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Abstract. A vertex v of a given graph is said to be in a rainbow neigh-
bourhood of G if every color class of G consists of at least one vertex
from the closed neighbourhood N[v]. A maximal proper coloring of a
graph G is a J-coloring if and only if every vertex of G belongs to a rain-
bow neighbourhood of G. In general all graphs need not have a J-coloring,
even though they admit a chromatic coloring. In this paper, we charac-
terise graphs which admit a J-coloring. We also discuss some preliminary
results in respect of certain graph operations which admit a J-coloring
under certain conditions.

1 Introduction

For general notations and concepts in graphs and digraphs we refer to [1, 3,
9]. For further definitions in the theory of graph coloring, see [2, 4]. Unless
specified otherwise, all graphs mentioned in this paper are simple, connected
and undirected graphs.

The degree of a vertex v ∈ V(G) is the number of edges in G incident with v
and is denoted dG(v) or when the context is clear, simply as d(v). A pendant
vertex or an end vertex of a graph G is a vertex having degree 1. A vertex
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which is not a pendant vertex is called an internal vertex of G (see [3]). A
pendant edge of G is an edge incident on a pendant vertex of G. Also, unless
mentioned otherwise, the graphs we consider in this paper has the order n and
size p with minimum and maximum degree δ and ∆, respectively.

Recall that if C = {c1, c2, c3, . . . , c`} and ` sufficiently large, is a set of distinct
colors, a proper vertex coloring of a graph G is a vertex coloring ϕ : V(G) 7→ C
such that no two distinct adjacent vertices have the same color. The cardinality
of a minimum set of colors which allows a proper vertex coloring of G is
called the chromatic number of G and is denoted by χ(G). When a vertex
coloring is considered with colors of minimum subscripts, the coloring is called
a minimum parameter coloring. Unless stated otherwise, all colorings in this
paper are minimum parameter color sets.

The number of times a color ci is allocated to vertices of a graph G is
denoted by θ(ci) and ϕ : vi 7→ cj is abbreviated, c(vi) = cj. Furthermore, if
c(vi) = cj then ι(vi) = j. The color class of a color ci, denoted by Ci, is the set
of vertices of G having the same color ci.

We shall also color a graph in accordance with the rainbow neighbourhood
convention (see [5]), which is stated as follows.

Rainbow neighbourhood convention: ([5]) For a proper coloring C =
{c1, c2, c3, . . . , c`}, χ(G) = `, we always color maximum possible number of ver-
tices with the color c1, then color the maximum possible number of remaining
vertices by the color c2 and proceeding like this and finally color the remaining
vertices by the color c`. Such a coloring is called a χ−-coloring of a graph.

The inverse to the convention requires the mapping cj 7→ c`−(j−1). Corre-
sponding to the inverse coloring we define ι ′(vi) = `−(j− 1) if c(vi) = cj. The
inverse of a χ−-coloring is called a χ+-coloring.

The closed neighbourhood N[v] of a vertex v ∈ V(G) which contains at least
one colored vertex of each color in the chromatic coloring, is called a rainbow
neighbourhood. That is, a vertex V is said to be in a rainbow neighbourhood if
Ci∩N[v] 6= ∅, for all 1 ≤ i ≤ χ(G). The number of vertices of a graph G, which
belong to some rainbow neighbourhoods of G is called the rainbow neighbour-
hood number of G, denoted by rχ(G) (see [5]). The rainbow neighbourhood
number of certain graph classes have been determined in [6, 7].

Motivated by these studies, two types of vertex colorings in terms of rainbow
neighbourhoods have been introduced in [8] as follows.

Definition 1 [8] A maximal proper coloring of a graph G is a Johan coloring
of G, or J-coloring in short, if and only if every vertex of G belongs to a
rainbow neighbourhood of G. The maximum number of colors in a J-coloring
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is called the J-chromatic number of G, denoted by J(G).

