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Abstract 
In this paper, a proposed algorithm based on Particle Swarm Optimization (PSO) is used 
to present a simple method for data calibration of reliability indices in electrical power 
distribution networks. The main feature of the proposed method is its comprehensiveness, 
since the whole reliability indices can be calibrated using a proper objective function. In 
order to evaluate the effectiveness of the suggested algorithm, calculations are made on the 
well-known IEEE-RBTS Bus2 test system. The results confirm the simplicity and validation 
of the proposed method, and verify that by applying the proposed method, the computation 
speed for data calibration can be reduced as well. 
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1. Introduction 
Due to growing competition over energy sales 

market, power distribution companies (PDCs) have 
been forced to deliver an acceptable power quality and 
reliability. On the other hand, optimal allocation of 
financial resources to different development of new 
projects, or Preventive Maintenance (PM) should 
guarantee both cost-benefit requirement and 
costumers’ satisfaction. Specifically, over the past 
several decades, there has been a dramatic increase in 
investigation of modern techniques for evaluating and 
meeting customer expectations. The most important of 
these techniques is Reliability Centered Maintenance 
(RCM) [1-2].  This effective technique requires an 
accurate set of equipment’s reliability parameters, 
which in turn, are not simple to find.   

RCM is a useful technique to find the relationship 
between reliability indices, weather effects, and other 
restrictions in the form of Probability Distribution 
Functions (PDFs). In other words, the system's future 
behavior can be predicted by evaluating its past and 
current state. In fact, PDFs are a kind of pattern for 
system behavior in which all the effecting factors on 
reliability indices are kept [3-4]. It is worthwhile to 

note that the designers can simulate the system to 
select the best solutions for RCM confidently, before 
any budget allocation.  

However, in the presence of incorrect or missing 
data, the aforementioned process is not only practical, 
but also it does not provide satisfactory results. For 
instance, one reason for restricted use of RCM-based 
methods is uncertainty about the accuracy of the 
results. In other words, the mismatch of the 
computational results with the reality, which is caused 
by different reasons such as human mistakes, causes 
unacceptable consequences. Hence many efforts have 
been made to assess the accuracy and to validate the 
PDC’ databases [5, 6, 7]. 

In [5], first, deviations in the equipment failure rate 
were deliberately made. Then using the partial 
derivative technique, the sensitivity of the reliability 
indices relative to the changes was calculated, and 
finally it has been attempted to adjust the historical 
indices to the true ones. This idea has been further 
developed in [7-9]. In [8] instead of system modelling 
based on just historical data, it is tried to reflect trace 
of PDFs of parameters having effect on equipment’s 
failure rates, which is obtained from inspection data 
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and reach a more accurate model for the system under 
study. As a result, a more accurate data calibration can 
be done. The concept of data calibration process 
considered in [9], has been further discussed in [10] 
using the Bootstrap technique. In [11], using a three-
step process, the proposed method in [5] has been 
developed using the concepts of confidence interval, 
and more samples have been considered and also 
probability distribution of sampling errors have been 
estimated, and finally the accuracy of the calibration 
process has been assured. 

In [12], although time varying loads, the effect of 
Distributed Generations, and different weather 
conditions have been studied, the possibility of the 
presence of wrong or far data has not been evaluated. 
In [13], based on a neural network, a computing 
method has been presented to sensitivity analysis and 
reliability of Power Distribution Network (PDN). In 
spite of high-efficiency of the presented method, the 
destructive effect of incorrect data, which endangers 
the result, is not mentioned. 

In some studies, such as [14] which are based on 
Reward and Penalty Scheme (RPS), uncertainty about 
the calculations of reliability has been considered as a 
financial risk. In other words, data calibration reduces 
uncertainty, and PDCs can obtain confirmed results to 
reach their goals.  

Most of the above-mentioned methods are time 
consuming and needs heavy calculations for large 
PDN. Also, their importance is almost in the academic 
and research point of view, instead of the practical 
simplicity and implantability.  

In this paper, instead of using some complex 
statistical methods or Monte Carlo simulation (MCS), 
a simple method based on Particle Swarm 
Optimization (PSO) algorithm is proposed for data 
calibration in refining databases of PDCs. For this 
purpose, first reliability indices and PSO concepts are 
reviewed briefly. Then, System data is also calibrated 
using the presented Algorithm.  The presented 
technique here, is very effective to obtain confirmed 
results without complicated computations, and 
consequently it provides acceptable speed for 
calculations which are confirmed for test systems. It 
must be mentioned that all indices are covered with a 
single, Comprehensive (general) Objective Function 
so the newcomers are welcome and the subsequent 
reliability based applications can gain a more accurate 
answer considering all aspects (of system reliability). 
The main contribution of the proposed method is that 
it considers the PDN as a black box and equipment 
reliability parameters (are taken as inputs) are 
calibrated to minimize error between the calculated 
and actual system reliability indices (are taken as 
outputs). 

