
Acta Univ. Sapientiae, Informatica 11, 2 (2019) 159–173

DOI: 10.2478/ausi-2019-0011

On J-colorability of certain derived graph

classes

Federico FORNASIERO
Department of Mathemathics

Universidade Federal de Pernambuco
Recife, Pernambuco, BRAZIL

email: federico@dmat.ufpe.br

Sudev NADUVATH
Department of Mathematics

CHRIST (Deemed to be University)
Bangalore-560029, INDIA.

email: sudev.nk@christuniversity.in

Abstract. A vertex v of a given graph G is said to be in a rainbow
neighbourhood of G, with respect to a proper coloring C of G, if the
closed neighbourhood N[v] of the vertex v consists of at least one vertex
from every color class of G with respect to C. A maximal proper coloring
of a graph G is a J-coloring of G such that every vertex of G belongs to a
rainbow neighbourhood of G. In this paper, we study certain parameters
related to J-coloring of certain Mycielski-type graphs.

1 Introduction

For general notations and concepts in graphs and digraphs we refer to [1, 3, 15].
For further definitions in the theory of graph coloring, see [2, 8, 4]. Unless
specified otherwise, all graphs mentioned in this paper are simple, connected
and undirected graphs.
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1.1 Mycielskian of graphs

Let G be a triangle-free graph with the vertex set V(G) = {v1, . . . , vn}. The
Mycielski graph or the Mycielskian of a graph G, denoted by µ(G), is the
graph with vertex set V(µ(G)) = {v1, v2, . . . , vn, u1, u2, . . . , un, w} such that
vivj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G), viuj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G) and
uiw ∈ E(µ(G)) for all i = 1, . . . , n (see [9]).

v1 v2 v3 v4 v5 v6 v7

u1 u2 u3 u4 u5 u6 u7

w

Figure 1: The Mycielski graph µ(P7)

In the above mentioned conditions of Mycielski graphs, we call the two
vertices vi, ui twin vertices and the vertex w is called the root vertex of the
Mycielskian µ(G).

By a Mycielski type graph, we mean a graph that can be constructed from
the Mycielski graphs or the graphs generated from a given graphs using some
or similar rules of constructing their Mycielski graphs.

1.2 Rainbow neighbourhoods in graphs

A graph coloring is an assignment of colors to its elements. If colors are assigned
to the vertices of a graph G, then it is called a vertex coloring of G. A vertex
coloring is said to be a proper coloring if no two adjacent vertices have the
same color, with respect to the coloring concerned.

In this study, we follow a proper coloring protocol as follows: Assign color
c1 to the maximum possible number of vertices in G, then assign color c2 is
given to the maximum possible number of remaining uncolored vertices and
the procedure is continued until all vertices of G are colored properly. Then,
the closed neighbourhoodN[v] of a vertex v ∈ V(G) which contains at least one
colored vertex of each color with respect to the above-mentioned coloring, is
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called a rainbow neighbourhood in G. The number of rainbow neighbourhoods
in a graph is said to be the rainbow neighbourhood number of the graph (see
[5]).

Later rainbow neighbourhood number of different graph classes have been
studied in detail and many interesting results have been added to the litera-
ture (see [5, 6, 7, 10, 11]). These studies motivated researchers to investigate
further in this area and thus a new type of coloring called J-coloring has been
introduced and studied.

1.3 J-coloring of graphs

The notion of J-coloring of a graph, has been defined for the first time in [12]
as follows:

Definition 1 [12] A graph G is said to have a J-coloring C if it has the max-
imal number of colors such that every vertex v of G belongs to a rainbow
neighbourhood of G. The number of colors in a J-coloring C of G is called the
J-coloring number of G.

Definition 2 [12] A graph G is said to have a J∗-coloring C if it has the
maximal number of colors such that every internal vertex v (a vertex with
degree greater than 1) of G belongs to a rainbow neighbourhood of G. The
number of colors in a J∗-coloring C of G is called the J∗-coloring number of G.

It can be noted that all graphs, in general, need not have a J-coloring.
Hence, the studies on the graphs which admit J-coloring and their properties
and structural characterisations attract much interests. Some studies in this
direction can be seen in [6, 12, 13].

