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Abstract. This paper initiates a study on a new coloring regime which
sets conditions in respect of the degrees deg(v) and deg(u) where, v, u ∈
V(G) and vu ∈ E(G). This new coloring regime is called, ”degree tolerant
coloring”. The degree tolerant chromatic number is defined. A number
of interesting introductory results are presented. Amongst others, new
Nordhaus-Gaddum type bounds are provided.

1 Introduction

For general notation and concepts in graphs see [2, 5, 8]. Throughout only
finite, undirected, simple graphs will be considered. It is assumed that the
reader is familiar with the concept of graph coloring. Recall that in a proper
coloring of G all edges are good i.e. ∀ uv ∈ E(G), c(u) 6= c(v). The set of
colors assigned in a proper graph coloring is denoted by C and a subset of
colors assigned to a subset of vertices X ⊆ V(G) is denoted by c(X). In an
improper (or defect) coloring it is permitted that for some uv ∈ E(G), the
coloring is c(u) = c(v). It is evident that improper coloring has been formally
defined and studied by [3, 4, 6].

Since any graph G has the parameters, δ(G) and ∆(G), an integer degree
condition related to an integer k, δ(G) ≤ k ≤ ∆(G) will be introduced. For
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a ”degree tolerant coloring” abbreviated as, DT -coloring of a graph G the
following conditions are set:

(i) If uv /∈ E(G) then, either c(u) = c(v) or c(u) 6= c(v);
(ii) If uv ∈ E(G) and deg(u) = deg(v) then, c(u) = c(v) else, c(u) 6= c(v).
Alternative formulation for condition (ii). If uv ∈ E(G) then, c(u) = c(v) if

and only if deg(u) = deg(v).
The motivation for this study is that, it is fundamentally acceptable to

”do mathematics for the sake of mathematics”. From an application point
of view the vertices could represent communication elements (graph vertices
in graph context) in a communication network. Failure of a communication
vertex u could be replaced by a neighbor v if and only deg(u) = deg(v).
This can be made possible by imbedding equivalent or identical technology in
both u and v. The technology equivalence is characterised by equal degrees for
such pair of neighbors. The aforesaid could be viewed as spontaneous merging
of such vertices on failure of any one vertex. Hence, a maximum number of
such merging operations exists for a communication network before complete
communication failure occurs. Analogy is found in electrical networks where
one network relies on say, conventional fossil fuel generation and another relies
of solar generation which is then distributed via an inverter plant. On failure
of either, the neighbor can provide electricity to the other through a switch
over protocol. The author foresees that interesting informatica research can
result from this introductory paper.

The minimum number of colors which yields a DT -coloring is called the
degree tolerant chromatic number of G and is denoted by, χdt(G). For certain
classes of connected graphs the value of χdt(G) follows immediately. For ex-
ample, for paths we have χdt(P1) = χdt(P2) = 1 and χdt(Pn) = 2, n ≥ 3. For
all cycles, χdt(Cn) = 1, n ≥ 3. All regular graphs G have χdt(G) = 1. Also,
the null graph (edgeless) Nn has χdt(Nn) = 1. Clearly there exist graphs for
which, χdt(G) ≤ χ(G). However, it is easy to verify that the graph G in Figure
1 has, χdt(G) > χ(G).

As an introductory paper a variety as aspects are considered. Section 2
deals with preliminaries on general results and with elementary graph oper-
ations. Section 3 deals with three standard graph products. In addition, new
Nordhaus-Gaddum type bounds are provided. In the conclusion some further
research avenues are mentioned.
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Figure 1: Graph G for which χ(G) = 2 and χdt(G) = 3

2 Some general results

In the literature a wide range of coloring regimes have been defined and many
have been well researched. It is rare to find a formal result to show that all
graphs permit a particular coloring regime. The aforesaid is mostly stated or
silently assumed to be true. However, there does exist at least one coloring
regime called, Johan coloring (or J -coloring) which is not permitted by all
graphs. See [7] and related references. It cannot be assumed that all graphs
permit a DT -coloring but this is true in this case.

