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Abstract. Let R be a commutative ring with Z∗(R) as the set of non-
zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the
graph whose vertex set is Z∗(R), where two distinct vertices x and y
are adjacent if and only if xy = 0. In this paper, we investigate the
metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero
divisor graphs of commutative rings. For zero divisor graphs Γ(R) associ-
ated to finite commutative rings R with unity 1 6= 0, we conjecture that
dim+(Γ(R)) = dim(Γ(R)), with one exception that R ∼= ΠZn

2 , n ≥ 4.
We prove that this conjecture is true for several classes of rings. We also
provide combinatorial formulae for computing the metric and upper di-
mension of zero divisor graphs of certain classes of commutative rings
besides giving bounds for the upper dimension of zero divisor graphs of
rings.

1 Introduction

Throughout this article, R is assumed to be a commutative ring with unity
1 6= 0, unless otherwise stated. Let Z(R) be its set of zero divisors. The zero

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 13A99, 05C78, 05C12
Key words and phrases: ring, zero divisor, zero divisor graph, metric dimension, upper
dimension

84

http://maths.uok.edu.in/DrSPirzada.aspx
http://www.kashmiruniversity.net/
mailto:pirzadasd@kashmiruniversity.ac.in
mailto:ahaijaz99@gmail.com


Metric and upper dimension on zero divisor graphs 85

divisor graph of R [2], denoted by Γ(R), is defined as an undirected graph
associated to a commutative ring R having vertex set V(Γ(R)) = Z∗(R) =
Z(R) − {0}, where distinct vertices x and y are adjacent if and only if xy =
0. The original definition of zero divisor graph was introduced by Beck [6]
and in his work he defined V(Γ(R)) = Z(R) and two vertices x and y being
adjacent if and only if xy = 0. This definition of zero divisor graphs was
first introduced in [3]. Recently, Kimball and LaGrange [13] generalized the
definition to the idempotent divisor graph of a commutative ring. Besides this
the zero divisor graph has also been extended to other algebraic structures like
semi rings, Abelian groups, vector spaces, modules etc, (e.g., see the articles
such as [5, 8, 9, 23] and references therein).

For any set X, let |X| denote the cardinality of X and X∗ denote the set of
non-zero elements of X. We denote an empty set by ϕ. An element x in a ring
R is called nilpotent if xm = 0 for some positive integer m. A ring R is called
reduced if it has no non-zero nilpotent elements. A ring is called local if it
has a unique maximal ideal. An element x in a ring R is called a unit if there
exists an element y in R such that xy = 1, where 1 is a multiplicative identity
in R. The set of all units of a ring R is denoted by U(R). We denote a ring
of integers by Z, a ring of integer modulo n by Zn and a finite field with q
elements by Fq.

This article continues the investigation of zero divisor graphs that have
same metric and upper dimension that was started in [17]. Section 2 reviews
basic definitions and known results concerning the metric and upper dimension
of zero divisor graphs of rings, as well as the results obtained for graphs in
general. The rest of the paper focuses on zero-divisor graphs of commutative
rings. In Section 3, we show that if either Γ(R) (or Γ(R)) is a regular graph,
then dim(Γ(R)) = dim+(Γ(R)). We also characterize certain families of local
and reduced artinian rings and show that their zero divisor graphs have same
values for these two parameters. Further, we compute the metric and upper
dimension formulae for certain other classes of rings and show that the two
values are equal. We obtain a lower bound for the upper dimension of zero
divisor graph of a finite Boolean ring.

2 Preliminaries and terminology

A graph G with vertex set V(G) 6= ∅ and edge set E(G) of unordered pairs of
distinct vertices is called a simple graph. A graph G is connected if and only
if there is path between any two pair of vertices x and y of G. In a graph G,
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the distance between two vertices x and y is the length of the shortest path
between x and y. A subset B of V(G) is said to resolve a pair of vertices
{u, v} ⊂ V(G), if there exists some b ∈ B such that d(u, b) 6= d(v, b) or
equivalently if the metric representations of distinct vertices are distinct, where
the metric representation for a vertex v ∈ V(G) with respect to an ordered
set B = {b1, b2, . . . , bk} of vertices of G is an ordered k-tuple defined as r(v |

B) = (d(v, b1), d(v, b2), · · · , d(v, bk)). If B resolves all the vertices of G, we
say B is a resolving set of G and B is said to be a minimal resolving set if
no proper subset of B resolves all vertices of G. A minimal resolving set B
with least number of vertices is called a metric basis of G and the cardinality
of metric basis is called the metric dimension of G, denoted by dim(G). Also,
a minimal resolving set containing the maximum number of vertices is called
an upper basis of G and the cardinality of the upper basis is called the upper
dimension of G, denoted by dim+(G).

The concept of finding the metric dimension of a graph first appeared in
1970’s introduced by Slater [24] and independently by Harary and Melter [11]
and the concept of upper dimension of graphs was introduced by Chartrand
et al. [7], where they defined the upper dimension to be the order of the mini-
mal resolving set that has the maximum cardinality. Recently, these concepts
of metric and upper dimension of graphs were extended to zero divisor graphs
of rings, see [17, 20, 21].

For other definitions, terminology and notations of ring theory, we refer to
[4, 12] and for graph theory, we refer to [14].

Theorem 1 [Theorem 3.5, [10]] For every pair a, b of integers with 2 ≤ a ≤
b, there exists a connected graph G with dim(G) = a and dim+(G) = b

Let u ↔ v denote that u is adjacent to v and u = v denote that u is not
adjacent to v.
Distance similarity. In a connected graph G, two vertices u and v are said
to be distance similar if for any vertex x ∈ V(G) − {u, v}, d(u, x) = d(v, x).
The relation of distance similarity is an equivalence relation. Therefore, it
partitions the vertex set of a graph into equivalence classes known as distance
similar equivalence classes.