Definition 2 [8] A maximal proper coloring of a graph G is a modified Johan
coloring, or J∗-coloring in short, if and only if every internal vertex (a vertex
having degree at least 2) of G belongs to a rainbow neighbourhood of G. The
maximum number of colors in a J∗-coloring is denoted by J∗(G).

Figure 1 illustrate a J-colorable and a J∗-colorable graph.
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(b) A graph with a J∗-coloring.

Figure 1: J-colorable and J∗ colorable graphs

In this paper, we characterise the graphs which admit J-coloring. We also
discuss some preliminary results in respect of certain graph operations which
admit a J-coloring under certain conditions.

2 Results and discussions

A null graph on n vertices is an edgeless graph and is denoted by Nn. We
follow the convention that J(Nn) = J∗(Nn) = 1, n ∈ N. Also, note that for
any graph G which admits a J-coloring, we have χ(G) ≤ J(G).

Note that if a graph G admits a J-coloring, it also admits a J∗-coloring.
However, the converse need not be true always. It can also be noted that if
graph G has no pendant vertex and it admits a J-coloring, then J(G) = J∗(G).

In view of the above mentioned concepts and facts, we have the following
theorem.



98 S. Naduvath, J. Kok

Theorem 3 If G is a tree of order n ≥ 2, then J(G) < J∗(G).

Proof. A tree G of order n ≥ 2 has at least two pendant vertices, say u and
v. Therefore, the maximum number of colors which will allow both vertices u
and v to yield rainbow neighbourhoods is χ(G) = 2. Therefore, G admits a
J-coloring and J(G) = 2.

Any internal vertex w of G has d(w) ≥ 2. Therefore, J∗(G) ≤ 3. Consider
any diameter path of G say Pdiam(G). Beginning at a pendant vertex of the
diameter path, label the vertices consecutively v1, v2, v3, . . . , vdiam(G). color the
vertices consecutively c(v1) = c1, c(v2) = c2, c(v3) = c3, c(v4) = c1, c(v5) = c2,
c(v6) = c3 and so on such that

c(vdiam(G)) = 1; if diam(G) ≡ 1(mod 3) (1)

c(vdiam(G)) = 2; if diam(G) ≡ 2(mod 3) (2)

c(vdiam(G)) = 3; if diam(G) ≡ 0(mod 3). (3)

Clearly, in respect of path Pdiam(G), it is a proper coloring and all internal
vertices yield a rainbow neighbourhood on 3 colors. Consider any maximal
path starting from, say v ∈ V(Pdiam(G)). Hence, v is a pendant vertex to that
maximal path. color the vertices consecutively from v as follows:

(a) If c(v) = c1 in Pdiam(G), color as c1, c2, c3, c1, c2, c3, . . . , c1 or c2 or c3︸ ︷︷ ︸
(b) If c(v) = c2 in Pdiam(G), color as c2, c3, c1, c2, c3, c1, · · · , c2 or c3 or c1︸ ︷︷ ︸.
(c) If c(v) = c3 in Pdiam(G), color as c3, c1, c2, c3, c1, c2, · · · , c3 or c1 or c2︸ ︷︷ ︸.
It follows from mathematical induction that all maximal branching can re-

ceive such coloring which remains a proper coloring with all internal vertices
v ∈ V(G) having |c(N[v])| = 3. Furthermore, all nested branching can be col-
ored in a similar way until all vertices of G are colored. Therefore, J∗(G) ≥ 3.
Hence, J(G) < J∗(G). �

An easy example to illustrate Theorem 3 is the star K1,n, n ≥ 2 for which
J(K1,n) = 2 < n+ 1 = J∗(K1,n). This example prompts the next results.

Corollary 4 For any graph G which admits a J∗-coloring, we have J∗(G) ≤
∆(G) + 1.
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Corollary 5 If J∗(G) > J(G) for a graph G, then G has at least one pendant
vertex.