Theorem 1 Any graph permits a DT -coloring.

Proof. We proof the result through induction on n. At first, assume the graph
G is a connected graph of order n. It is known that χdt(K1) = 1 hence, the
result holds a connected graphs of order 1. Also, χdt(P2) = 1 hence, the result
holds for all connected graphs of order 2. For n = 3 we have two cases to
consider.

Case 13. Let G = P3. It is known that, χdt(P3) = 2.
Case 23. Let G = K3. Since K3 is a regular graph, χdt(K3) = 1.
Thus far the result holds for all connected graphs of order 3.

For connected graphs of order 4, six cases up to isomorphism must be consid-
ered.

Case 14. For P4 we have, χdt(P4) = 2.
Case 24. For the star S1,3 it easily follows that, χdt(S1,3) = 2.
Case 34. For the graph G obtained from K3 on vertices v1, v2, v3 with a

single pendant vertex u attached to any vertex of K3 say, to v1 the coloring,
c(v1) = c1, c(v2) = c(v3) = c(u) = c2 is a permissible DT -coloring.
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Case 44. For the graph C4 a DT -coloring is permissible because C4 is regular.
Case 54. For the graph G obtained from C4 on vertices v1, v2, v3, v4 with

the addition of a chord say, v1v3, the coloring c(v1) = c(v3) = c1 and c(v2) =
c(v4) = c2 is a permissible DT -coloring.

Case 64. It is known that K4 permits a DT -coloring.
The basis for the induction assumption is now well established. Assume the

result holds for all connected graphs on 1 ≤ q ≤ n vertices. Let the distinct
connected graphs of order n up to isomorphism be, G1, G2, G3, . . . , Gκ.
Consider any connected graph Gi, 1 ≤ i ≤ κ on q = n vertices. To reason for
the case q = n + 1 begin with the disconnected graph Gi ∪ K1. Let V(K1) =
{vn+1}. Also assume the color set C = {ci : i = 1, 2, 3, . . . , k} is a DT -coloring
set of Gi.

Construct G ′i by adding any number of edges say, t edges, 1 ≤ t ≤ n given
by,

X = {vn+1vi, vn+1vj, vn+1vk, . . . , vn+1vs}︸ ︷︷ ︸
(t edges)

.

Clearly, deg(vn+1) = t. Also the open neighborhood of vn+1 is, N(vn+1) = X =
{vi, vj, vk, . . . , vs}.

If deg(vn+1) 6= deg(vi), vi ∈ X then let c(vn+1) be any color in C\c(X)
if possible else, assign a new color say c∗. In both cases, be it C or C ∪ {c∗}
assigned, a minimum DT -coloring is obtained.

If deg(vn+1) = deg(vi), for some vi ∈ X we have the following subcases.
(i) If deg(vn+1) = deg(vi), for exactly one vi ∈ X, let c(vn+1) = c(vi) to

yield a permissible DT -coloring of G ′i.
(ii) Let deg(vn+1) = deg(vi), for two or more vertices in X. If the said

two or more adjacent vertices have identical coloring say, color cr then assign
c(vn+1) = cr. If at least one of the said adjacent vertices has a coloring other
than the rest then recolor to c(X∪ {vn+1}) any color in C and through iterative
neighborhood re-assigned coloring obtain a DT -coloring, ϕ : V(G ′i) 7→ C if pos-
sible. Otherwise, assign c(X∪ {vn+1}) = c∗. Therefore, C ∪ {c∗} is a permissible
DT -coloring of G ′i.

Through immediate induction the results holds for all connected graphs G ′i,
1 ≤ i ≤ κ. Put differently, it holds for all connected graphs of order n + 1.
Hence, for all connected graphs of order q, 1 ≤ q ≤ n+ 1. Therefore, through
mathematical induction it hold for all connected graphs of finite order.