Example 2 Let G be a book graph (see Figure 1) with 5 pages with corners
of the pages as p1, p2, . . . , p5, q1, q2, . . . , q5, p, q and the adjacencies as
follows: p ↔ pi, q ↔ qi, for all 1 ≤ i ≤ 5, p ↔ q and pi ↔ qj, if and only
if, i = j, 1 ≤ i, j ≤ 5, elsewhere non-adjacencies. Then we have d(pi, pj) =
2 = d(qi, qj), d(pi, qj) = 3, whenever i 6= j. Choose B = {p1, p2, q3, q4} and
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Figure 1: Book graph with 5 pages.

B∗ = {p1, q1, q2, q3, q4}. Then we see that B is a minimal resolving set of
minimum order and B∗ is a minimal resolving set of maximum order and so
dim(G) = 4, whereas, dim+(G) = 5.

Theorem 3 (i) [Theorem A, [7]] Let G be a connected graph on n vertices.
Then dim(G) = 1 if and only if G ∼= Pn, where Pn denotes the path on n

vertices.
(ii) [Lemma 2.3, [18]] For a connected graph G of order n ≥ 1, dim+(G) = 1
if and only if G ∼= P2 or P3 and for n ≥ 4 dim+(Pn) = 2, where Pn denotes
the path on n vertices.

Theorem 4 [Theorem 2.3, [21] and Theorem 2.5, [15]] Let G be a connected
graph of order n. Then dim(G) = dim+(G) = n− 1 if and only if G ∼= Kn.

For integers k ≥ 2 and n1, n2, . . . , nk with 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk,
let G = Kn1,n2,...,nk

be a complete r-partite graph with V1, V2, . . . , Vk as the
partite sets. Let u, v be vertices in some partite set, then d(u, v) = 2 and for
any other vertexw ∈ V(G), we have either d(u,w) = 2 if and only ifw is in the
same partite set or otherwise d(u,w) = 1. Thus, these partite sets partition
the vertex set of G into distance similar equivalence classes and therefore we
have the following theorem.

Theorem 5 (i) For integers k ≥ 2 and n1, n2, . . . , nk with 2 ≤ n1 ≤ n2 ≤
· · · ≤ nk and n1 + n2 + · · ·+ nk = n,

dim(Kn1,n2,...,nk
) = dim+(Kn1,n2,...,nk

) = n− k

(ii) For all positive integers n ≥ 2, dim(K1,n) = dim
+(K1,n) = n− 1.
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The Cartesian product of two graphs G1 and G2, denoted by G = G1 ×G2,
is the graph whose vertex set is V = V(G1)× V(G2) and for any two vertices
w1 = (u1, v1) and w2 = (u2, v2) in V with u1, u2 ∈ V(G1) and v1, v2 ∈ V(G2),
there is an edge w1w2 ∈ E(G) if and only if

(a) either u1 = u2 and v1v2 ∈ E(G2) or (b) v1 = v2 and u1u2 ∈ E(G1),

Theorem 6 (i) [Theorem 3.2, [18]] For n ≥ 3,
dim+(K1,n × K2) = dim+(K1,n) + 1 = n.

(ii) [Corollary 3.3, [18]] For n ≥ 5, dim(K1,n × K2) = dim+(K1,n) = n− 1.

Theorem 7 [Theorem 2.8, [17]] Let R be a commutative ring with unity. Then
dim+(Γ(R)) is finite if and only if R is finite (and not a domain).

Recall that the characteristic of a ring R is a smallest positive integer k such
that for every r ∈ R, we have kr = 0, and if no such integer exists then the
ring R is said to have infinite characteristic.

Theorem 8 [Theorem 3.2, [17]] Let R be a finite commutative ring that is not
a field such that R has odd characteristic. Then dim+(Γ(R)) = dim(Γ(R)).

Theorem 9 [Theorem 3.3, [17]] Let S be a finite commutative ring of order
2k, where k is an odd integer. Then dim+(Γ(S)) = dim(Γ(S)).

Theorem 10 [Theorem 6-7, [1]] Let R be a finite commutative ring. If all
vertices of Γ(R) (or Γ(R)) have the same degrees, then either Z(R)2 = {0} or
R ∼= F× F, for some finite field F.

Theorem 11 [Lemma 2.2, [15]] If G is a connected graph and D ⊆ V(G) is
a subset of the distance similar vertices with |D| ≥ 2, then every resolving set
of G contains exactly |D|− 1 vertices of D.

3 Main results

Theorem 12 Let R be a commutative ring with unity. Then dim(Γ(R)) =
dim+(Γ(R)) = 1 if and only if R is one of the following rings.

(i)
Z3[x]
(x2)

, Z2 × Z2, Z9.

(ii) Z6, Z8,
Z2[x]
(x3)

,
Z4[x]

(2x, x2 − 2)
.



Metric and upper dimension on zero divisor graphs 89

Proof. These are the only rings whose zero divisor graph is isomorphic to (i)
P2 or (ii) P3 and the only connected graphs whose metric and upper dimension
is 1 is either P2 or P3. Hence the result follows. �

Example 13 Let R be a commutative ring with unity. If R ∼= Z2 × Z4, Z2 ×
Z2[x]

(x2)
, Z2×F4,

Z2[x, y]

(x, y)2
,
Z4[x, y]

(2, x)2
,
F4[x]
(x2)

,
Z4[x]

(x2 + x+ 1)
, Z2×Z2×Z2, Z3×Z3, then

dim(Γ(R)) = dim+(Γ(R)) = 2.