The initial purpose of this paper is to study the J-colorability of the Myciel-
skian and certain Mycielski type graphs of some fundamental graph classes.

2 J-colorability of Mycielski graphs

Note that the Mycielski graph µ(G) of a graph G has no pendant vertices
and hence the J-coloring and the J∗-coloring of the Mycielski graphs µ(G), if
they exist, are the same. We first try to repeat the original demonstration of
Mycielskian graph. To do that, we have to fix a J-coloring on the graph G.

Theorem 3 Let G be a graph with J-coloring C = {c1, c2, c3 . . . , ck}. Then, the
graph µ(G) is not J-colorable (and so, it is not J∗-colorable).
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Proof. Note that µ(K2) is isomorphic to C5 and hence it is not J− colorable
(as it is proved in [12]). Hence, we can consider graphs with order greater than
2. Let us assume that we can have a new J-coloring C = {c1, c2 . . . , cj} on µ(G).
Without loss of generality, we can assume now that the color of w is c ′1. Every
vertex ui have to be colored with one of the other color c2, . . . , cj. Hence, there
exists at least a vertex v1 with color c1. Let be v2 the vertex connected to v1
such as the twin vertex u2 has the color c2. Here, we have the following two
possibilities:

(i) : If the color of v2 is different from the previous ones, let us say c3,
we have that for the definition of rainbow neighbourhood even the twin
vertex u2 has to be connected with a vertex with the same color, and it
has to be a vertex v3 because no one of the vertices uj are connected,
and w has the color c1. But if it is so, than for the construction of µ(G)
even the vertex v2 has to be connected with v3, and so it is not a proper
coloring because two vertices has the same colors (see Figure 2).

c1v1 c3 v2c3v3

c2u1 c2 u2

c1

w

Figure 2: Case (i)

(ii) If the color of v2 is c2, the twin vertices u1 of v1 has to have a different
color (let us say c3), because it is linked to w that has the color c ′1 and
to v2 that has the color c2. But, in this case the vertex v1 has to be
connected with another vertex which has the color c3.

So we have to differentiate two different possibilities:

(ii)(a) If the vertex v1 is connected to a vertex v3 who has the color c3 for the
construction of µ(G) even the twin vertices u1 is connected to v3 and so
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it is not a proper coloring because two connected vertices have the same
color (see Figure 3).

c1

v1

c2

v2

c3

v3

c3

u1

c2

u2

c1

w

Figure 3: Case (ii)(a)

(ii)(b) If the vertex v1 is connected to a vertex u3 which has the color c3, first
we can note that the twin vertex v3 cannot have a new color, because it
would lead to a contradiction over u3 similar to the case (i).

Note that v3 cannot have the color c1 (because for construction it is
connected with v1) nor the color c3 (because always for construction
it is connected to the twin vertex u1) so it has to be colored with the
color c2. But if it is so, u3 needs to be connected with a vertex vi whose
color is c2, but it cannot be the twin vertex v3 for the construction, nor
the vertex v2 because it will lead to have the triangle v1v2u3v1. If the
graph G has only 3 nodes we reach a contradiction yet, if it is not let
us call v4 the vertex with color c2 connected to u3. For the construction
of µ(G) it has to be connected to the vertex v3 and it finally leads to a
contradiction because the two vertices would have the same color (see
Figure 4).

Hence, the Mycielskian graph of any graph G is not J-colorable, irrespective
of whether the G is J-colorable or not. �

3 Some new constructions

Since Mycielskian of any graph does not admit a J-coloring, our immediate
aim is to construct some simple connected graphs from certain given graphs
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u3
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Figure 4: Case (ii)(b)

such that new graphs also admit an extended J-coloring. In this section, we
discuss the J-colorability of certain newly constructed Mycielski type graphs
of a given graphs.

The first one among such graphs is the crib graph, denoted by c(G), of a
graph G, which is defined in [13] as follows:

Definition 4 [13]The crib graph, denoted by c(G), of a graph G is the graph
whose vertex set is V(µ(G)) = {v1, v2, . . . , vn, u1, u2, . . . , un, w} such that vivj ∈
E(µ(G)) ⇐⇒ vivj ∈ E(G), viuj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G) and viw,uiw ∈
E(µ(G)) for all i = 1, . . . , n.