Proof. Since all v ∈ V(G) are internal vertices and any vertex u for which
d(u) = δ(G) must yield a rainbow neighbourhood, it follows that any maximal
proper coloring C are bound to |C| = |N[u]| = δ(G) + 1. Therefore, if J∗(G) >
J(G), then G has at least one pendant vertex. �

In [5], the rainbow neighbourhood number rχ(G) is defined as the number
of vertices of G which yield rainbow neighbourhoods. It is evident that not all
graphs admit a J-coloring. Then, we have

Lemma 6 (i) A maximal proper coloring ϕ : V(G) 7→ C of a graph G which
satisfies a graph theoretical property, say P, can be minimised to obtain
a minimal proper coloring which satisfies P.

(ii) A minimal proper coloring ϕ : V(G) 7→ C of a graph G which satisfies a
graph theoretical property, say P, can be maximised to obtain a maximal
proper coloring which satisfies P.

Proof.

(i) Consider a maximal proper coloring ϕ : V(G) 7→ C of a graph G which
satisfies a graph theoretical property say, P. If a minimum color set C ′,
with |C ′| < |C|, such that a minimal proper coloring ϕ ′ : V(G) 7→ C ′
which satisfies the graph theoretical property P cannot be found, then
|C| is minimum.

(ii) Consider a minimal proper coloring ϕ : V(G) 7→ C of a graph G which
satisfies a graph theoretical property say, P. If a maximum color set C ′,
|C ′| > |C|, such that a maximal proper coloring ϕ ′ : V(G) 7→ C ′ which
satisfies the graph theoretical property P cannot be found, then |C| is
maximum.

�

The following theorem characterises those graphs which admit a J-coloring.

Theorem 7 A graph G of order n admits a J-coloring if and only if rχ(G) =
n.

Proof. If rχ(G) = n, then every vertex of G belongs to a rainbow neighbour-
hood. Hence, either the chromatic coloring ϕ : V(G) 7→ C is maximal or a
maximal coloring ϕ ′ : V(G) 7→ C ′ exists.
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An immediate consequence of Definition 1 is that if graph G admits a J-
coloring then each vertex v ∈ V(G) yields a rainbow neighbourhood. This
consequence also follows from the the result that for any connected graph G,
J(G) ≤ δ(G) + 1 (see [8]). Hence, from Lemma 6 it follows that either the
J-coloring is minimal or a minimal coloring ϕ ′ : V(G) 7→ C ′ exists such that
rχ(G) = n. �

The following theorem establishes a necessary and sufficient condition for a
graph G to have a J-coloring with respect to a χ−-coloring of G.

Theorem 8 A graph G admits a J-coloring if and only if each v ∈ V(G) yields
a rainbow neighbourhood with respect to a χ−-coloring of G.

Proof. If in a χ−-coloring of G, each v ∈ V(G) yields a rainbow neighbourhood
it follows from the second part of Lemma 6 that the corresponding proper
coloring can be maximised to obtain a J-coloring.

Conversely, assume that a graph G admits a J-coloring. Then, it follows
from Lemma 6(i) that the corresponding proper coloring can be minimised to
obtain a minimal proper coloring for which each v ∈ V(G) yields a rainbow
neighbourhood. Let the aforesaid set of colors be C ′. Assume that a minimum
set of colors C exists which is a χ−-coloring of G and |C| < |C ′|. It implies
that there exists at least one vertex v ∈ V(G) for which at least one distinct
pair of vertices, say u,w ∈ N(v) exists such that u and v are non-adjacent.
Furthermore, c(u) = c(w) under the coloring ϕ : V(G) 7→ C.