If R ∼= Z2 × Z4, then the only basis sets are {(0, 1), (0, 2)}, {(0, 3), (0, 2)},
{(0, 1), (1, 2)}, {(0, 3), (1, 2)} or {(0, 1), (0, 3)}. A similar list can be constructed

for Z2×
Z2[x]
(x2)

because Γ

(
Z2 ×

Z2[x]
(x2)

)
∼= Γ(Z2×Z4). If R ∼= Z2×Z2×Z2 then

any two elements of S1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} or S2 ={(1, 1, 0), (1, 0, 1),

(0, 1, 1)} forms a basis. If R ∼=
Z2[x, y]
(x, y)2

or
Z4[x, y]
(2, x)2

, or
F4[x]
(x2)

, or
Z4[x]

(x2 + x+ 1)
then Γ(R) ∼= K3 and if R ∼= Z2 × F4, then Γ(R) ∼= K1,3.

Theorem 14 [Theorem 2.8, [18]] Let G be a finite connected graph such that
every v ∈ V(G) is distance similar to some vertex u 6= v. Then dim+(G) =
dim(G).

By G∨H, we shall denote the join of two graphs G and H.

Theorem 15 Let R be a commutative ring with unity 1 6= 0, (not a domain).

(1) If |R| = p2, where p is prime, then dim(Γ(R)) = dim+(Γ(R)).

(2) If R is local with order p3, then dim(Γ(R)) = dim+(Γ(R).

Proof. (1). If R is local, then either R is isomorphic to Zp2 or
Zp[x]
(x2)

and

in either case Γ(R) is complete with order p − 1. If R is reduced, then R is
isomorphic to Zp × Zp, so Γ(R) is complete bipartite. Therefore, the result
follows.

(2). If R is a local ring of order p3, then R is isomorphic to one of the

following rings;
Fp[x, y]
(x, y)2

,
Fp[x]
(x3)

,
Zp2 [x]
(px, x2)

, or
Zp2 [x]

(px, x2 − s̄p)
, where s̄ is a non-

square element in Zp. If R ∼=
Fp[x, y]
(x, y)2

, then Z∗(R) = {ux} ∪ {uy} ∪ {ux + u ′y},

where u, u ′ ∈ Fp− {0}. Thus,

∣∣∣∣Γ (Fp[x, y](x, y)2

)∣∣∣∣ = p2−1, and for all u, v ∈ Z∗(R),
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we have uv = 0. Therefore, dim(Γ(R)) = dim+(Γ(R) = p2 − 2. Also, if R ∼=
Zp2 [x]
(px, x2)

, then Z∗(R) = {up}∪ {ux}, where u ∈ Zp− {0}, so Γ(R) ∼= Kp2−1. Next,

if R ∼=
Fp[x]
(x3)

, then Z∗(R) can be partitioned into two subsets; Z1 = {ux2|u ∈

Fp− {0}} and Z2 = {ax+bx2|a ∈ Fp− {0}, b ∈ Zp}. Then Z1 induces a clique on
p−1 vertices and Z2 is an independent subset. Also, for all z1 ∈ Z1 and z2 ∈ Z2,

we have z1z2 = 0. Thus, Γ

(
Fp[x]
(x3)

)
∼= Kp−1 ∨ Tp2−p. Let {u1, u2, · · · , up−1} be

the set of units of Fp and let z2, z
′
2 ∈ Z2, then for 1 ≤ i 6= j ≤ n − 1,

we have d(uix, z2) = d(ujx, z2) = 1 and d(uix, z1) = d(uix, z
′
2) = 1, but

however d(z2, z
′
2) = 2, therefore, the sets Z1 and Z2 partition the vertex set

of Γ

(
Fp[x]
(x3)

)
into distance similar equivalence classes. Therefore, the result

follows by Theorem 14. Finally, if R ∼=
Zp2 [x]

(px, x2 − s̄p)
, where s̄ is a non-square

element in Zp, then we partition the vertex set of Γ

( Zp2 [x]
(px, x2 − s̄p)

)
into the

subsets S1 = {up | u ∈ Zp − {0}} and S2 = {ux} ∪ {up+ u ′x | u, u ′ ∈ Zp − {0}}.
Then for all s1, s

′
1 ∈ S1 and s2, s

′
2 ∈ S2, we have s1s

′
1 = 0, s1s2 = 0 and s2s

′
2 6= 0.

In fact, the collection {S1, S2} partitions the vertex set of Γ

( Zp2 [x]
(px, x2 − s̄p)

)
into distance similar classes, so the result follows by Theorem 14. �

Corollary 16 The metric and the upper dimension of zero divisor graph of
Fp[x, y]
(x, y)2

and
Zp2 [x]
(px, x2)

are equal to p2 − 2 and for the zero divisor graph of

Fp[x]
(x3)

and
Zp2 [x]

(px, x2 − s̄p)
, these two values are both equal to p2 − 3.

Proof. This can be obtained using Theorem 11 in part (2) of Theorem 15
along with Theorem 14. �

In the following theorem, the metric and upper dimension of a class of local
rings is characterized.

Theorem 17 [Theorem 2.9 [16]] Let R be a ring (local) isomorphic to Zpn,
then dim(Γ(R)) = dim+(Γ(R)) = pn−1 − n.

Theorem 18 Let R be a finite commutative ring. If either Γ(R) (or Γ(R))
is a regular graph, then either dim(Γ(R)) = dim+(Γ(R)) = Z∗(R) − 1 or
dim(Γ(R)) = dim+(Γ(R)) = Z∗(R) − 2.
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Proof. If either of the graphs Γ(R) or its complement is regular, then by
Theorem 10, either Z(R)2 = 0 or there is a field F such that R ∼= F × F.
Therefore, either Γ(R) is complete or a complete bipartite graph. Hence the
result follows by Theorem 5. �

Resolving sets for zero-divisor graphs have previously been studied in [17, 19]
and [21]. In these articles, it was noted that distance similarity was a key factor
in determining resolving sets. The following results illustrate this connection
between concepts.

Theorem 19 [Theorem 2.1 [19]] Let G be a connected graph. Suppose G is
partitioned into k distinct distance similar classes V1, V2, . . . , Vk (that is, x, y ∈
Vi if and only if d(x, a) = d(y, a) for all a ∈ V(G) − {x, y}).