Figure 5 depicts the crib graph of P6.

v1 v2 v3 v4 v5 v6

u1 u2
u3 u4

u5 u6

w

Figure 5: Crib graph of P6
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The following theorem discusses the admissibility of an extended J-coloring
by the crib graph of a J-colorable graph G.

Theorem 5 The crib graph c(G) of a J-colorable graph G is also J-colorable.
Also, J(c(G)) = J(G) + 1.

Proof. Assume that the graph G under consideration admits a J-coloring,
say C = {c1, c2, . . . , ck}, where k = χ(G), the chromatic number of G. While
coloring the vertices of c(G), we notice the following points:

(i) Since, the twin vertices ui and vi in c(G) are adjacent to each other,
both of them can have the same color.

(ii) Since N(ui) = N(vi) for all 1 ≤ i ≤ n, it follows that N[ui] is also a
rainbow neighbourhood in c(G). Therefore, the subgraph of c(G) induced
by the vertex set {v1, v2, . . . , vn, u1, u2, . . . , un} admit the same J-coloring
C.

(iii) Since the root vertex w is adjacent to other vertices in c(G), it cannot
have any color from C. Therefore, we need a new color, say ck+1 to color
the vertex w.

(iv) Since the root vertex w is adjacent to other vertices in c(G), it belongs
to a rainbow neighbourhood in c(G) and will not influence the belong-
ingness of other vertices to some rainbow neighbourhoods in c(G).

In view of the conditions mentioned above, notice that C ∪ {ck+1} is a J-
coloring of c(G) and J(c(G)) = k + 1 = J(G) + 1. This completes the proof.
�

Another similar graph that catches attention in this context is the shadow
graph of a graph G. The shadow graph of a graph G, denoted by s(G), is the
graph G is the graph obtained from its Mycielski graph µ(G) by removing the
root vertex.
The following theorem discusses the admissibility of a J-coloring by the shadow
graph s(G) of a J-colorable graph G.

Theorem 6 The shadow graph s(G) of a J-colorable graph G is also J-colorable.
Moreover, J(s(G)) = J(G).

Proof. The proof is immediate from the proof of Theorem 5. �

Next, we construct a new graph F(G) from a triangle-free, simple and con-
nected graph G such that F(G) has J-chromatic number k + 1 when G has
J-chromatic number k. The construction is described below.
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Definition 7 Let G be a triangle-fee graph, with V(G) = {v1, . . . , vn}. We de-
fine the Federico graph F(G) ofG as the graph such that V(F(G)) = {v1, v2 . . . , vn, u1, u2 . . . ,

un, w1, w2 . . . , wn} and with edges that follows the rules:

(i) vivj ∈ E(F(G)) ⇐⇒ vivj ∈ E(G)
(ii) wiwj ∈ E(F(G)) ⇐⇒ vivj ∈ E(G)

(iii) uiwj ∈ E(F(G)) ⇐⇒ vivj ∈ E(G)
(iv) for all i = 1, . . . , n, viui ∈ V(F(G))

The following figure illustrates the Federico graph of the graph P5.

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

w1 w2 w3 w4 w5

Figure 6: The Federico Graph F(P5)

First we can note that the graph F(G) has no pendant vertices and so the
J-coloring od F(G), if exists, coincides to the J∗-coloring. This fact is straight
forward.

Theorem 8 Let G be a J-colorable, triangle-free graph of order n with J-
coloring number k. Then the graph F(G) is triangle-free and with higher J-
coloring number. If J(G) = k, then J(F(G)) = k+ 1.

Proof. First of all we can see that no pair of vertices ui is connected, therefore
no triangle can involve a pair of these vertices. Also, no vertex wi is connected
to a vertex vj.

