν = Γ
k
νµXk +LµνN,

Nν =−gµkLµνXk,
(11)

where the vectors Xµν and Nν are linear combinations of the set of basis vectors Xµ and N. From (8) and (11),
then we have,

Lµν = 〈∇νXµ ,N〉.

2.2 The dynamics of surfaces in R3

Consider the surface Σ with position vector X(u1(t),u2(t), t) moves in R3, where the local coordinates
(u1,u2) of the surface depend on the time parameter t. The motion of the surface Σ is prescribed by:

dX
dt

= σ
µXµ +ψN, µ = 1,2. (12)

where, σ µ , µ = 1,2 are the tangential velocities and ψ is the normal velocity.

Theorem 1. [5] The (TEEs) for the tangent vectors Xν and normal vector N at a point q on the surface Σ, can
be written in a matrix form as follows,

∂

∂ t

Xν

N

=

 ∇ν

(
σ k− u̇k

)
−Lk

νψ
∂ψ

∂uν +
(
σ µ − u̇µ

)
Lµν

−gkν

(
∂ψ

∂uν +
(
σ k− u̇k

)
Lkν

)
0


Xk

N

 (13)

Proof. Since, the local coordinates (u1,u2) of the surface depend on the time t, then the total derivative of
X(u1(t),u2(t), t), with respect to the time parameter t is given by:

dX
dt

= u̇µXµ +
∂X
∂ t

. (.) =
d
dt

(14)

Then, from (12) and (14), we have
∂X
∂ t

=
(
σ

µ − u̇µ
)
Xµ +ψN. (15)

Using the compatibility condition ( ∂Xν

∂ t = ∂

∂uν (
∂X
∂ t ) ) and using (11) and (15), then we get the following the

(TEEs):

∂Xν

∂ t
=

∂

∂uν

((
σ

µ − u̇µ
)
Xµ +ψN

)
=
(

∂

∂uν

(
σ

µ − u̇µ
))

Xµ +
(
σ

µ − u̇µ
)(

Γ
k
νµXk +LµνN

)
+

∂ψ

∂uν
N +ψ

(
−gµkLµνXk

)
=
(

∂

∂uν

(
σ

k− u̇k)+Γ
k
νµ

(
σ

µ − u̇µ
)
−ψgkµLµν

)
Xk +

(
∂ψ

∂uν
+
(
σ

µ − u̇µ
)
Lµν

)
N.

(16)
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By using (9), then we get the (TEEs) for the tangent vectors at a point q on the surface Σ:

∂Xν

∂ t
=
(

∇ν

(
σ

k− u̇k)−Lk
νψ

)
Xk +

(
∂ψ

∂uν
+
(
σ

µ − u̇µ
)
Lµν

)
N. (17)

Since 〈Xν ,N〉= 0, by taking the t derivative of this equation, then we have the following compatibility condition:〈
Xν ,

∂N
∂ t

〉
=−

〈
∂Xν

∂ t
,N
〉
. (18)

Substituting from (17) into (18), then we get the (TEE) for the normal vector field N as follows:

∂N
∂ t

=−gµν

(
∂ψ

∂uν
+
(
σ

µ − u̇µ
)
Lµν

)
Xµ . (19)

Theorem 2. The (TEEs) for the metric tensors gµν are given by:

∂gµν

∂ t
= ∇µ

(
σν − u̇ν

)
+∇ν

(
σµ − u̇µ

)
−2ψLµν . (20)

Proof. Since
∂gµν

∂ t
=

∂

∂ t

〈
Xµ ,Xν

〉
.

Using (17), then we have:

∂gµν

∂ t
=
〈

∂Xµ

∂ t
,Xν

〉
+
〈

Xµ ,
∂Xν

∂ t

〉
=
〈(

∇µ

(
σ

k− u̇k)−Lk
µψ
)
Xk,Xν

〉
+
〈

Xµ ,
(
∇ν

(
σ

k− u̇k)−Lk
νψ
)
Xk

〉
=
(
∇µ

(
σ

k− u̇k)−Lk
µψ
)
gkν +

(
∇ν

(
σ

k− u̇k)−Lk
νψ
)
gkµ .