(i) Any resolving set W for G contains all but at most one vertex from each
Vi.

(ii) Each Vi induces a complete subgraph or a graph with no edges.

(iii) dim(G) ≥ |V(G)|− k.

(iv) There exists a minimal resolving set W for G such that if |Vi| > 1, at
most |Vi|− 1 vertices of vi are elements of W.

(v) If m is the number of distance similar classes that consist of a single
vertex, then |V(G)|− k ≤ dim(G) ≤ |V(G)|− k+m.

Theorem 20 Let R be a reduced Artinian ring with unity (not a domain)
containing no factor isomorphic to Z2. Then dim+(Γ(R)) = dim(Γ(R)).

Proof. It is a well known fact that every reduced Artinian ring is a direct
product of fields. Therefore, we can write R ∼= R1 × R2 × · · · × Rm, for some
positive integer m, where each Ri, 1 ≤ i ≤ m is a field.

Therefore, V(Γ(R)) ={(r1, r2, . . . , rm): ri ∈ Ri, with ri 6= 0 for some i and
rj = 0 for some j, 1 ≤ i, j ≤ m} and two vertices x = (x1, x2, . . . , xm) and
y = (y1, y2, . . . , ym) are adjacent if and only if either xi = 0 or yi = 0. Assume
that |Ri| > 2 for each i and choose xi ∈ R∗i . Consider the set E ={(x1, 0, . . . , 0),
(x1, x2, 0, . . . , 0), . . . , (x1, x2, . . . , xm−1, 0)}. Then clearly, no two vertices are
adjacent in E. Now, for 1 ≤ i ≤ m − 1, let Ei denote the collection of those
vertices of Γ(R) having exactly i non-zero coordinates. In particular, let
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E1 =
{(
x1, 0, . . . , 0

)
,
(
0, x2, 0, . . . , 0

)
, . . . ,

(
0, 0, . . . , 0, xm

)}
,

E2 =
{(
x1, x2, 0, . . . , 0

)
,
(
x1, 0, x3, 0, . . . , 0

)
, . . . ,

(
x1, 0, . . . , 0, xm

)
, (0, x2, x3, 0, . . . , 0),(

0, x2, 0, x4, 0 . . . , 0
)
, . . . ,

(
0, x2, 0, . . . , xm

)
,
(
0, · · · , 0, xm−1, xm

)}
,

...

Em−1 =
(
x1, . . . , xm−1, 0

)
,
(
x1, . . . , xm−2, 0, xm−1

)
, . . . ,

(
0, x2, . . . , xm

)
.

It is easy to see that the collection E1, E2, · · · , Em−1 partitions the vertex
set of Γ(R) and for xi ∈ R∗i , each Ei, 1 ≤ i ≤ m− 1, defines a distance similar
equivalence class. Also, as |Ri| > 2 for each i, therefore each Ei has at least
two vertices. Therefore, the result follows by Theorem 14. �

Remark 21 dim+(Z2 × Z2) = dim(Z2 × Z2) = 1, dim+(Z2 × Z2 × Z2) =
dim(Z2 × Z2 × Z2) = 2. If R ∼= Z2 × Z2 × Z2 × Z2, then dim(Γ(R)) = 3,
with B ={(1,1,1,0), (1,1,0,1), (1, 0, 1, 1)} an example of a minimal resolving
set, whereas with B ′ ={(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} as
an example of a minimal resolving set, we have dim+(Γ(R))= 4. Notice that
a vertex z of ΠZn

2 is a pendent vertex if and only if z has exactly one zero
coordinate and for n = 4, any three (i.e n − 1) pendent vertices of ΠZ42 form
a metric basis. However, the same does not follow if n ≥ 5 as can be seen in
Theorem 28 to the end of this section.

Theorem 22 Let R1 be a finite commutative ring with unity and R2 be an
integral domain.

(i) If R1 ∼= F1 × F2 × · · · × Fk, where each Fi is a field and Fi 6= Z2 for each
i, 1 ≤ i ≤ k and if R2 6= Z2, then dim+(Γ(R1 × R2)) = dim(Γ(R1 × R2)).

(ii) If R1 ∼= Zpk, where k ≥ 2,, then dim+(Γ(R1 × R2)) = dim(Γ(R1 × R2)).
(iii) If R1 is a local ring other than Zpk, such that Γ(R1) is a complete graph,

then dim+(Γ(R1 × R2)) = dim(Γ(R1 × R2))

Proof. (i) Let R1×R2 ∼= S1×S2× . . . Sm, where |Si| 6= 2 for each i, 1 ≤ i ≤ m.
Then consider the following partition of V(Γ(R1 × R2).

A
(1)
1 , A

(2)
1 , . . . , A

(m)
1 , A

(1,2)
2 , A

(1,3)
2 , . . . , A

(1,m)
2 , A

(2,3)
2 , A

(2,4)
2 , . . . , A

(2,m)
2 ,

. . . , A
(m−1,m)
2 , . . . , A

(1,2,...,m−1)
m−1 , A

(1,2,...,m−2,m)
m−1 , . . . , A

(2,3,...,m)
m−1 ,
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where A
(s)
i denotes the subset of Z∗(R1 × R2) having i non-zero coordinates

and the non-zero positions are given by the string (s). For example, let si ∈ S∗i ,
then A

(2)
1 = {(0, s2, 0. . . . , 0)}, A

(124)
3 = {(s1, s2, 0, s4, 0, . . . , 0)}, etc. The above

partition of V(Γ(R1 × R2)) is obtained by an equivalence relation " ∼ " defined
in the following way: let S = (s1, s2, . . . , sm) and S ′ = (s ′1, s

′
2, . . . , s

′
m), then

S ∼ S ′ if and only if whenever si = 0, then s ′i = 0. Also, the number of
equivalence classes is equal to 2m − 2. As |Si| > 2 for each i, 1 ≤ i ≤ m,

we have each A
(s)
i induces a subgraph of order at least 2 and size 0 and it

is not difficult to see that each A
(s)
i is a distance similar equivalence class.