Remembering that G is triangle-free, it is not possible that three vertices
vi are connected in F(G) too. Similarly for the vertices wi that form between
them a copy of the graph G. Hence, we have only two possibilities left:

(i) if vi is connected to vj we have that ui is connected to vi but not to vj,
by construction, so no triangle of this type is involved.
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(ii) if wi is connected to wj we have that ui is connected to wj but not to
wi, so it is proved that F(G) is triangle-free.

To construct a proper J-coloring on F(G), let consider a proper J-coloring
ϕ : V(G)→ {c1, . . . , ck} and let us construct ϕ∗ : V(F(G))→ {c1, . . . , ck, ck+1}

by setting:

(i) ϕ∗(vi) = f
∗(wi) = f(vi) for all i = 1, . . . , n

(ii) ϕ∗(ui) = ck+1 for all i = 1, . . . , n

First, we have to prove that it is a proper J-coloring of F(G). We note that
every vertex vi has a rainbow neighbourhood in G, and hence it has in µ(G)
with one more color (the color of ui). Every wi has the same rainbow of the
twin vi because it is connected with the same vertices connected to vi, and it is
connected at least to one of the vertex uj. Finally, every ui has a k+1 rainbow
neighbourhood of because it is connected with every vi and with every wj that
are the connections of vi in the original graph, so by the definition of ϕ∗, every
ui has the same rainbow neighbourhood of vi. Hence, this coloring define a
proper J-coloring of G, it remains to prove that this coloring is maximal.

Hence, let us assume that there exists a proper J-coloring of F(G) such that
J(F(G)) = 2. In this case, we can assume that not every ui has the same color
because if not every ui is connected only to vi, and every vi has a rainbow
neighbourhood of order k+ 2 and can’t have the same color of the vertices ui.
But it would mean that the graph G was (k+ 1) − J−coloring.

Hence, let us start considering the vertex ui. If we prove that independent
from the choice of the color of ui, it is necessary that every ui has the same
color, for what we have just proved, it follows that the coloring is maximal.

From the above choice of the coloring assignment ϕ∗, we note that F(G)
requires at least one more color in its proper coloring than the corresponding
proper coloring of the graph G. Now, note that the upper bound for the J-
chromatic number of a graph G is δ(G)+1 (see [12]). Since δ(F(G)) = δ(G)+1,
any J-coloring of F(G) can have at most one more color than the J-coloring of
G. From these two conditions, we can conclude that the coloring ϕ∗ defined
above is a maximal coloring of F(G) such that every vertex of F(G) belongs
to some rainbow neighbourhood of F(G). Then, we have J(F(G)) = J(G) + 1,
completing the proof. �

Hence, we have found an interesting construction to have new triangle free
graphs with higher J-coloring number. In the following theorem, we study what
happens to the chromatic number of a Federico graph.
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Theorem 9 Let G be a graph and F(G) its Federico graph. Then, χ(G) =
χ(F(G))

Proof. Let f : V(G) = {v1, . . . , vn}→ c1, . . . , ck be a coloring of the vertices of
G. Let us consider the coloring g : V(F(G)) = {v1, . . . , vn, u1, . . . , un, w1, . . . , wn}→
{c1, . . . , ck} defined by:

(i) g(ui) = g(wi) = f(vi) for all i = 1, . . . , n.

(ii) if f(vi) = ch then g(vi) = ch+1 for all i = 1, . . . , n and h = 1, . . . , k− 1

(iii) if f(vi) = ck then g(vi) = c1 for all i = 1, . . . , n.

To prove that it is a proper coloring, first we can note that it is a proper
coloring on the vertices vi because f was a proper coloring of G and we have
only permutated the colors, and also it is a proper coloring on the vertices wi
because it is a copy of the graph and we have colored in the same way. So it
only left to see that we cannot have the same color with connections with a
vertex ui.

But, vi is only connected to ui and they have different colors because g(ui) =
f(vi) but ch+1 = g(vi) 6= f(vi) = ch for the definition of g. Also, because each
wi is connected to every uj such that vj ∈ V(G) was connected to vi ∈ V(G)
and none of which has the same color g(ui) = f(ui) no conflicts arise here.