 
2.  Reliability criteria of PDNs  

In order to evaluate the quality of service in power 
distribution systems, two main categories of indices 
are conventionally used. The first one consists of load 

center indices, like equipment failure rate (λ), repair 
rate (r), and unavailability (U). These indices are 
calculated for each load center separately. The second 
category involves the system reliability indices, such 
as System Average Interruption Frequency Index 
(SAIFI), System Average Interruption Duration Index 
(SAIDI), and Customer Average Interruption Duration 
Index (CAIDI) [1, 6 and 15]. 

In addition, indices like Loss of Load Cost 
(LOLC), Maximum Continuous Interruption Duration 
(MCID), and Expected Interruption Cost (ECOST) are 
also specific in some countries, such as Brazil, and are 
not as general as previously mentioned ones [16-18]. 

Since the two main categories of the above-
mentioned indices are all average values, using 
traditional algorithms of reliability such as the Markov 
chain, along with the minimal cut-set technique can be 
evaluated. But for accurate evaluation of indices such 
as ECOST, MCID, LOLC even average values are 
time consuming to be computed using analytical 
method [15]. The most accurate method for evaluating 
the probability functions of all reliability indices is 
Monte Carlo simulation algorithm [11]. 

 
3.  Particle Swarm Optimization 

Conventionally, in a Network Control Center 
(NCC), the system reliability indices can and must be 
evaluated using actual data of the network outages. 
Then, real and accurate values of the system reliability 
indices (such as SAIFI, SAIDI, etc.) are known [19]. 
These reliability indices can also be calculated as a 
functions of the reliability parameters of the network 
equipment (i.e. λ and r), theoretically [2]. There is a 
difference between the values of these two sets of 
indices. Although the former is exactly correct and 
actual, and the later has some estimation error, it has to 
be noted that usually the later has more importance in 
the studies, because it can give a sense about the future 
behavior of the system, but the former only can show 
what happened in the past. Approximated reliability 
parameters of the network equipment are determined 
by statistical methods and their accuracy is definitely 
concerned to the data gathered in the PDC databases.  
Always a few uncertainty and negligence are 
expectable in the data gathering and entry in the 
naturally chaotic power distribution system.  

 The PSO algorithm can be a good solution for 
calibrating inaccurate data in the power distribution 
network's outage database. The main idea of this paper 
is to calibrate the estimated reliability parameters of 
the network equipment, by calculating the system 
reliability indices, and minimizing their error compare 
to the actual indices evaluated in the NCC. 

In the next subsections, first of all, a brief review is 
given for the basic concepts of PSO, then, selected 
system reliability indices are introduced. After that, 
proposed flowchart of simulation is explained and 
finally a case study is presented to show the 
effectiveness of the proposed method.  
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4. Data Calibration 
4.1  Basic concept of PSO 

In PSO, using an iterative process, the location and 
velocity of the particles are updated using (1) and (2) 
shown below, to achieve the optimal value of the 
objective function (Fig. 1).  

(1) X (t+1) = X (t) + V (t+1)ij ij ij
 

(2) 1 1 2 2V (t+1) = wV (t) + r c ( ( ) c (G (t)( ))  - X (t))ij ij ij ij j ijP t X rt− +  

Here, w is the inertia coefficient, c1 and c2 are 
accelerating coefficients which are in the range of [0, 
1], r1 and r2 are random coefficients in the range of [0, 
1]. PSO is initialized with a group of random particles, 
and then it searches for better ones by updating the 
position of this particles. In each iteration, two best 
value are calculated. The first one is the best position, 
which has been achieved for each particle so far (called 
Pbest), and another one is the best position which has 
been achieved between all of the particles so far (called 
Gbest) [20]. 

The inertial coefficient determines the effect of the 
particle velocity in the previous step on the current 
velocity. The inertia term controls the convergence 
behavior of PSO. Although, the inertia weight can be 
considered as a constant value, experimental results 
indicate that it is better to initially set the inertia weight 
to larger value and gradually reduce it to get refined 
solutions. 

 

 
Fig. 1: General movement process of the particle in PSO  

 
By this way, the historical values of the network 

equipment's reliability parameters are calibrated to 
their optimal value, so that the objective function 
(absolute difference of actual and calculated value of 
the system reliability indices), to be minimized. 
 

4.2   Indices weights and their calculation 
method 

To consider almost all of conventional system 
reliability indices of the PDN in the reliability 
parameters calibration, five of them have been selected 
in this paper (SAIFI, SAIDI, CAIDI, AENS1, and 
ASAI2). Regarding the necessity of evaluating five 
reliability indices in one objective function and wide 
range of variations, the normalizing coefficients W1 to 
                                                 
1 Average Energy Not Supplied 

W5 are considered. Therefore, different indices can be 
combined in a single objective function. 