Therefore, the result follows by Theorem 14
(
in fact by Theorem 11, since

every basis misses exactly one vertex from each equivalence class, we have
dim+(Γ(R1 × R2)) = dim(Γ(R1 × R2)) = |Z∗(R1 × R2)|− (2m − 2)

)
.

(ii) First assume that R1 ∼= Z4. Then R1 × R2 ∼= Z4 × F, where F =
{f0, f1, . . . , ft} is an integral domain and f0 is the zero element of F. If F =
Z2, then R1 × R2 ∼= Z4 × Z2 and the result is true in this case. So assume
|F| > 2. Consider the vertex set Z∗(R1 × R2) of Γ(R1 × R2) and let A =
{1, 3} × {0} = {(1, 0), (3, 0)}, B = {0} × {f1, f2, . . . , ft}, C = {(2, 0)} and D =
{2} × {f1, f2, . . . , ft}, where t ≥ 2. Then the sets A,B,C and D partition
the vertex set of Γ(Z4 × F) into the distance similar equivalence classes with
|A| > 1, |B| > 1, |D| > 1 and |C| = 1. Thus, every basis contains all elements of
A,B and D but one element from each set, by Theorem 11. Without loss of
generality, let B = {(1, 0)}∪

(
B− {(0, f1)}

)
∪
(
D− {(2, f1)}

)
. Then r((3, 0)|B) =

(2, 1, . . . , 1, 2, . . . , 2), r((0, f1)|B) = (1, 2, . . . , 2), r((2, f1)|B) = (2, 2, . . . , 2) and
r((2, 0)|B) = (2, 1, . . . , 1). Therefore, B is the basis. Consequently, the only
element of C does not belong to any basis.

Hence, dim+(Γ(Z4 × F)) = dim(Γ(Z4 × F)) = 2|F| − 3. Now, assume that
R1 ∼= Zpn , where pn 6= 4 and R2 is a domain. We partition the vertex set
of Γ(Zpn) into n− 1 disjoint subsets of the form V1, V2, . . . , Vn−1, where Vi =
{kip

i : p - ki}, 1 ≤ i ≤ n−1. We see that |Vi| = (p−1)pn−i−1, 1 ≤ i ≤ n−1 and
that |Γ(Zpn)| = pn−1 − 1. In fact the sets V1, V2, . . . , Vn−1 gives the partition
of V(Γ(Zpn)) into distance similar equivalence classes of cardinality at least 2
except for the case that |Vn−1| = 1, when p = 2.

Define the sets A = U(R1)×{0}, B = {0}×R∗2, Ci = Vi×{0} and Di = Vi×R∗2,
where 1 ≤ i ≤ n − 1. The collection P = {A,B,C1, C2, . . . , Cn−1, D1, D2, . . . ,
Dn−1} gives the partition of vertex set of Γ(R1 × R2) into distance similar
equivalence classes. Notice that |B| = 1 if and only if R2 ∼= Z2, |Ci| = 1 if and
only if p = 2 and i = n − 1, and |Di| = 1 if and only if p = 2, i = n − 1 and
R2 ∼= Z2. So first assume that p > 2. Then if R2 � Z2, then the collection P
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gives the partition in which each set has cardinality at least 2. Therefore, the
result follows by Theorem 14. Now, if p > 2 and R2 ∼= Z2, then |R1×R2| = 2k,
where k is an odd integer. Therefore, the result follows by Theorem 9.

Finally, assume that R1 ∼= Z2n , n ≥ 3. If R2 � Z2, then each set in the
collection P has at least 2 elements except Cn−1. Without loss of generality,
by Theorem 11, we construct the set B ′ which takes all elements but one
from each element of P − Cn−1. Now, it can be easily seen that the set B ′

gives distinct representations to each vertex of Γ(R1×R2). Therefore, there is a
basis (which is both a metric as well as an upper basis) which does not contain
the only element of Cn−1. Hence, the result follows by Theorem 14 and 11.
Lastly, if R2 ∼= Z2, then the sets in the collection P that have only one element
are B, Cn−1 and Dn−1. Utilizing Theorem 11, we construct B ′′ by taking all
elements but one from each element of P − {B, Cn−1, Dn−1}. The set B ′′

so constructed gives distinct representations to all the vertices of Γ(R1 × R2).
Hence, B ′′ is a resolving set and so dim+(Γ(Z2n × Z2)) = dim(Γ(Z2n × Z2))
by Theorem 14 and 11.

(iii) Since R1 is local finite commutative ring with unity, therefore |R1| = p
n

for some prime p and a positive integer n. Let Z∗(R1) = {r1, r2, . . . , rt} be the
set of all non-zero zero divisors of R1 and U(R1) be the set of units of R1. We
partition the vertex set of Γ(R1 × R2) as follows:

X = Z∗(R1)× {0}, Y = {0}× R∗2

Z = U(R1)× {0}, Xi = {ri}× R∗2, 1 ≤ i ≤ t.

If R1 ∼=
Z2[x]
(x2)

, then the proof follows similarly as in the case when R1 ∼= Z4.

Hence, we assume that R1 �
Z2[x]
(x2)

for the rest of the proof. Assume that Γ(R1)

is a complete graph, therefore the set X induces a clique. Now, first consider
the case, when R2 � Z2. In this case, |X| > 1, |Y| > 1, |Z| > 1 and |Xi| > 1

for each i, 1 ≤ i ≤ t and each of the sets X, Y, Z and Xi, 1 ≤ i ≤ t defines
a distance similar equivalence class. Therefore, the result follows by Theorem
14. Now, let R2 ∼= Z2 and |R1| = pn. If p > 2, then |R1 × R2| = 2k, where k
is an odd integer and therefore the result follows by Theorem 9. Finally, let
|R1| = 2n and R2 = Z2. In this case, we partition the vertex set of Γ(R1 × R2)
into the sets,

X = Z∗(R1)× {0}, Y = {0}× R∗2 = {(0, 1)}

Z = U(R1)× {0}, and Ẑ = Z∗(R1)× R∗2 = Z∗(R1)× {1}.
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Notice that the set X induces a clique and each of the sets Y, Z, Ẑ is indepen-
dent. Each x ∈ X is adjacent to (0, 1) and ẑ for all ẑ ∈ Ẑ. The only element of
Y i.e., (0, 1) is also adjacent to each z ∈ Z and each element of Z is a pendent
vertex. These are the only adjacencies in Γ(R1 × Z2), where R1 is local other
that Zpn and not a domain.