Assume that there is exactly one such v and exactly one such vertex pair
u,w ∈ N(v). But then both u and w yield rainbow neighbourhoods in G under
the proper coloring ϕ : V(G) 7→ C, which is a contradiction to the minimality
of C ′. By mathematical induction, similar contradictions arise for all vertices
similar to v. This completes the proof. �

3 Analysis for certain graphs

Note that we have two types of operations related to graphs, that is: operations
on a graph G and operations between two graphs G and H. Operations on a
graph G result in a well defined derivative of G. Examples are the complement
graph Gc, the line graph L(G), the middle graph M(G), the central graph
C(G), the jump graph J(G) and the total graph T(G) and so on. Recall that
the jump graph J(G) of a graph G of order n ≥ 3 is the complement graph of
the line graph L(G). Also, note that the line graph is the graphical realisation
of edge adjacency in G and the jump graph is the graphical realisation of edge
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independence in G. Some other graph derivative operations are edge deletion,
vertex deletion, edge contraction, thorning a graph by pendant vertex addition
and so on.

Examples of operations between graphs G and H are, the corona between
G and H denoted, G ◦H, the join denoted, G+H, the disjoint union denoted,
G ∪H, the Cartesian product denoted, G�H and so on.

3.1 Operations between certain graphs

The following result establishes a necessary and sufficient condition for the
corona of two graphs G and H to admit a J-coloring.

Theorem 9 If graphs G and H admit J-colorings, then G ◦ H admits a J-
coloring if and only if either G = K1 or J(G) = J(H) + 1.

Proof. Part 1: If G = K1 assume C = {c1, c2, c3, . . . , cJ(H)} provides a J-coloring
of H. color K1 the color cJ(H)+1. Clearly, C ′ = C ∪ {cJ(H)+1} is a J-coloring of
K1 ◦H.

Part 2: If G 6= K1 and J(G) = J(H) + 1 let C = {c1, c2, c3, . . . , c`, ` = J(G)}
and C ′ = {c1, c2, c3, . . . , c`−1, ` = J(G)} provide the J-colorings of G and H,
respectively. Assume that v ∈ V(G) has c(v) = ci then color all u ∈ V(H) for
the copy of H corona’d to v for which c(u)(in H) = ci, 1 ≤ i ≤ `, to be c`+1.
Clearly every vertex v ∈ V(G)∪V(H) yields a rainbow neighbourhood and |C|
is maximal.

Conversely, let G ◦H admit a J-coloring. Then, for any vertex v ∈ V(G) the
subgraph v ◦H holds the condition c(v) 6= c(u), ∀u ∈ V(H). Therefore, either
G = K1 or J(G) = J(H) + 1. �

The next corollary requires no proof as it is a direct consequence of Theorem
9.

Corollary 10 If G ◦H admits a J-coloring then: J(G ◦H) = J(G).

The following theorem discusses the admissibility of J-coloring by the join
of two graphs.

Theorem 11 The join G + H admits a J-coloring if and only if both graphs
G and H admit a J-coloring.

Proof. Assume that both G and H admit a J-coloring. Without loss of gen-
erality, let J(G) ≤ J(H). Assume that ϕ : V(G) 7→ C, C = {c1, c2, c3, . . . , c`}
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and ϕ ′ : V(H) 7→ C ′, C ′ = {c1, c2, c3, . . . , c` ′} is a J-coloring of G and H, re-
spectively. For each v ∈ V(G), c(v) = ci recolor c(v) 7→ ci+` ′ . Denote the new
color set by Ci+` ′ . Clearly, each vertex v ∈ V(G) is adjacent to at least one of
each color in G + H hence, each such vertex yields a rainbow neighbourhood
in G + H. Similarly, each vertex u ∈ V(H) is adjacent to at least one of each
color in G+H and hence each such vertex yields a rainbow neighbourhood in
G+H. Furthermore, since both |C|, |C ′| is maximal color sets, the set |Ci+` ′∪C ′|
is maximal. Therefore, G+H admits a J-coloring.

The converse follows trivially from the fact that the additional edges between
G and H as defined for join form an edge cut in G+H. �

The following result discusses the existence of a J-coloring for the Cartesian
product of two given graphs.

Theorem 12 If graphs G and H of order n and m respectively admit a J-
coloring, then

(i) G�H admits a J-coloring.