(3) 1
1

SAIFI
act

W
SAIFI

α= ×  

(4) 2
1

SAIDI
act

W
SAIDI

α= ×  

(5) 3
1

CAIDI
act

W
CAIDI

α= ×  

(6) 4
1

AENS
act

W
AENS

α= ×  

(7) 5
1

ASAI
act

W
ASAI

α= ×  

Here, αSAIFI to αASAI are the weights for increasing 
effect of the corresponding indices in the objective 
function. In this paper, all of them take similar and 
equal to 1. In Equations (3)-(7), the actual reliability 
indices considered known, as they are available in 
NCC. 

 
4.3    Decomposition 

Decomposing the PDN into smaller sub-networks 
is usually done using Normally Open (N.O.) switches 
between adjacent feeders. From the reliability point of 
view, disadvantage of ignoring switching actions is 
limited to ignore some second order minimal cut-sets; 
only those cut-sets that depend on switching involving 
normally open nods. So, because of minor influences 
of these cuts, they are ignored here [11]. 

In this paper, in order to simplify the 
calculations, tie switches between adjacent feeders are 
assumed to be N.O. switches, without switching action 
during outage time. In order to extend the idea into 
large-scale networks, the presented method in [21] and 
[22] can be used. 

 
4.4     Objective Function 

Since this paper purpose is to provide a simple 
solution for PDN reliability assessment, the objective 
function should make decision about all of the 
important indices from the system designer's point of 
view, in the calibration process. Although just five 
indices are selected here, this function can be extended 
to all system reliability indices. The best values for 
unknown reliability parameters of the network 
equipments can be obtained, when the following 
objective function with five important system indices: 
SAIFI, SAIDI, CAIDI, AENS, and ASAI to be 
minimized (difference of calculated and actual values 
be decreased as much as possible):  

1

2 3

4 5

: ( )

( ) ( )

( ) ( )

act cal

act cal act cal

act cal act cal

Minimize X W SAIFI SAIFI

W SAIDI SAIDI W CAIDI CAIDI

W AENS AENS W ASAI ASAI

= − +

− + − +

− + −

 (8) 

λ & r 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏= +25%∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (9) 

2 Average Service Availability Index 
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λ & r 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏= −25%∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (10
) 

 
Obviously, this objective function contains a sum 

of the weighted absolute difference between the actual 
and calculated values of the system reliability indices. 
Ideally, it has to be converged to zero, but in practice, 
PSO algorithm tries to minimize it as small as possible, 
by changing the reliability parameters of the 
components (λ, r) iteratively. After converging PSO, it 
can be deduced that the reliability parameters of the 
components are enough accurate. To saving time and 
accelerating PSO algorithm, two constraints are 
considered. They limit calculated values of the 
reliability parameters of the components in each step, 
to ±25% of the database values of the corresponding 
parameters. Maximum number of iterations, 
population size (Swarm size), inertia coefficient, 
damping ratio have taken as 500, 22, 0.6721, and 0.8, 
respectively. 
Fig. 2 shows the main flowchart of the proposed 
method. In the main loop, the particles speed and 
position are optimized towards minimizing the 
objective function. The particles best personal 
experience vs. iteration no. graph, indicates the 
efficiency of the proposed algorithm and the accuracy 
of the results. 
 

 
Fig. 2: Flowchart of the proposed method 

 
5. Simulation Results 
In order to evaluate the efficiency of the suggested 

algorithm, simulations are done for the Roy Billinton 

Test System (RBTS) which is a 11kV PDN with 22 
loads and 2 tie lines [23]. This test system is a well-
known network, which is used in simulation studies of 
many previous papers and its data is simply available. 
Without loss of generality, in this system only failure 
rate and repair time of the overhead lines are 
considered, because lines have higher risk of outages, 
compared to the other components of the system. All 
computations are performed in MATLAB® using 
computer with an Intel core-i7 2.6 GHz processor. 

5.1 Test system 
All the information required for the IEEE-RBTS 

Bus2 network, including the failure and repair rates, 
number and type of customers, load level per load 
center, etc., are listed in [23]. Fig. 3 illustrates it. The 
proposed method has been tested on feeder R1 (Fig.1). 
However, as discussed earlier, in this paper switches 
(500 and 501) assumed to be N.O. as they are barely 
used to reduce the outage time using the adjacent 
feeder (R2). In this figure, feeders supplying areas are 
separated using dashed lines. 
    In Table 1, the required detailed data for calculations 
are represented. The average feeder load is 3.645 MW 
and 652 different customers are fed by it. All the cut-
out fuse at the tee-point in lateral distributors 
considered fully reliable, in this case a short circuit on 
a lateral distributor causes its appropriate fuse to blow. 
This causes disconnection of its load center until the 
failure has to be repaired but does not affect or cause 
the disconnection of any other load center [2]. The 
busbar voltage level 11 KV and the failure rate of all 
lines in single-state weather conditions is 0.065 #/year, 
the repair time and the switching time are 5 and 1 hour 
respectively.  
 