(21)

Hence, we get

∂gµν

∂ t
= ∇µ

(
σν − u̇ν

)
+∇ν

(
σµ − u̇µ

)
−2ψLµν

(22)

Theorem 3. The (TEEs) for the curvature tensors Lµν are given by:

∂Lµν

∂ t
= ∇µ∇νψ +∇µ

((
σ

µ − u̇µ
)
Lµν

)
+Lµk∇ν

(
σ

k− u̇k)−ψLk
νLµk. (23)

Proof. Since

Lµν = 〈∇µXν ,N〉. (24)

By taking the t−derivative of (24) and using (8), (11), and (13), then we get the (TEEs) for curvatures as follows:

∂Lµν

∂ t
=
〈

∇µ

∂Xν

∂ t
,N
〉
+
〈

∇µXν ,
∂N
∂ t

〉
=
〈

∇µ

∂Xν

∂ t
,N
〉

=
〈

∇µ

((
∇ν

(
σ

k− u̇k)−Lk
νψ
)
Xk +

( ∂ψ

∂uν
+
(
σ

µ − u̇µ
)
Lµν

)
N
)
,N
〉

=
(
∇ν

(
σ

k− u̇k)−Lk
νψ
)
〈∇µXk,N〉+∇ν

( ∂ψ

∂uν
+
(
σ

µ − u̇µ
)
Lµν

)
〈N,N〉.

(25)

Then

∂Lµν

∂ t
= ∇µ∇νψ +∇µ

((
σ

µ − u̇µ
)
Lµν

)
+Lµk∇ν

(
σ

k− u̇k)−ψLk
νLµk. (26)
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3 Results and Discussion

Since the tangential velocities σ µ , µ = 1,2 doesn’t affect the shape of the surface, so assume that σ µ = 0,
then we can study the normal motion of the surface. Also, assume that uµ and t are independent, so, u̇µ = 0.
Hence, the evolution equation of the surface is described by:

∂X
∂ t

= ψN. (27)

Lemma 4. Assume that the surface moves according to the (TEE) given by (27). Then the (TEEs) of the tangent
vectors Xν and normal vector N at a point q on the surface Σ can be written in a matrix form as follows:

∂

∂ t

Xν

N

=

 −Lk
νψ

∂ψ

∂uν

−gkν

(
∂ψ

∂uν

)
0


Xk

N

 (28)

Lemma 5. Consider the normal motion of the surface that is described by (27). Then the (TEEs) for the metric
tensors gµν and curvature tensors Lµν are given by:

∂gµν

∂ t
=−2ψLµν ,

∂Lµν

∂ t
= ∇µ∇νψ−ψLk

νLµk.

(29)

3.1 Normal motion for the torus of revolution

Definition 7. [18, 19] A torus of revolution is a surface obtained by a circle C (the profile curve). Assume that
C is the circle in the yz− plane with radius b > 0 and center (0,a,0), a > b. The torus of revolution is formed
by rotating this circle around the z-axis (Figure 1). For the motion of the torus of revolution, assume the radii
a and b depend on the time parameter t. Let u1 = u and u2 = v are the local coordinates of the torus, then the
parametrization is defined by:

X(u,v, t) =
((

a(t)+b(t)cosu
)

cosv,
(
a(t)+b(t)cosu

)
sinv,b(t)sinu

)
, 0≤ u,v≤ 2π (30)

(a) (b)

Fig. 1 The torus of revolution with a = 2 and b = 1 for 0≤ u,v≤ 2π and at t = 0.
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Lemma 6. The tangent and normal vectors are:

Xu =
(
−b(t)sinucosv,−b(t)sinusinv,b(t)cosu

)
,

Xv =
(
−
(
a(t)+b(t)cosu

)
sinv,

(
a(t)+b(t)cosu

)
cosv,0

)
,

N =
(
− cosucosv,−cosusinv,−sinu

)
.