Assume the graph H has t connected components i.e. H1, H2, H3, . . . , Ht.
Clearly, χdt(H) = max{χdt(Hi) : for some i, 1 ≤ i ≤ t}. Since all Hi permit a
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DT -coloring it follows that H permits a DT -coloring. Hence, the result holds
for any simple graph of order n, n ∈ N. �

Remark: The proof of Theorem 1 can be achieved through a reconstructive
technique. Recall that the formal definition of a graph G of order n is, an
ordered triple (V(G), E(G), ιG) consisting of an non-empty set V(G) of vertices
say, {v1, v2, v3, . . . , vn} and a set E(G), disjoint from V(G), of edges and an
incidence function, ιG that associates with each edge of G an unordered pair of
vertices of G (vertices in an unordered pair are not necessarily distinct). Begin
with the null graph (edgeless) denoted by, Nn on the vertices {v1, v2, v3, . . . , vn}.
Note that χdt(Nn) = 1. Let E(G) = {e1, e2, e3, . . . , eq}. Reconstruct G by
iteratively adding the edges ei, i = 1, 2, 3, . . . , q and by assigning aDT -coloring
iteratively. Observe that after adding the edge e1 the result, χdt(Nn + e1) =
1 follows. If edge e2 is added such that e1, e2 are incident then the result,
χdt((Nn+e1)+e2) = 2 follows. Else, χdt((Nn+e1)+e2) = 1. The observation is
that G can be reconstructed iteratively and after each iteration a DT -coloring
can be assigned. Formalising this approach as a proof is left to the reader.

Henceforth, only simple connected graphs will be considered. We now present
some general results for χdt(G). Note that χdt(Kn) = 1 because Kn is a regular
graph.

Theorem 2 For n ∈ N there exists a graph G with, χdt(G) = n.

Proof. Obviously, χdt(K1) = 1. Also, χdt(P3) = 2. For n ≥ 3 begin with the
complete graph Kn. Let V(Kn) = {v1, v2, v3, . . . , vn}. Construct a new graph G
by attaching to each vertex vi an arbitrary number ki ≥ 0 pendent vertices
such that, ki 6= kj if and only if i 6= j. Clearly dG(vi) 6= dG(vj) if i 6= j. However,
vivj ∈ V(G) hence, c(vi) 6= c(vj). Therefore, χdt(G) ≥ n. Without loss of
generality let the pendent vertices adjacent to vi be labeled ui,`, 1 ≤ ` ≤ ki.
Because dG(ui,`) = 1 ≤ dG(vi) and ui,`vi ∈ E(G) the coloring c(ui,`) = cj,
j 6= i is permissible. Thus χdt(G) ≤ n and the result, χdt(G) = n follows. �

Recall that the order and size (number of edges) of a graph is denoted by
ν(G) and ε(G). For a graph parameter p(G) of specific value say, k ∈ N a
minimal graph G is a graph with min{ν(G) + ε(G)} which yields, p(G) =
k. Observe that for k = 1 the minimal graph G = K1 yields, χdt(G) = 1.
For k = 2 the minimal graph G = P3 yields, χdt(G) = 2. For k = 3 the
minimal graph is the dart graph. The dart graph has order 5 and size 6.
These observations can be verified exhaustively against the list of small graphs
at, www.graphclasses.org/smallgraphs.html We claim that, to construct such
minimal graph the founding or initial graph is the complete graph of order
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k. Firstly, we see that K1, K2 (or P2) and K3 (or C3) are complete as well as
regular graphs. Note that for k = 4 one could reasonably consider to begin
with the trivial founding graph C4 on vertices v1, v2, v3, v4, which is 2-regular.
However, to achieve distinct colorings i.e. c(v1) 6= c(vj) if i 6= j with the
minimal constructive additions of graph elements (vertices or edges), a K4 will
inevitably result through any construction methodology. Inductive reasoning
is the basis of our claim.

Theorem 3 For k ∈ N there exists a minimal graph G of order n = 2k − 1
(or ν(G) = 2k− 1) and size ε(G) = k(k− 1) for which, χdt(G) = k. Also, this
minimal graph is unique.