Hence, we have constructed a proper coloring of F(G) with the same number
of colors of G, as claimed. �

Now we want to study another important coloring property of the Modified
Mycielski graph, the circular chromatic number. It was first studied in [14] with
the name of star chromatic number, and later in [16] provided a comprehensive
survey.

Let G be a graph. For two positive numbers k, d with k ≥ 2d, we define
a (k, d)-coloring as the function f : V(G) → {0, 1, . . . , k − 1} such that if two
vertices u, v are adjacent, then |f(u) − f(v)|k ≤ d where |a − b|k = min{|a −
b|, k− |a− b|}. Then, the circular chromatic number of G is defined as

χc(G) := inf

{
k

d
| G has a (k, d) − coloring

}
In [16] it is shown that if the graph G has at least one edge, then the infimum

can be replaced with the minimum and we have χ(G) − 1 ≤ χc(G) ≤ χ(G).
The circular chromatic number is hard to compute in Mycielski graphs and

there’s not yet a general formula that compute χc(µ(G)) knowing the circular
chromatic number of G. But, in the case of Federico graph, we have
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Theorem 10 Let G be a graph with χc(G). Then, χc(F(G)) = χc(G).

Proof. Let G be a graph with a (k, d) coloring f over V(G) = {v1, v2 . . . , vn}.
Then, we construct the coloring f∗ over F(G) as follows:

(i) f∗(vi) = f(vi) for all i = 1, . . . , n

(ii) f∗(ui) = f
∗(wi) = f(vi) − dmodk for all i = 1, . . . , n

To see that it’s a proper (k, d) coloring of F(G) we first note that between
it’s a proper coloring over the vertices vi’s (because it was on G) and over the
vertices wi’s (because in the construction we have simply added the distance
modulo k, and their connections are the same than the connections over the
vertices vi). A vertex vi is adjacent only to the vertex ui and so by construction
it has exactly distance d.

The vertex ui is connected to every vertex wj such that vivj is an edge in G.
But for construction the vertex ui has color f(vi) − dmodk and the vertices
wj have color f(vj) − dmodk, so the connection maintain the same distances
over the edges vivj ∈ E(G). Therefore, it is a proper (k, d)−coloring of F(G)
and if k

d is minimal in G and hence it is minimal in F(G). �

4 J-paucity number of graphs

In view of our results on the absence of J-coloring for Mycielski graphs and
our new constructions from the Mycielski graphs which admit J-colorings, we
define a new graph parameter with respect to J-coloring as follows:

Definition 11 Let G be a graph which does not admit a J-coloring. Then, the
J-paucity number of G, denoted by ρ(G), is defined as the minimum number
of edges to be added to G so that the reduced graph becomes J-colorable with
respect to a (δ(G) + 1)-coloring of G.

In the following theorem, we determine the J-paucity number of paths.

Theorem 12 ρ(µ(Pn)) = n.

Proof. Note that for δ(µ(Pn)) = 2 and hence we have to find the minimum
number of edges to be added to µ(Pn) so that the reduced graph becomes
J-colorable using 3 colors. For this, first assign colors c1 and c2 alternatively
to the vertices v1, v2, . . . , vn. Now color the vertices ui such that ui and its
twin vertex vi have the same color. Since the vertex w is adjacent to all ui’s,
it can be seen that it must have a different color, say c3 (see Figure 7).

We notice the following points in this context:
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Figure 7: A 3-coloring of µ(P7).

(i) No vertex vi in V(µ(Pn)) belongs to a rainbow neighbourhood of µ(Pn),
as none of them is adjacent to a vertex having color c3;

(ii) Every vertex ui with color c2 is adjacent to at least one vertex vj with
color c2 and the vertex w with color c3, thus belonging to some rainbow
neighbourhood in µ(Pn).

(iii) Every vertex uj with color c2 is adjacent to at least one vertex vk with
color c1 the vertex w with color c3, thus belonging to some rainbow
neighbourhood in µ(Pn).

(iv) The vertex w, being adjacent to all vertices ui, belongs to some rainbow
neighbourhoods in µ(Pn).

Therefore, from the above arguments, what we need is to draw edges from
the vertices vi to the vertex w so that they also are in some rainbow neigh-
bourhoods of G. Therefore, ρ(µ(Pn)) = n. �

Theorem 13 ρ(µ(Cn)) = n+ 2r, where r ∈ N is given by n ≡ r(mod 3).