(ii) J(G�H) = max{J(G), J(H)}

Proof.

(i) Without loss of generality assume J(H) ≥ J(G). Also, assume that
V(G) = {vi : 1 ≤ i ≤ n} and V(H) = {ui : 1 ≤ i ≤ m}. From the
definition of G�H it follows that V(G�H) = {(vi, uj) : 1 ≤ i ≤ n, 1 ≤
j ≤ m}. For i = 1, if uj ∼ uk in H, where ∼ denotes the adjacency, then
(v1, uj) ∼ (v1, uk) and hence we obtain an isomorphic copy of H. Such
a copy admits a J-coloring identical to that of H in respect of the ver-
tex elements u1, u2, u3, . . . , um. Now obtain the disjoint union with the
copies of H corresponding to i = 2, 3, 4, . . . , n. Apply the definition of
G�H for u1 and if vi ∼ vj in G, then (vi, u1) ∼ (vj, u1). An interconnect-
ing copy of G is obtained which result in the first iteration connected
graph. Similarly, this copy of G admits a J-coloring identical to that of G
in respect of the vertex elements v1, v2, v3, . . . , vn. Proceeding iteratively
to add all copies of G for i = 2, 3, 4, . . . , n in terms of the definition of
G�H, clearly shows that a J-coloring is admitted.

(ii) The second part of the result follows from the similar reasoning used to
prove and hence, χ(G�H) = max{χ(G), χ(H)}.

�
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3.2 Operations on certain graphs

Recall that for any connected graph G, J(G) ≤ δ(G) + 1 (see [8]) and for
n ≥ 2, J(Pn) = 2 and J∗(Pn) = 3. In view of these results, we have the
following results in respect of certain operations on paths and cycles.

Proposition 13 For a path Pn, n ≥ 2 with edge set consecutively labeled
as e1, e2, e3, . . . , en−1 and the corresponding line graph vertices consecutively
labeled as u1, u2, u3, . . . , un−1. We have

(i) J(L(Pn)) = 2 and J∗(L(Pn)) = 3.

(ii) J(M(P2)) = 2 and M(Pn) n ≥ 3 does not admit a J-coloring and
J∗(M(Pn)) = 3.

(iii) J(T(Pn)) = J∗(T(Pn)) = 3.

(iv) For connectivity, let n ≥ 5. Then J(J(P5)) = 3 and J∗(J(P5)) = 3 and for
n ≥ 6,

J(J(Pn)) = J∗(J(Pn)) =

{
n
2 n is even

bn2 c n is odd.

(v) J(C(Pn)) = J∗(C(Pn)) = 3.

Proof.

(i) Since L(Pn) = Pn−1, the result follows from the result that for any con-
nected graph G, J(G) ≤ δ(G) + 1.

(ii) Since M(P2) = P3 the result follows from the result that for any con-
nected graph G, J(G) ≤ δ(G)+1. For n ≥ 3, the middle graph contains a
triangle hence, J(M(Pn)) ≥ χ(M(Pn)) ≥ 3. Also M(Pn) has two pendant
vertices therefore rχ(M(Pn)) 6= n. So M(Pn), n ≥ 3 does not admit a J-
coloring. The derivative graph G ′ =M(Pn) − {v1, vn} contains a triangle
and δ(G ′) = 2. Therefore, J∗(M(Pn)) = 3.

(iii) Since J(T(Pn)) ≤ δ(J(T(Pn)) + 1 = 3 and T(Pn) contains a triangle,
J(T(Pn)) = 3. As T(Pn) has no pendant vertex and contains an odd
cycle C3, the result J∗(T(Pn)) = 3 is immediate.