Proof. Obviously for k ∈ N and χdt(G) = k we must have, ν(G) ≥ k. It
follows that for k = 1, the graph K1 is minimal of order, 2× 1− 1 = 1.

For k ≥ 2, begin with a graph putting all vertices on equal footing with
regards to degree, i.e. having equal degree. Let the complete graph be on
vertices v1, v2, v3, . . . , vk. For vi, i = 2, 3, 4, . . . , k add a distinct pendent vertex
ui. Also add the edges uivi+j, i = 2, 3, 4, . . . , (k − 1), j = 1, 2, 3, . . . , (k − i)
to obtain G. Clearly, the aforesaid addition of pendent vertices and edges is
the minimum constructive additions of graph elements to ensure, deg(vi) 6=
deg(vj) for i 6= j. Clearly, from conditions (i) and (ii) the minimum color
set C = {c1, c2, c3, . . . , ck} is required to assign a DT -coloring to G. From the
construction of G it follows that G is a minimal graph hence,min{ν(G)+ε(G)},
∀ ν, ε ∈ N to yield, χdt(G) = k. Furthermore, ν(G) = 2k − 1 and ε(G) =
k(k−1)
2 + (k−1)k

2 = k(k−1). Minimality and uniqueness of G follow directly from
the stringent and unambiguous construction methodology. �

Figure 2 depicts the unique minimal graph for which χdt(G) = 3. For example
let, c(v1) = c1, c(v2) = c2, c(v3) = c2, c(u2) = c1, c(u3) = c1.

Theorem 3 leads to an important inverse result.

Theorem 4 For a graph G of order n ≥ 1 it follows that,

χdt(G) ≤
⌊
n+1
2

⌋
.

Proof. Observe that for k = 1, 2, 3, 4 . . . Theorem 3 provides the minimum
order of graphs i.e. n = 1, 3, 5, 7, . . . , 2k− 1, . . . for which a minimal graph G
can be constructed such that, χdt(G) = k. It follows that for any graph G ′ of
order `, 2k− 1 < ` < 2k+ 1 we have, χdt(G

′) < k+ 1. Thus χdt(G
′) ≤ k.

Since for k ∈ N, the minimal graph G is of order n = 2k−1, it implies that:

n− 2k+ 1 = 0 has root at, k = n+1
2 .
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Figure 2: Unique minimal graph for which χdt(G) = 3

For an integer solution it follows that,

χdt(G) ≤
⌊
n+1
2

⌋
.

�

Theorem 5 For a graph G of size ε(G) = q ≥ 1 it follows that,

χdt(G) ≤
⌊
1+
√
1+4q
2

⌋
.

Proof. We know that for k = 1, 2, 3, 4 . . . , Theorem 3 provides the minimum
size of graphs i.e. q = 0, 2, 6, 12, . . . , k(k − 1), . . . for which a minimal graph
G can be constructed such that, χdt(G) = k. It follows that for any graph G ′

of size `, k(k− 1) < ` < (k+ 1)k we have, χdt(G
′) < k+ 1. Thus, χdt(G

′) ≤ k.
Since for q ∈ N, the minimal graph G is of size q = k(k−1), it implies that:

q− k(k− 1) = 0 has roots at, 1±
√
1+4q
2 .

For an integer solution it follows that,

χdt(G) ≤
⌊
1+
√
1+4q
2

⌋
.

�

For n as determined by Theorem 3 in respect of k ∈ N, let C1(G) be all graphs
of order n.

Corollary 6 A graph G ∈ C1(G) has χdt(G) ≤ k.

Proof. The result is a direct consequence of Theorems 3 and 4. �

For q as determined by Theorem 3 in respect of k ∈ N, let C2(G) be all graphs
of of size q.
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Corollary 7 A graph G ∈ C2(G) has χdt(G) ≤ k.

Proof. The result is a direct consequence of Theorems 3 and 5. �

Corollary 8 A minimal graph G in respect of k-degree tolerant coloring is
always of odd order and even size.

A more significant result which follows directly from Theorems 4 and 5 is
presented.