(31)

Lemma 7. The metric tensors gµν and the curvature tensors Lµν are given by:

gµν =

b(t)2 0

0
(
a(t)+b(t) cosu

)2

 , Lµν =

b(t) 0

0
(
a(t)+b(t)cosu

)
cosu

 (32)

Lemma 8. The (MC) and (GC) of the torus are:

G =
cosu

b(t)
(
a(t)+b(t)cosu

) , H =
a(t)+2b(t)cosu

2b(t)
(
a(t)+b(t)cosu

) . (33)

Lemma 9. The (TEEs) for the metric tensors gµν and the curvature tensors Lµν for the torus can be obtained
from (29) and (32) by the following ordinary differential equations:

db(t)
dt

=−ψ(u,v, t),

da(t)
dt

= 0,
(34)

and the normal velocity ψ(u,v, t) is given as the following (PDEs):

ψuu = 0 ,ψvv = 0. (35)

Lemma 10. The radii a(t) and b(t) of the circles of the torus have the following solutions:

b(t) = b0−
ˆ t

0
ψ(u,v, t)dt, b(0) = b0,

a(t) = const = a0.

(36)

The normal velocity ψ that satisfies the (PDEs) given by (35), has the following solutions:

ψ(u,v, t) = ψ(u, t) = u g1(t)+ f1(t), (37)

or,

ψ(u,v, t) = ψ(v, t) = v g2(t)+ f2(t). (38)

4 Applications on the normal motion of the torus via the normal velocity ψ(u,v, t) = ψ(u, t)

Consider the normal motion of the torus, where the normal velocity is given by (37) and assume that f1(t) =
0, then ψ(u,v, t) = ψ(u, t) = u g1(t). We give the following cases:
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4.1 Case 1: g1(t) = t

If g1(t) = t, then the normal velocity ψ(u, t) = ut. By substituting in (36), then we have:

b(t) =
1
2
(2b0− t2u),

a(t) = const = a0.
(39)

Substituting from (39) into (30), then we get the evolution of the torus of revolution on which a point q on the
surface evolves with the normal velocity given by ψ(u, t) = u t. It is illustrated in Figure 2 and Figure 3 at
different values of t. Also, the normal motion of u−curves at the same values of t is illustrated by Figure 4.

(a ) (b)
(c)

(d) (e)

Fig. 2 The evolution of the torus with ψ(u, t) = ut for a0 = 2, b0 = 1, 0≤ u,v≤ 2π at t = 0, 0.21, 0.3, 2, 3, respectively .

Fig. 3 The red, blue, purple, green, and orange colors depict the evolution of torus with ψ(u, t) = ut for a0 = 2, b0 = 1,
0≤ u≤ 2π , and 0≤ v≤ π at t = 0, 0.21, 0.3, 2, 3, respectively.
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(a) (b)

Fig. 4 The normal motion of u-curves of torus with ψ(u, t) = ut, for a0 = 2, b0 = 1, 0≤ u≤ 2π , and v = 0: (a) Curves in
red, blue, purple, green, and orange colors depict the u-curves at t = 0,0.21,0.3,2,3, respectively. (b) Close up: Curves in
red, blue, and purple colors depict the u-curves at t = 0,0.21,0.3, respectively.

4.2 Case 2: g1(t) = tan t

If g1(t) = tan t, then the normal velocity ψ(u, t) = u tan t. By substituting in (36), then we have:

b(t) = b0 +u log(cos t),

a(t) = const = a0.
(40)

Substituting from (40) into (30), then the evolution of the torus of revolution on which a point q on the surface
evolves with the normal velocity given by ψ(u, t) = u tan t is illustrated in Figure 5 and Figure 6 at different
values of t. Also, the normal motion of u−curves at the same values of t is illustrated in Figure 7.