The collection P = {X, Y, Z, Ẑ} is the partition of V(Γ(R1×R2)) into distance
similar equivalence classes. Without loss of generality, using Theorem 11, we
form a set B ′′′ =

(
X − {x}

)
∪
(
Z − {z}

)
∪
(
Ẑ − {ẑ}

)
for some x ∈ X, z ∈ Z and

ẑ ∈ Ẑ. But however each vertex of Γ(R1×R2) has a unique representation with
respect to B ′′′, therefore B ′′′ forms a resolving set. Consequently, the unique
element of Y does not belong to any metric basis (and upper basis). Therefore,
by Theorem 14 and 11, dim+(Γ(R1 × R2)) = dim(Γ(R1 × R2)) and in fact this
number equals (|X| − 1) + (|Z| − 1) + (|Ẑ| − 1) = (|Z∗(R1)| − 1) + (|U(R1)| −
1) + (|Z∗(R1)| − 1). Since R1 is a finite commutative ring with unity and so
each element is either a unit or a zero divisor, therefore dim+(Γ(R1 × R2)) =
dim(Γ(R1 × R2)) = |R1|+ |Z∗(R1)|− 4. This completes the proof. �

Remark 23 Let R = {x0, x1, . . . , xn, . . . }, where x0 is the zero element of R,
be an integral domain, the vertex set of the zero divisor graph Γ(Z4 × R) can
always be partitioned into four distance similar equivalence classes namely,
A = {1, 3}× {0} = {(1, 0), (3, 0)}, B = {0}× {x1, x2, . . . , xn, . . . }, C = {(2, 0)} and
D = {2}×{x1, x2, . . . , xn, . . . }. Choose a vertex a ∈ A, b ∈ B, c ∈ C and d ∈ D.
Then for all a, b, c and d, we have deg(a) = |R| − 1, deg(d) = 1, deg(b) = 3
and deg(c) = 2|R| − 2. For an integral domain R, the zero divisor graphs
associated to Z4 × R have similar shape except to the number of vertices in
the partitions B and D, and degrees of vertices in the partitions A,C and D.

Example 24 Let R1 = Z4 or
Z2[x]
(x2)

and R2 = F16. Then, by Theorem 22, we

have Dim+(Γ(Z4 × F16)) = Dim(Γ(Z4 × F16)) = 2|F16| − 3 = 29. From the
zero divisor graph of Γ(Z4 × F16) (see Figure 2), we notice that for a field F,
a metric basis (or upper basis) for Γ(Z4 × F) can be formed by taking one
element from A = {(1, 0), (3, 0)} and any |F| − 1 elements from each of the
sets B = {0} × U(F) and D = {2} × U(F). Therefore, Dim+(Γ(Z4 × F)) =
Dim(Γ(Z4 × F)) = 2(|F|− 2) + 1 = 2|F|− 3.

Now, if R1 = Z16 and R2 = Z2, then under the notations of Theorem 22, we
have

A = U(R1)× {0} = {(1, 0), (3, 0), (5, 0), (7, 0), (9, 0), (11, 0), (13, 0), (15, 0)}
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B = {0}× {1} = {(0, 1)}, C1 = V1 × {0} = {(2, 0), (6, 0), (10, 0), (14, 0)}

C2 = V2 × {0} = {(4, 0), (12, 0)}, C3 = V3 × {0} = {(8, 0)}

D1 = V1 × {1} = {(2, 1), (6, 1), (10, 1), (14, 1)}

D2 = V2 × {1} = {(4, 1), (12, 1)}, D3 = V3 × {1} = {(8, 1)}

Therefore, by Theorem 22, Dim+(Γ(Z16×Z2)) = Dim(Γ(Z16×Z2)) = (|A|−1)
+(|C1|− 1) +(|C2|− 1) +(|D1|− 1) +(|D2|− 1) = 7+ 3+ 1+ 3+ 1 = 15.

In general, we see that for any positive integer n ≥ 3,

Dim+(Γ(Z2n × Z2)) = Dim(Γ(Z2n × Z2))

= (|U(R1)|− 1)+

n−2∑
i=1

(|Ci |− 1)+

n−2∑
i=1

(|Di |− 1)

= (2n−1 − 1)+2

n−2∑
i=1

(|Vi |− 1)

= (2n−1 − 1)+2
(
|V1|+|V2|+ · · ·+ |Vn−2|− (n− 2)

)
= (2n−1 − 1) + 2(|Γ(Z2n)|− n+ 1)

= 2n + 2n−1 − 2n− 1.

Now, let S1 =
F4[y]
(y2)

, where F4 =
Z2[x]

(1+ x+ x2)
is a field with four elements.

Then S1 is a local ring such that Γ(S1) is a complete graph (∼= K3) and let
S2 = Z2. Then in the notations of Theorem 22, the distance similar equivalence

partition for Γ

(F[y]
(y2)

× Z2
)

is given as (see Figure 2, Γ

(
F4[y]
(y2)

× Z2
)

,

X = {(y, 0), (xy, 0), (xy+ y, 0)}, Y = {(0, 1)}, Ẑ = {(y, 1), (xy, 1), (xy+ y, 1)}

Z = {(1, 0), (x, 0), (1+ x, 0), (1+ y, 0), (x+ y, 0), (1+ x+ y, 0), (xy+ 1, 0), (x+ xy, 0),

(1+ x+ xy, 0), (1+ y+ xy, 0), (x+ y+ xy, 0), (1+ x+ y+ xy, 0)}.