Theorem 9 For a graph G of order n and size q we have,

χdt(G) ≤ min{
⌊
n+1
2

⌋
,
⌊
1+
√
1+4q
2

⌋
}.

2.1 On three elementary graph operations

Consider non-trivial graphs G and H and the elementary graph operations
known as the disjoint union G ∪H, the corona G ◦H and the join G+H.

Proposition 10 For graphs G and H on order n and m respectively:
(a) χdt(G ∪H) = max{χdt(G), χdt(H)}.
(b)

χdt(G ◦H) =

{
χdt(G), if χdt(G) > χdt(H);

χdt(H) + 1, if χdt(G) ≤ χdt(H).

Proof.
(a) Trivial.
(b) From a χdt(G)-color set C assign a DT -coloring to graph G. In the graph

G◦H a vertex u in a copy of H has, deg(u) ≤ m. In the graph G◦H a vertex v
in G has, deg(v) ≥ 1+m. Hence, c(v) is distinct from any vertex color in the
copy of H. For purposes of reasoning, begin by coloring each copy of H with
its independent DT -coloring (ignoring adjacency of the corresponding vertex
in V(G).)

Case 1: If χdt(G) > χdt(H) and c(v) = ci then all vertices in u ∈ V(H) for
which c(u) = ci, may be recolored with any color in the set C\{ci}. The coloring
obtained is a permissible DT -coloring of G ◦H. Hence, χdt(G ◦H) = χdt(G).

Case 2. If χdt(G) ≤ χdt(H) and c(v) = ci then all vertices in u ∈ V(H)
for which c(u) = ci, must be recolored with a new color cχdt(H)+1. Hence,
χdt(G ◦H) = χdt(H) + 1. �
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Lemma 11 For a graph G partition V(G) into vertex subsets, P = {X1, X2, X3,

. . . , Xt} such that vj, vk ∈ Xi if and only if deg(vj) = deg(vk) else, |Xi| = 1. It
follows that, χdt(G) ≤ |P|.

Proof. Let a set of distinct colors be C = {c1, c2, c3, . . . , c|P|} together with
the mapping, c(Xi) 7→ ci, ∀ i. Assume that the partition coloring does not
correspond to a χdt-coloring of G and that χdt(G) > |P|. It implies that for at
least one Xi ∈ P there exists at least one vertex vj ∈ Xi. Therefore, c(vj) = cl,
cl /∈ C is required. If vjvk ∈ E(G), c(vk) = ck ∈ C, it is a contradiction in
terms of condition (ii). Hence, c(vj) = ci is permissible. If vjvk /∈ E(G), then
by condition (i) the coloring c(vj) = ci is permissible. Therefore, χdt(G) ≤ |P|.
�

Corollary 12 For graph G the degree tolerant chromatic number is bounded
by, 1 ≤ χdt(G) ≤ |P|.

Association with vertex partition P. Obviously P is a partition of the
vertex set of a graph. The parameter, degG(Xi) = degG(v), v ∈ Xi is also
associated with P. Finally, for P = {Xi : 1 ≤ i ≤ t} of V(G) and P ′ =
{Y1, Y2, Y3, . . . , Yl} of V(H) we define the operation, P 	 P ′ = k, where k is
the number of vertex subsets, Yj with degH(Yj) 6= degG(Xi), ∀i.

Reduction procedure: Reflecting on Lemma 11 it is observed that, if a

vertex subset, Xi ∈ P can itself be partitioned such that, Xi =
r⋃
j=1

Xi,j and for

each Xi,j there exists some vertex subset Xk ∈ P, i 6= k such that, ∀ vl ∈ Xi,j
and ∀ vt ∈ Xk the edge vlvt /∈ E(G), then the upper bound can be decreased
(improved) by 1.