 
]3[2 PDNRBTS Bus2 -Fig. 3: The IEEE 

 
Table 1: Load points data [23] 

No. of 
customers 

  Average consumption 
(MW) 

Load 
Point 
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210 0.535 LP1 
210 0.535 LP2 
210 0.535 LP3 
1 0.566 LP4 
1 0.566 LP5 
10 0.454 LP6 
10 0.454 LP7 

 
Fig. 4: PSO objective function convergence diagram (No. 

of iterations=1000, final value=3.29*10-7) 

 

 
Fig. 5: Mean of Pbests 

 

Table 2: IEEE-RBTS Bus2 failure and repair data 

element 
 Failure rate  

element 
 Repair rate  

database calibrated Adoption (%) database calibrated Adoption (%) 
λ1 0.07 0.07 93 r1 4 4.4 90 
λ2 0.07 0.07 98 2r 4 4.4 92 
λ3 0.07 0.06 88 3r 4 4.8 84 
λ4 0.07 0.07 100 4r 4 4.9 82 
λ5 0.24 0.26 94 5r 14.9 13.2 87 
λ6 0.24 0.20 78 6r 14.9 13.1 86 
λ7 0.24 0.22 91 7r 14.9 13.1 88 
λ8 0.24 0.26 94 8r 14.9 15.0 100 
λ9 0.24 0.25 97 9r 14.9 15.6 96 
λ10 0.24 0.24 98 10r 14.9 16.5 91 
λ11 0.24 0.27 90 11r 14.9 17.5 85 

        

In order to model, test, and verify the operation of the 
failure and repair rate database using the proposed 
method, the basic reliability parameters in default 
database is deviated deliberately, and 11 deviated 
elements and uncertainties by considering ±25% 
deviation compared to valid data of failure rate and 
repair time data is applied. 
 

Table 3: IEEE-RBTS Bus2 system, R1 feeder indices 

index Actual 
value 

database 
value 

calibrated 
value 

SAIFI (f/y) 1.94 1.2 1.94 
SAIDI (f/y) 26.33 20.2 26.332 
CAIDI (h/f) 13.5 12.2 13.573 

AENS 
(kWh/y) 147.2 140.3 147.2 

ASAI 0.9969 0.9969 0.9969 
 

6.   Results 
As shown in Figs. 4 and 5, using the proposed 

algorithm, the objective function obtains an acceptable 
convergence in less than 300 iterations, and the 
deviated failure rate and repair time in database are 
calibrated in about 65 seconds. Calibrated data of the 
failure and repair rates of the system are represented in 
Table 1. In the next step, to evaluate the accuracy of 
the proposed method, five system reliability indices 
are calculated for feeder R1 based on the calibrated as 
well as uncalibrated (database) network components 
reliability parameters (λ , r), and both results are 
compared to the actual values. Tables 2 and 3 show 
considered λ , r for the network components and the 
resultant system indices comparison, respectively. As 
can be seen in these tables, system indices 
corresponding to the calibrated values are desirably 
close to the actual values.  
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Due to the simplicity and generality of this method, it 
is possible to calibrate any system indices defined in 
[1].  It is worthwhile to note that the presented method 
can also improve the results of proposed methods in 
[12], the neural network [13], and other algorithms 
based on RPS [14], and it is suggested for the future 
studies.  
 

6. Conclusion 
Using PSO algorithm, in this article we tried to 

calibrate PDC's outage database for future use in 
reliability studies. Instead, previous works in this field, 
complex statistical procedures are set aside. Bear in 
mind keeping the data related to More Event Day, as 
an important part of database. On the other hand, 
regarding that Reliability calculations are a handy tool 
for system designers, the calculation speed is an 
important factor. Employing proposed method on a 
system with 11 destroyable elements and uncertainties 
around failure and repair rate, the objective function 
converged in less than 200 iterations and 65 seconds. 
Another advantage for using this method is its 
generality in a way that all known reliability indices 
can be analyzed in the form of a single objective 
function. Since PDCs use failure and repair data as a 
base for network improvement and PM activities. Data 
calibration in this field will help the system designers 
to get more accurate and reliable answers and be sure 
about the results of their plans. In brief, the main 
advantage of the proposed method to the previous 
works is that it looks into the system as a black box, so 
that, independent of its nature and detail, inputs 
(equipment reliability parameters) are calibrated to 
minimize error of the calculated outputs (system 
reliability indices) with respect to their available actual 
value. 
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