(a ) (b)

(c)

(d) (e)

Fig. 5 The evolution of the torus with ψ(u, t) = u tan t, for a0 = 2, b0 = 1, and 0≤ u,v≤ 2π at t = 0,0.5,0.9,1.1,1.5,
respectively.
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Fig. 6 The red, blue, purple, green, and orange colors depict the evolution of torus with ψ(u, t) = u tan t, for a0 = 2,
b0 = 1, and 0≤ u≤ 2π , 0≤ v≤ π at t = 0,0.5,0.9,1.1,1.5, respectively.

(a) (b)

Fig. 7 The evolution of u-curves of the torus with ψ(u, t) = u tan t, for a0 = 2 and b0 = 1 at v = 0 and 0≤ u≤ 2π: (a)
Curves in red, blue, purple, green, and orange colors depict the u-curves at t = 0,0.5,0.9,1.1,1.5, respectively. (b) Close
up: Curves in red, blue, and purple colors depict the u-curves at t = 0,0.5,0.9, respectively.

4.3 Case 3: g1(t) = sech 2t

If g1(t) = sech 2t, then the normal velocity ψ(u, t) = u sech 2t. By substituting in (36), then we have:

b(t) = b0−u tanh t,

a(t) = const = a0.
(41)

Substituting from (41) into (30), then we obtain the evolution of the torus of revolution on which a point q on
the surface evolves with the normal velocity given by ψ(u, t) = u sech 2t. This evolution is illustrated in Figure
8 and Figure 9 at different values of t. Also, the normal motion of u−curves at the same values of t is illustrated
in Figure 10.
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(a ) (b)
(c)

(d) (e)

Fig. 8 The evolution of the torus with ψ(u, t) = u sech 2t, for a0 = 2, b0 = 1, and 0≤ u,v≤ 2π at t = 0,0.2,0.5,0.9,1.5,
respectively.

Fig. 9 The red, blue, purple, green, and orange colors depict the evolution of torus with ψ(u, t) = u sech 2t, for a0 = 2,
b0 = 1, and 0≤ u≤ 2π , 0≤ v≤ π at t = 0,0.2,0.5,0.9,1.5, respectively.
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(a) (b)

Fig. 10 The evolution of u-curves of the torus with ψ(u, t) = u sech 2t, for a0 = 2 and b0 = 1 at v = 0 and 0≤ u≤ 2π: (a)
Curves in red, blue, purple, green, and orange colors depict the u-curves at t = 0,0.2,0.5,0.9,1.5, respectively. (b) Close
up: Curves in red, blue, and purple colors depict the u-curves at t = 0,0.2,0.5, respectively.

5 Applications on the normal motion of the torus via the normal velocity ψ(u,v, t) = ψ(t)

Consider the normal motion of the torus via the normal velocity that is given by (37) and by taking u = 0
on the external circle of the torus on yz−plane, then the normal velocity is given by: ψ(u,v, t) = ψ(t) = f1(t).
Then the radii a(t) and b(t) of the circles of the torus are given by:

b(t) = b0−
ˆ t

0
ψ(t) dt, b(0) = b0.

a(t) = const = a0.

(42)

Also, for (u = 0), the (MC), and (GC) satisfy the following equations:

G = G0 =
1

b(t)
(
a0 +b(t)

) ,
H = H0 =

a0 +2b(t)
2b(t)

(
a0 +b(t)

) . (43)

5.1 The normal motion of the torus by inverse mean curvature flow

Definition 8. A family of surfaces Σt evolves by mean curvature flow (MCF) if the normal velocity ψ of which
a point q on the surface moves by (MC) is given by ψ = H(u,v, t). The normal motion is called normal motion
by mean curvature flow (NMMCF).

Definition 9. A family of surfaces Σt evolves by inverse mean curvature flow (IMCF) if the normal velocity ψ

of which a point q on the surface moves by inverse mean curvature (IMC) (ψ = 1
H , H 6= 0). The normal motion

is called normal motion by inverse mean curvature flow (NMIMCF).