Example. Consider the path P3 on vertices v1, v2, v3. Attach pendent ver-
tices u1, u2, u3, u4 to v1 to obtain the graph G. Utilising Lemma 11 the vertex
partition, P = {{v1}, {v2}, {v3, u1, u2, u3, u4}} is obtained. Hence, χdt(G) ≤ 3.
Note that the vertex subset {v3, u1, u2, u3, u4} itself can be partitioned into
{{v1}, {u1, u2, u3, u4}}. Observe that edge, v1v3 /∈ E(G) and edges, u1v2, u2v2, u3v2,
u4v2 /∈ E(G). Thus, χdt(G) ≤ 2. When the stated reduction procedure is ex-
hausted, equality is attained. In the example, χdt(G) = 2.

Proposition 13 For graphs G and H of order n and m respectively, we have:
χdt(G+H) = χdt(G) + (P 	 P ′).

Proof. Without loss of generality let n ≥ m. Assign a DT -coloring to G. Such
DT -coloring exists by Theorem 1. Let theDT -color set be, C = {c1, c2, c3, . . . , ct}
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and let V(G) = {v1, v2, v3, . . . , vn}. Clearly, in the join G + H the vertex de-
grees of V(G) increases by the constant m hence, degG+H(vi) = degG(vi)+m,
1 ≤ i ≤ n. Therefore, the color set C remains a DT -color set for the induced
subgraph 〈V(G)〉. Also, V(G) can be partitioned into P = {X1, X2, X3, . . . , Xt}

such that, c(Xi) = ci ∈ C, i = 1, 2, 3, . . . , t.
Similarly, partition V(H) = {u1, u2, u3, . . . , um} in accordance to an assigned

DT -coloring of H. Let this partition be P ′ = {Y1, Y2, Y3, . . . , Yl}. Note that
each vertex degree in V(H) has increased with a constant i.e. degG+H(ui) =
degG(ui) + n, 1 ≤ i ≤ m. Clearly, the vertices of V(H) in a partition subset,
Yi ∈ P ′ which has degG+H(Yi) = degG+H(Xj), must be colored c(Yi) = c(Xj).
See condition(ii). Those which have degG+H(Yi) 6= degG+H(Xj), ∀ i must be
colored with a new color not in C. See condition (ii). Hence, by Lemma 11,
χdt(G+H) ≤ χdt(G)+(P	P ′). Because DT -colorings were assigned to both G
and H the reasoning of Lemma 11 has been met. Also, the reduction procedure
has implicitly been exhausted. Therefore, χdt(G+H) = χdt(G) + (P 	 P ′). �

Due to the commutative property of G + H it follows that, χdt(G + H) =
χdt(G) + (P 	 P ′) = χdt(H) + (P ′ 	 P).

3 On graph products

Consider two graphs G and H of order n andm, respectively. Let the respective
vertex sets be, V(G) = {v1, v2, v3, . . . , vn} and V(H) = {u1, u2, u3, . . . , um}.
Recall that in general, a graph product is defined on the vertices V(G)×V(H).
Adjacency (symbolised by, ∼) in the graph product is defined by conditions of
adjacency (or non-adjacency) or equality, between pairs of distinct vertices in
V(G) and/or V(H). It is known that 28 = 256 products can be defined. This
section will address three standard graph products. Note that in the literature
there are different names corresponding to some of these graph products.

Convention: It is agreed that a comparable copy of a graph G means, com-
parable diagrammatic presentation including self evident comparable vertex
labeling. For example, if the path P3 is sketch horizontally with the vertices
labeled from left to right as, v1, v2, v3 then, a comparable copy (just copy for
brevity) could be on the vertices labeled from left to right as, vi, vi+1, vi+2,
i ≥ 4. It also implies that v1 corresponds to vi and it does not correspond to,
vi+2.

(i) Recall that adjacency in the Cartesian product denoted by, G�H is
defined by (vi, uj) ∼ (vk, ut) if, vi = vk and uj ∼ ut or, vi ∼ vk and uj = ut.
To visualize this adjacency definition, simply replace each vertex of G with
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a copy of H. For the vertex vi ∈ V(G) label such copy, Hvi . If the edge vivj
exists then add an edge between corresponding vertices of the copies, Hvi and
Hvj .