(iv) For P5 we have J(P5) = P4. Hence, the result follows from for any
connected graph G, J(G) ≤ δ(G) + 1. For a path Pn, n ≥ 6 and
edge set consecutively labeled as e1, e2, e3, . . . , en−1 and the correspond-
ing line graph vertices consecutively labeled as u1, u2, u3, . . . , un−1, we
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have the consecutive vertex χ−-coloring sequence of J(Pn) is given by
c1, c1, c2, c2, c3, c3, . . . , cn

2
if n is even and c1, c1, c2, c2, c3, c3, . . . , cbn

2
c, cbn

2
c

if n is odd. Since the vertices ui, ui+1, 1 ≤ i ≤ n − 2 are pairwise not
adjacent, the χ−-coloring is maximal as well. Clearly, every vertex ui
yields a rainbow neighbourhood. Therefore, the result follows.

(v) Since C(Pn) has no pendant vertex and contains an odd cycle C5, the
result is immediate.

�

Next, we consider cycles Cn, n ≥ 3. In [8], it is proved that

Theorem 14 [8] If Cn admits a J-coloring then:

J(Cn) =

{
3 if n ≡ 0 (mod 3)

2 if n ≡ 0 (mod 2)and n 6≡ 0 (mod 3).

Analogous to the proof of Theorem 2.7 in [8], we now establish the corre-
sponding results for the derivatives of cycle graphs in the following proposition.

Proposition 15 For a cycle Cn, n ≥ 3 and edge set consecutively labeled as
e1, e2, e3, . . . , en and the corresponding line graph vertices consecutively labeled
as u1, u2, u3, . . . , un, we have

(i) J(L(Cn)) = J∗(L(Cn)) = 2 if and only if n ≡ 0 (mod 2) and n 6≡
0 (mod 3), and J(L(Cn)) = J∗(L(Cn)) = 3 if and only if n ≡ 0 (mod 3),
else, L(Cn) does not admit a J-coloring.

(ii) For n ≥ 3, J(M(Cn)) = J∗(M(Cn)) = 3 if n ≡ 0 (mod 3), or if, M(Cn)
for n 6≡ 0 (mod 3), and without loss of generality admits the coloring:
c(v1) = c1, c(u1) = c2, c(v2) = c3, c(u2) = c1, c(v3) = c2, c(u3) =
c3, . . . , c(vn−1) = c1, c(un−1) = c2, c(vn) = c1, c(un) = c3, else, M(Cn)
does not admit a J-coloring.

(iii) J(T(Cn)) = J∗(T(Cn)) = 4 if and only if n is even, else, T(Cn) does not
admit a J-coloring.

(iv) For n ≥ 6, J(J(Cn)) = J∗(J(Cn)) =

{
n
2 n is even

bn2 c n is odd.
.

(v) J(C(Cn)) = J∗(C(Cn)) = 3.
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Proof. (i) Because L(Cn) = Cn the result follows from Corollary 3.6. Also
because L(Cn) has no pendant edges, J(L(Cn)) = J∗(L(Cn)).

(ii) If M(Cn) admits a J-coloring then J(M(Cn)) ≤ δ(J(M(Cn)) + 1 = 3.
For n ≡ 0 (mod 3), consider the coloring: c(v1) = c1, c(u1) = c2, c(v2) = c3,
c(u2) = c1, c(v3) = c2, c(u3) = c3, . . . , c(un−1) = c1, c(vn) = c2, c(un) = c3.

From the definition of the middle graph, we know that M(Cn) has n trian-
gles stringed so clearly the proper coloring is maximum and all vertices yield a
rainbow neighbourhood. Part 2 follows by similar reasoning and hence the re-
sult follows. Also, sinceM(Cn) has no pendant edges, J(M(Cn)) = J∗(M(Cn)).
In all other cases, χ((M(Cn)) = 4 and a J-coloring does not exist.