Lemma 11. If the torus of revolution evolves according to (NMIMCF) with normal velocity ψ = f1(t) = 1
H0

,
H0 6= 0, then the radius b(t) has the following explicit form:

b(t) =
1
2
(
−a0 +

√
a2

0 +4(a0b0 +b2
0)e−2t

)
. (44)

The (NMIMCF) of the torus is illustrated by Figure 11, Figure 12, and the normal motion of u−curves at the
same values of t is illustrated in (Figure 13).
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Lemma 12. According to the (NMIMCF) for the torus, the radius b(t) converges to zero as the time t approaches
infinity.

lim
t→∞

b(t) = 0. (45)

So, by increasing the time values, the radius b(t) of the circle of the torus is shrinking until the shape of the tours
looks like the shape of a thin ring (Figure 11(e)).

(a ) (b)

(c)

(d) (e)

Fig. 11 The evolution of the torus by (NMIMCF) for a0 = 2, b0 = 1, 0≤ u,v≤ 2π at t = 0, 0.2, 0.6, 1, 2, respectively.

Fig. 12 The (NMIMCF) for the torus a0 = 2, b0 = 1, 0≤ u≤ 2π , and 0≤ v≤ π . at t = 0, 0.2, 0.6, 1, 2, respectively
from outside to inside.
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Fig. 13 The (NMIMCF) of u-curves of the torus for a0 = 2, b0 = 1, 0≤ u≤ 2π , and v = 0 at t = 0, 0.2, 0.6, 1, 2,
respectively from outside to inside.

5.2 The normal motion of the torus of revolution by inverse Gaussian curvature flow

Definition 10. A family of surfaces Σt evolves by Gaussian curvature flow (GCF) if the normal velocity ψ of
which a point q on the surface moves by Gaussian curvature (GC), so ψ =G(u,v, t). The normal motion is called
normal motion by the Gaussian curvature flow (NMGCF).

Definition 11. A family of surfaces Σt evolves by the inverse Gaussian curvature flow (IGCF) if the normal
velocity ψ of which a point q on the surface moves by inverse Gaussian curvature (IGC), so ψ = 1

G , G 6= 0. The
normal motion is called normal motion by inverse Gaussian curvature flow (NMIGCF).

Lemma 13. If the torus of revolution evolves according to (NMIGCF) with normal velocity ψ = f1(t) = 1
G0

,
G0 6= 0, then we obtain:

b(t) =
a0b0e−a0t

a0 +b0−b0e−a0t . (46)

The (NMIGCF) of the torus is illustrated in Figure 14, Figure 15, and the normal motion of u−curves at the
same values of t is illustrated in (Figure 16).

Lemma 14. According to the (NMIGCF) for the torus, the radius b(t) converges to zero as the time t approaches
infinity:

lim
t→∞

b(t) = 0, a0 > b0 > 0. (47)

So, by increasing the time values, the radius b(t) of the circle of the torus is shrinking until the shape of the tours
looks like a thin ring (Figure 14(e)).
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(a ) (b)
(c)

(d) (e)

Fig. 14 The evolution of the torus by (NMIGCF) for a0 = 2, b0 = 1, and 0≤ u,v≤ 2π at t = 0,0.04,0.1,0.8,1.5,
respectively.

Fig. 15 The (NMIGCF) of the torus for a0 = 2, b0 = 1, 0≤ u≤ 2π , and 0≤ v≤ π at t = 0,0.04,0.1,0.8,1.5, respectively
from outside to inside.

Fig. 16 The (NMIGCF) of u-curves of the torus for a0 = 2, b0 = 1, 0≤ u≤ 2π , and v = 0 at t = 0,0.04,0.1,0.8,1.5,
respectively from outside to inside.