The set of pendant vertices in Γ

(
F4[y]
(y2)

× Z2
)

is the set of vertices given

by Z = U(R1) × {0}. Therefore, by Theorem 22, Dim+

(
Γ

(
F4[y]
(y2)

× Z2
))

=

Dim

(
Γ

(
F4[y]
(y2)

× Z2
))

=

∣∣∣∣F4[y](y2)

∣∣∣∣+ ∣∣∣∣Z∗(F4[y](y2)

)∣∣∣∣− 4 = 16+ 3− 4 = 15.
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Figure 2:

A similar partition of Γ(Z8×F4) and Γ(Z3×Z3×Z3) into the distance similar
equivalence classes is displayed in Figure 2.

We also notice that the graphs given in Figure 2 are either symmetric with
respect to horizontal or vertical axis. This symmetry is achieved easily with
the help of partition given in Theorem 22.

A (connected) graph G is said to be Hamiltonian if it contains a cycle that
traverses every vertex of G. In the following theorem, R× shall denote the set
of units of the ring R.

Theorem 25 Let R ∼= R1×R2 be a commutative ring such that dim+(Γ(R)) <∞. Then if Γ(R) is Hamiltonian, dim+(Γ(R)) = dim(Γ(R)).

Proof. As dim+(Γ(R)) < ∞, therefore by Theorem 7, R is finite. We claim
that if Γ(R) has to be Hamiltonian then both R1 and R2 must be integral
domains. Assume to the contrary and define X = {0}× Z∗(R2) and Y =

(
R1 −

Z(R1)
)
× Z∗(R2). Then there is x ∈ X and y ∈ Y such that xy = 0 and for

every y1, y2 ∈ Y, we have y1y2 6= 0, i.e., Y is an independent subset of V(Γ(R)).
Now, by definition, a Hamiltonian cycle in Γ(R) contains all vertices of Y and
therefore contains a matching between X and Y. As the set Y is an independent
subset of vertices, it follows that |Y| ≤ |X|. But this implies that |R1−Z(R1)| ≤
1 whence it follows that identity element is the only unit in R1. Therefore,
R1 ∼= ΠZk2 for some positive integer k. Let z1 = (1, 1, · · · , 1, 0) ∈ R1, then the
vertex (z1, 1) ∈ V(Γ(R1×R2)) is only adjacent to z2 = (0, 0, · · · , 0, 1, 0), which
is a contradiction to the fact that Γ(R) is Hamiltonian. Thus, both R1 as well
as R2 are integral domains, therefore the vertex set of Γ(R) can be partitioned
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into two distance similar equivalence classes V1 = R
×
1 × {0} and V2 = {0}× R×2

(of orders |R1| − 1 and |R2| − 1). Now, if either |R1| = 2 or |R2| = 2. then Γ(R)
is a star graph, otherwise the result follows by Theorem 14. �

In the following theorem, we give a formula for computing the metric and
upper dimension of zero divisor graph of a class of rings given by Γ(R)×Γ(Z2×
Z2) and prove that the two are equal.

Theorem 26 Let R be a finite commutative ring with unity such that xy = 0
for all x, y ∈ Z∗(R). Then dim(Γ(R)×Γ(Z2×Z2)) = dim+(Γ(R)×Γ(Z2×Z2)) =
|Z∗(R)|− 1, where |Z∗(R)| ≥ 3.

Proof. Let G = Γ(R) × Γ(Z2 × Z2). Assume the two copies of Γ(R) in G

be denoted by Γ 1 and Γ 2. Let V(G) = {x1, x2, . . . , xn, y1, y2, . . . , yn}, where
|Z∗(R)| = n, such that x ′is and y ′js, 1 ≤ i, j ≤ n, are vertices of Γ 1 and Γ 2
respectively and suppose, without loss of generality, the adjacencies between
Γ 1 and Γ 2 be xi ∼ yj if and only if i = j.

For n =3, it is easily verified that any two vertex subset of Γ i, i = 1, 2, is a
metric and an upper basis for G. Note that in this case, the basis sets of Γ(R)
are the only basis sets of Γ(R)× Γ(Z2 × Z2). So assume n ≥ 4.

Let B be a minimal resolving set for G. If xi, xj ∈ V(G)−B with i 6= j such
that yi 6∈ B and yj 6∈ B, then r(xi|B) = r(xj|B), since d(xt, xi) = d(xt, xj) = 1
for all xt ∈ B and d(ys, xi) = d(ys, xj) = 2 for all ys ∈ B. Hence, |B| ≥ n− 1.

For an example of a minimal resolving set of order n−1, consider B0 = {x1,
x2, . . . , xn−1}. Note that r(xn|B0) = (1, 1, . . . , 1), r(yn|B0) = (2, 2, . . . , 2) and,
for each 1 ≤ i < n, r(yi|B0) is the vector with 1 in the ith coordinate and 2
in all other coordinates. With a similar argument, it can be shown that every
subset B1 of order n− 1 for which B1 ∩ {xi, yi} = ϕ for only one index i and
|B1 ∩ {xj, yj}| = 1 for all j 6= i is a minimal resolving set.

Next, assume B2 is a minimal resolving set with |B2| ≥ n. Then B2 cannot
contain a subset of the type described in the previous paragraph. Hence, there
must be some k such that xk ∈ B2 and yk ∈ B2.