(ii) Recall that adjacency in the tensor product (also called, categorical
product) denoted by, G × H is defined by vi ∼ vk and uj ∼ ut. To visualize
this adjacency definition is not easy. What is important to note is that, if the
respective degree sequences are,

(deg(v1), deg(v2), deg(v3), . . . , deg(vn))

and,

(deg(u1), deg(u2), deg(u3), . . . , deg(um))

then die degree sequence of G×H is given by,
(deg(v1)deg(u1), deg(v1)deg(u2), deg(v1)deg(u3), . . . , deg(v1)deg(um),
deg(v2)deg(u1), deg(v2)deg(u2), deg(v2)deg(u3), . . . , deg(v2)deg(um),
· · ·
· · ·
· · ·
deg(vn)deg(u1), deg(vn)deg(u2), deg(vn)deg(u3), . . . , deg(vn)deg(um)).

(iii) Recall that adjacency in the lexicographical product denoted by, G •H
is defined by vi ∼ vk or, vi = vk and uj ∼ ut. To visualize this adjacency
definition, simply replace each vertex of G with a copy of H. For the vertex
vi ∈ V(G) label such copy, Hvi . If the edge vivj exists then add all edges of
the join, Hvi +Hvj .

Definition 14 Let (deg(v1), deg(v2), deg(v3), . . . , deg(vn)) be the degree se-
quence of graph G. The degree index of graph G denoted by di(G), is the
number of distinct vertex degree values.

Note that for any path Pn), n ≥ 3 we have, di(Pn) = 2. For any cycle Cn,
n ≥ 3 we have, di(Cn) = 1.

Theorem 15 For graphs G and H it follows that,

χdt(G�H) = min{di(H)χdt(G), di(G)χdt(H)}.

Proof. It is known that the Cartesian product is commutative to isomorphism.
Hence, G�H ∼= H�G.

Case 1. Consider G�H. Replace each vertex vi ∈ V(G) with Hvi . The adja-
cency condition, vi = vk and uj ∼ ut is immediately satisfied. Do the following
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in respect of each (vi, uj)j=1,2,3,...,m, i = 1, 2, 3, . . . , n − 1. For each neighbor
of vi in G add an edge between the vertices (vi, uj), j = 1, 2, 3, . . . ,m and
between the respective corresponding vertices in the neighboring copy of H,
if such edges do not exist. After the stated procedure the condition vi ∼ vk
and uj = ut has been satisfied. Hence, G�H has been obtained. Clearly,
deg((vi, uj)) = deg(uj) + |N(vi)|. Following from Lemma 11, χdt(G�H) ≤
di(G)χdt(H).

Case 2. Consider H�G. By similar reasoning as in Case 1 it follows that,
χdt(H�G) ≤ di(H)χdt(G).

Thus far by Lemma 11, we showed that,

χdt(G�H) ≤ min{di(H)χdt(G), di(G)χdt(H)}.

Since the reduction procedure has implicitly been exhausted for at least one
of the two cases it follows that,

χdt(G�H) = min{di(H)χdt(G), di(G)χdt(H)}.

�

Theorem 16 For graphs G and H it follows that, χdt(G×H) ≤ di(G×H).

Proof. It is known that the tensor product is commutative to isomorphism.
Hence, G×H ∼= H×G.

The degree sequence of G×H is given by:
(deg(v1)deg(u1), deg(v1)deg(u2), deg(v1)deg(u3), . . . , deg(v1)deg(um),
deg(v2)deg(u1), deg(v2)deg(u2), deg(v2)deg(u3), . . . , deg(v2)deg(um),
· · ·
· · ·
· · ·
deg(vn)deg(u1), deg(vn)deg(u2), deg(vn)deg(u3), . . . , deg(vn)deg(um)).
Hence, the minimum number of colors needed to be assigned is di(G × H).
The reduction procedure can be used to yield equality on a case by case basis.
Therefore, χdt(G×H) ≤ di(G×H). �

Theorem 17 For graphs G and H it follows that, χdt(G •H) ≤ di(G)χdt(H).