Proof. Since δ(µ(Cn)) = 3, the maximum number of colors in its J-coloring is
4. Hence, we have to find the minimum number of edges to be added to µ(Pn)
so that the reduced graph becomes J-colorable using 4 colors. Here we have to
consider the following cases:
Case-1 : Let n ≡ 0(mod 3). Then, we can assign colors c1, c2 and c3 alter-

natively to the vertices v1, v2, . . . , vn. As mentioned in the previous result, we
can color the vertices ui such that ui and its twin vertex vi have the same
color. Since the vertex w is adjacent to all ui’s, it must have a different color,
say c4 (see Figure 8). In this case, all vertices ui and the vertex w will belong
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to some rainbow neighbourhoods of µ(Cn), but no vertex vi has an adjacent
vertex having color c4. So, we need to draw edges from all vi; 1 ≤ i ≤ n to the
vertex w in order to include them in some rainbow neighbourhoods of µ(Cn).

c4w c1 v1

c2 v2

c3

v3

c1

v4

c2v5

c3v6

c1

v7 c2

v8

c3 v9

c1 u1

c2 u2

c3

u3

c1

u4

c2u5

c3u6

c1

u7
c2

u8

c3 u9

Figure 8: A minimal proper coloring of µ(C9)

Case-2 : Let n ≡ 1(mod 3). Then, we can assign colors c1, c2 and c3 alterna-
tively to the vertices v1, v2, . . . , vn−1. The vertex vn can be colored only by c2,
as it is adjacent to v1 with color c1 and to vn−1 with color c3. Here, we notice
that the vertex v1 is not adjacent to any vertex having color c3. Here, we need
to draw an edge between v1 and one of the vertices having color c3.

If we label the vertices ui in such a way that the twin vertices have the same
color, then as in the case of v1, the vertex u1 is not adjacent to any vertex of
color c3. Hence, we need to draw an edge from u1 to any one of the vertices
having color c3.

Since w is adjacent to all ui, w must have the fourth color c4. Since every
vertex ui is adjacent tow, all these vertices,(except u1) belong to some rainbow
neighbourhood of µ(Cn). (Also, note that when we draw an edge from u1 to
a vertex having color c3, it will also belong to some rainbow neighbourhood).
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Since no vertex vi is adjacent to a vertex having color c4, each of them
is to be connected to the vertex w by a new edge. Therefore, in this case
ρ(µ(Cn)) = n+ 2.
Case-3 : Let n ≡ 2(mod 3). Then, we can assign colors c1, c2 and c3 alterna-

tively to the vertices v1, v2, . . . , vn−2. Then, the vertex vn−1 gets the color c1,
the vertex v1 can have the color color c2 Note that the vertex v1 and vn are
not adjacent to any vertex having color c3. Here, we need to draw one edge
each from v1 and v2 to some vertices having color c3.

If we label the vertices ui in such a way that the twin vertices have the
same color, then as in the case of v1 and v2, the vertices u1 and un will not
be adjacent to any vertex of color c3. Hence, we need to draw one edge each
from u1 and u3 to some of the vertices having color c3.

The vertex w gets the color c4 and as mentioned in the above cases, we need
to draw edges from all vertices vi to w so that all vertices in µ(Cn) belong to
some rainbow neighbourhoods in µ(Cn). Therefore, in this case ρ(µ(Cn)) =
n+ 4. �

5 Conclusion

In this paper, we have proved that the Mycielskian of any graph G will not
have a J-coloring, irrespective of whether G has a J-coloring or not. We have
also checked the existence of J-coloring for certain new Mycielski type graphs
constructed from certain graphs. There is a wide scope for further studies in
this area by exploring for new and related graph constructions.

We have also investigated the possibility of defining J-colorings for given
graphs by adding new edges between their non-adjacent vertices. Furthermore,
we have determined the minimum number of such edges to be introduced for
the Mycielskian of paths and cycles. The studies in this area for more graph
classes and more derived graphs are also promising.
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