Consider B3 = B2 − {xk}. We will show that B3 is a resolving set. Suppose
a, b ∈ V(G) − B2 with a 6= b and r(a|B3) = r(b|B3) but r(a|B2) 6= r(b|B2).
This means, without loss of generality, d(a, xk) = 1 and d(b, xk) = 2. Thus
a = xr for some r 6= k and b = yq for some q 6= k. But then d(a, yk) = 2

and d(b, yk) = 1, contradicting r(a|B3) = r(b|B3). Hence, if a, b ∈ V(G)−B2

with a 6= b, then r(a|B3) 6= r(b|B3).
Finally, assume c ∈ V(G) − B2 such that r(c|B3) = r(xk|B3). Since this

implies d(c, yk) = d(xk, yk) = 1, c = yp for some p 6= k. If there is some
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ym ∈ B3 with m 6∈ {k, p}, then d(xk, ym) = 2 and d(c, ym) = 1. If there is
no such ym ∈ W3, since |B3| ≥ n − 1 ≥ 3, there must be some xg ∈ B3

with g 6∈ {k, p}. Then, d(xk, xg) = 1 and d(c, xg) = 2. In all possible cases,
r(xk|B3) 6= r(c|B3). Thus W3 is a resolving set, showing that B2 was not
a minimal resolving set. Hence, any minimal resolving set must have n − 1
elements. �

Note. If R is a finite commutative ring with |Z∗(R)| = 2, then Γ(R) ∼= K2 so

that R ∼= Z2 ×Z2, or Z9 or
Z2[x]

(x2)
and so in this case Γ(R)× Γ(Z2 ×Z2) ∼= K2,2,

therefore dim (Γ(R)× Γ(Z2 × Z2)) = dim+ (Γ(R)× Γ(Z2 × Z2)) = 2.

Corollary 27 Let F be a finite field and let R =
F[x1, x2, · · · , xn]

I
, where I is

the ideal generated by the set {xixj|1 ≤ i ≤ n, 1 ≤ j ≤ n}. Then dim+(Γ(R) ×
Γ(Z2 × Z2)) = dim(Γ(R)× Γ(Z2 × Z2)) = |F|n − 2.

Proof. We write R =
F[x1, x2, · · · , xn]

I
= {a0+a1x1+· · ·+anxn : ai ∈ F}. Thus,

Z(R) = {a1x1 + · · · + anxn : ai ∈ F, i = 1, 2, . . . , n}. Hence Z∗(R) = |F|n − 1.
Clearly, the product of any two elements of Z(R) is zero. Hence the result
follows. �

Theorem 28 If n ≥ 4 is a positive integer, then dim+(ΠZn

2 ) ≥ n.

Proof. Assume n ≥ 4, and choose a subset B = {e1, e2, . . . , en} ⊂ V(Γ(ΠZ
n

2 )),
where ei has ith coordinate as non-zero and all other coordinates zero. Put
e = e1+e2+ · · ·+en, and let z be any vertex in V(ΠZn

2 )−B. Then d(v, ei) = 1
if and only if ith coordinate of v is zero, otherwise d(v, ei) = 2. Therefore,
r(v|B) = v+e and so B forms a resolving set for Γ(ΠZn

2 ). Further, one can see
that B forms a minimal resolving set, as by removing ei from B to obtain Bi,
1 ≤ i ≤ n−1, the vertices x = e1+e2+· · ·+en−1 and y = e1+e2+· · ·+en−1−ei
have the same representations with respect to B− {ei}. Also, with respect to
Bn = W − {en}, the vertices x ′ = e2 + e3 + · · · + en and y ′ = x ′ − en have
the same representations. This shows that B forms an upper basis for ΠZn

2 .
Consequently it follows that dim+(ΠZn

2 ) ≥ n. �

Remark 29 As an illustration to Theorem 28, we choose an example of a
minimal resolving set for ΠZ52 as B =(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0,
0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1), where by removing (1, 0, 0, 0, 0)
from B to obtain B1, we have r((1, 1, 1, 1, 0)| B1) = r((0, 1, 1, 1, 0)
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| B1) =(2, 2, 2, 1), removing (0,1,0,0,0) to get B2 gives r((1, 1, 1, 1, 0) | B2)
= r((1, 0, 1, 1, 0)|B2) = (2, 2, 2, 1), removing (0, 0, 1, 0, 0) to obtain B3 gives
r((1, 1, 1, 1, 0) | B3) = r((1, 1, 0, 1, 0) | B3)= (2, 2, 2, 1), removing (0, 0, 0, 1,
0) to get B4 gives r((1, 1, 1, 1, 0) | B4) = r((1, 1, 1, 0, 0) | B4) = (2, 2, 2, 1) and
removing (0, 0, 0, 0, 1) to get B5 gives r((0, 1, 1, 1, 1) | B5) = r((0, 1, 1, 1, 0)
| B5) = (1, 2, 2, 2).

While examining the metric dimension (and upper dimension) of zero divisor
graphs of small finite commutative rings R with |V(Γ(R))| ≤ 14, we found
that there is only one ring i.e., R ∼= ΠZn2 , n ≥ 4 for which dim+(Γ(R)) 6=
dim(Γ(R)). It has been earlier shown in Remark 21 that dim(Γ(ΠZ42)) = 3,
whereas dim+(Γ(ΠZ42)) = 4. It is also not difficult to check that a set of
n(n−1)
2 −1 elements of ΠZn2 , n ≥ 4, that have exactly two non-zero coordinates

forms a minimal resolving set for Γ(ΠZn2 ). A complete list of rings with 14 or
fewer vertices with given metric dimension can be found in [19] and the zero
divisor graphs of such rings can be found in [22].

Unlike Theorem 1 for graphs in general, with the results obtained in this
paper and the observations made during the work and by the inspection of
the zero divisor graphs of rings, there is a reason to believe that the metric
dimension and the upper dimension of zero divisor graph of a ring R is always
same, unless R ∼= ΠZn2 , n ≥ 4. We conclude the paper with the following open
problem.

Conjecture 30 Let R be a finite commutative ring with unity 1 6= 0, then
dim+(Γ(R)) = dim(Γ(R)), unless R ∼= ΠZn2 , where n ≥ 4.
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