5.3 The normal motion of the torus of revolution by the harmonic mean curvature flow

Definition 12. A family of surfaces Σt evolves by harmonic mean curvature flow (HMCF), if the normal velocity
ψ at a point q on the surface moves by the harmonic mean curvature (HMC) of the surface (ψ = G

H ), H 6= 0. The
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normal motion is called normal motion by the harmonic mean curvature flow (NMHMCF).

Lemma 15. If the torus of revolution evolves by (NMHMCF) with normal velocity (ψ = f1(t) = G
H0

0 , H0 6= 0), 
then we have:

ψ =
G0

H0
=

2
a0 +2b(t)

. (48)

Hence, we obtain the explicit formula of the radius b(t):

b(t) =
1
2
(
−a0 +

√
(a0 +2b0)2−8t

)
. (49)

The (NMHMCF) of the torus is illustrated in Figure 17, Figure 18, and the normal motion of u−curves at the
same values of t is illustrated in Figure 19.

(a ) (b)
(c)

(d) (e)

Fig. 17 The (NMHMCF) of the torus with normal velocity ψ = G0
H0

, for a0 = 2, b0 = 1, 0≤ u,v≤ 2π at t = 0, 0.2, 0.5,
0.8, 1.48, respectively.

Fig. 18 The (NMHMCF) of the torus with ψ = G0
H0

for a0 = 2, b0 = 1, 0≤ u≤ 2π and 0≤ v≤ π at t = 0,0.2, 0.5, 0.8,
1.48 respectively, from outside to inside .
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Fig. 19 The (NMHMCF) of u-curves of the torus for a0 = 2, b0 = 1, 0≤ u≤ 2π and v = 0 at t = 0,0.2, 0.5, 0.8, 1.48,
respectively from outside to inside.

6 Conclusion

The present work concerns the study of the normal motion of surfaces. The results of this work can be
summarized as follows:

1. The time evolution equations (TEEs) for the normal motion of surfaces are derived.

2. The evolution of the torus of revolution is studied and plotted by the normal velocity that is given as
ψ(u,v, t) = ut in Figure 2, and Figure 3. Also, as ψ(u,v, t) = u tan t in Figure 5 and Figure 6. In addition,
as ψ(u,v, t) = u sech 2t in Figure 8 and Figure 9.

3. The evolution of the torus of revolution is studied and plotted under the normal velocity that is given as a
function of the time only ψ(u,v, t) = ψ(t) as the following cases:

a The evolution of the torus of revolution by (NMIMCF) is studied, by increasing the time values, the
radius b(t) of the circle of the torus is shrinking until the shape of the tours looks like a thin ring
(Figure 11(e)). The radius b(t) converges to zero as the time t approaches infinity, and

b The evolution of the torus of revolution by (NMIGCF) is studied, by increasing the time values, the
radius b(t) of the circle of the torus is shrinking until the shape of the tours looks like a thin ring
(Figure 14(e)). The radius b(t) of the circle of the torus converges to zero as the time t approaches
infinity,

c The evolution of the torus of revolution by (NMHMCF) with normal velocity ψ = G0
H0

, H0 6= 0 is studied
and plotted by Figure 17 and Figure 18.
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Abbreviations

The following abbreviations are used in this manuscript:
GC Gaussian Curvature.
GCF Gaussian Curvature Flow.
IGC Inverse Gaussian Curvature.
IGCF Inverse Gaussian Curvature Flow.
IMC Inverse Mean Curvature.
IMCF Inverse Mean Curvature Flow.
MC Mean Curvature.
MCF Mean Curvature Flow.
NMMCF Normal motion according to Mean Curvature Flow.
NMIMCF Normal Motion according to Inverse Mean Curvature Flow.
NMGCF Normal Motion according to Gaussian Curvature Flow.
NMIGCF Normal Motion according to Inverse Gaussian Curvature Flow.
NMHMCF Normal Motion according to Harmonic Mean Curvature Flow.
PDE(s) Partial Differential Equation(s).
TEE(s) Time Evolution Equation(s).
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