(iii) Note that J(T(Cn)) ≤ δ(J(T(Cn)) + 1 = 5. Since T(Cn) contains a tri-
angle, J(T(Cn)) ≥ 3. Furthermore, χ((T(Cn)) = 4 if and only if n ≡ 0 (mod 2)
and n 6≡ 0 (mod 3), and all vertices yield a rainbow neighbourhood. Also,
for any set of vertices V ′ = {vi, vi+1, vi+2, vi+2, vi+3, vi+4} 7→ {vivj : 1 ≤ i ≤
n, 0 ≤ j ≤ 4, and (i + j) 7→ (i + j) (mod 6)}, the induced subgraph
〈V ′〉 6= K5. Therefore, J(T(Cn)) = 4. Also because T(Cn) has no pendant
edges, J(T(Cn)) = J∗(T(Cn)). Otherwise, χ((T(Cn)) = 5, and not all vertices
yield a rainbow neighbourhood and hence a J-coloring is not obtained.

(iv) For n = 5, J(C5) = C5 and thus, does not admit a J-coloring. For a path
Cn, n ≥ 6 and edge set consecutively labeled as e1, e2, e3, . . . , en−1 and the
corresponding line graph vertices consecutively labeled as u1, u2, u3, . . . , un−1,
we have the consecutive vertex χ−-coloring sequence of J(Cn) is given by
c1, c1, c2, c2, c3, c3, . . . , cn

2
if n is even and c1, c1, c2, c2, c3, c3, . . . , cbn

2
c, cbn

2
c if

n is odd (n−1 entries). As the vertices ui, ui+1, 1 ≤ i ≤ n−2 are pairwise not
adjacent, the χ−-coloring is maximal as well. Clearly, every vertex ui yields a
rainbow neighbourhood. Therefore, the result follows.

(v) The result is trivial for C(C3). For n ≥ 4, J(C(Cn)) ≤ δ(J(C(Cn))+1 = 3.
Since χ((C(Cn)) = 3 and all vertices yield a rainbow neighbourhood and C(Cn)
contains a cycle C5, the result J(C(Cn)) = 3 holds immediately. Also, since
C(Cn) has no pendant edges, J(C(Cn)) = J∗(C(Cn)). �

4 Extremal results for certain graphs

For a graph G of order n ≥ 1, which admits a J-coloring the minimum (or
maximum) number of edges in a subset E ′k ⊆ E(G) whose removal ensures
that J(G−E ′k) = k, 1 ≤ k ≤ J(G), is discussed in this section. These extremal
variables are called the minimum (or maximum) rainbow bonding variables
and are denoted r−k (G) and r+k (G), respectively. A graph G which does not
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admit a J-coloring has r−k (G) and r+k (G) undefined. For such aforesaid graph it
is always possible to remove a minimal set of edges, E ′′, which is not necessarily
unique such that G − E ′′ admits a J-coloring. This is formalised in the next
result.

Lemma 16 For any connected graph G which does not admit a J-coloring, a
minimal set of edges, E ′′ which is not necessarily unique, can be removed such
that G− E ′′ admits a J-coloring.

Proof. Since any connected graph G of order n and size ε(G) = p has a
spanning subtree and any tree admits a J-coloring, at most p− (n− 1) edges
must be removed from G. Therefore, if p − (n − 1) is not a minimal number
of edges to be removed then a minimal set of edges E ′, |E ′| < p − (n − 1)
must exist whose removal results in a spanning subgraph G ′ which allows a
J-coloring. �

It is obvious from Lemma 16 that the restriction of connectedness can be
relaxed if G =

⋃
Hi, 1 ≤ i ≤ t and it is possible that J(Hi−E"i)∀i = k, k some

integer constant.
It is obvious that for a complete graph Kn, J(Kn) = n. To ensure J(Kn) = n,

no edges can be removed. Therefore, r−n(Kn) = r
+
n(Kn) = 0.

Theorem 17 For a complete graph Kn, n ≥ 1 we have

(i) For n is even and n
2 ≤ k ≤ n and J(Kn−E

′
k) = k, then r−k (Kn) = n− k.

(ii) For n is odd and dn2 e ≤ k ≤ n, and J(Kn−E
′
k) = k, then r−k (Kn) = n−k.

(iii) For n ∈ N and 1 ≤ k ≤ n, and J(Kn − E ′k) = k, then r+k (Kn) =
1
2(n +

1− k)(n− k).

Proof. (i) For n is even and n
2 ≤ k ≤ n, exactly 0 or 1 or 2 or 3 or · · ·or n

2

edges between distinct pairs of vertices can be removed to obtain J(Kn −
E ′k) = n,n − 1, n − 2, . . . , n2 . Hence, r−k (Kn) = 0, 1, 2, 3, . . . , n2 . In other words
r−k (Kn) = n− k, n2 ≤ k ≤ n.

(ii) The result follows through similar reasoning as that in (i).
(iii) In any clique of order t, the removal of the 1

2t(t − 1) edges is the
maximum number of edges whose removal renders J(Nt) = 1 hence, all ver-
tices can be colored say, c1. Through immediate mathematical induction it
follows that we iteratively remove the maximum number of edges r+k (Kn) =
0, 1, 3, 6, 10, . . . , 12(n+ 1− k)(n− k), 1 ≤ k ≤ n of cliques K1, K2, K3, . . . , Kn to
obtain J(Kn − E

′
k) = n,n− 1, n− 2, . . . , 1. Hence, the result follows. �
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Theorem 18 A graph G of order n which allows a J-coloring, has r−k (G) =
r+k (G) if and only if J(G) = 2.

Proof. If J(G) = 2 then all edges are incident with colors c1, c2. Therefore
all edges must be removed to obtain the null graph N0 for which J(N0) = 1.
Hence, r−k (G) = r

+
k (G).

Conversely, let r−k (G) = r
+
k (G). Then, assume that at least one edge say, e is

incident with color c3. It implies that G contains at least a triangle or an odd
cycle. Therefore, ε(G) ≥ 3. To ensure a proper coloring on removing edge e the
color c3 must change to either c1 or c2 which is always possible. If J(G−e) = 2
then r+k (G) = 1 which is a contradiction because any one additional edge may
have been removed, implying r+k (G) ≥ 2. For colors c4, c5, c6, . . . , J(G), similar
contradictions follows through immediate induction. Therefore, if r−k (G) =
r+k (G) then, J(G) = 2. �

5 Conclusion

Clearly the cycles for which the the middle graphs admit a J-coloring in accor-
dance with the second part of Proposition 13(ii) require to be characterised if
possible. It follows from Theorem 18 that for the cases n is even and 1 ≤ k < n

2 ,
or n is odd and 1 ≤ k < dn2 e, determining r−k (Kn) remains open. It is suggested
that an algorithm must be described to obtain these values.

Example 19 For the complete graph K9 with vertices v1, v2, v3, . . . , v9, The-
orem 17(ii) admits the minimum removal of r−n,k(Kn) = 4 edges to obtain
J(Kn−E

′
k) = 5. Without loss of generality say the edges were. v1v2, v3v4, v6v6,

v7v8. To obtain J(Kn − E
′
k) = 4 we only remove without loss of generality say,

the edges v7v9, v8v9. To obtain J(Kn − E ′k) = 3 we only remove without loss
of generality say, the edges v1v3, v1v4, v2v3, v2v4. To obtain J(Kn − E ′k) = 2

we only remove without loss of generality say, the edges v5v7, v5v8, v5v9, v6v7,
v6v8, v6v9. To obtain J(Kn−E

′
k) = 1 we remove all remaining edges. It implies

that as J(Kn − E ′k) iteratively ranges through the values 5, 4, 3, 2, 1 the value
of r−k (K9) ranges through, 4, 6, 10, 16, 36.

Determining the range of minimum (maximum) rainbow bonding variables
for other classes of graphs is certainly worthy research. For a graph G which
does not allow a J-coloring it follows from Lemma 16 that a study of r−k (G

′)
and r+k (G

′) with G ′ a maximal spanning subgraph of G which does allow a
J-coloring, is open.
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