Proof. It is known that the lexicographical product is associative but not
commutative. Therefore, the reasoning is similar to that stated in the proof of
Theorem 15, Case 1. However, exhaustion of the reduction procedure is not
self-evident. Hence, χdt(G •H) ≤ di(G)χdt(H). �
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3.1 Nordhaus-Gaddum type bounds

Relations between a graph G and its complement G have been studied since the
inception of graph theory. Perhaps the most interesting category of relations
between the two graphs are those with regards to the sum and products of
graph parameters. The first known such relations were introduced by Nordhaus
and Gaddum in 1956. The relations provide lower and upper bounds on the
sum and the product of the chromatic number of a graph and its compliment.
A comprehensive survey of the wide field which developed over the years can
be found in [1].

Definition 14 read together with Lemma 11 imply that for a graph G,
di(G) = t. Also, degG(vi) = (n− 1) − degG(vi)⇒ di(G) = di(G).

Theorem 18 For a graph G of order n and size q it holds that,
(a)

2 ≤ χdt(G) + χdt(G) ≤ 2di(G),
1 ≤ χdt(G) · χdt(G) ≤ di(G)2.

Weaker bounds are;
(b)

2 ≤ χdt(G) + χdt(G) ≤ 2(
⌊
n+1
2

⌋
),

1 ≤ χdt(G) · χdt(G) ≤
⌊
n+1
2

⌋2
.

(c)

2 ≤ χdt(G) + χdt(G) ≤
⌊
1+
√
1+4q
2

⌋
+

⌊
1+

√
1+4(

n(n−1)
2

−q)

2

⌋
,

1 ≤ χdt(G) · χdt(G) ≤
⌊
1+
√
1+4q
2

⌋
·

⌊
1+

√
1+4(

n(n−1)
2

−q)

2

⌋
.

Proof. (a) The result is a direct consequence of Lemma 11.
(b) The result is a direct consequence of Theorem 4.
(c) The result is a direct consequence of Theorem 5. �

Any simple graph G of order n has at most, n(n−1)
2 edges. From Theorem

3 it follows that the minimal graph G has order 2k − 1 and size k(k − 1)
for k ∈ N. Hence, G has ε(G) = k2 − 2k + 1. The aforesaid implies that
ε(G) − ε(G) = k − 1 > 0, ∀ k ≥ 2. Clearly G is not self-complementary. This
leads to a corollary.
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Corollary 19 For the minimal graph G from Theorem 3 and for k ≥ 2 we
have, χdt(G) > χdt(G).

Proof. Theorem 5 read together with the fact that, ε(G) − ε(G) = k− 1 > 0,
∀ k ≥ 2, suffice. �

4 Conclusion

The degree tolerant chromatic number was introduced subject to conditions
(i) and (ii). Different conditions can be formulated to study derivatives of the
notion of degree tolerance coloring. For example, for a given k, 1 ≤ k ≤ n− 1
a condition such as; if deg(u) ≤ k and deg(v) ≤ k and uv ∈ E(G) then,
c(u) = c(v) else, c(u) 6= c(v) is a derivative for further study.

Problem 1. The procedure to improve the upper bound stated in Lemma 11
follows from condition (i). The fact that applying the procedure exhaustively
will yield equality has been stated without proof. Formalise the statement.

Problem 2. Utilise the result in problem 1 to determine exact values of
χdt(G) for various classes of graphs.

Problem 3. If possible find improved results for Theorems 16 and 17.
Conjecture. For graphs G and H it follows that,

χdt(G×H) = min{di(H)χdt(G), di(G)χdt(H)}.

A worthy avenue for further research would be to consider all known graph
products such as, strong product, co-normal product, modular product, rooted
product and so on.

It is observed that with regards to the clique number the minimal graph
G constructed in the proof of Theorem 4 is, ω(G) = k. Furthermore, exactly
two such induced cliques exist in G. We suggest that studying other graph
parameter specific to this minimal graph could be a worthy avenue.
Let f(k), g(k), h(k) be functions such that f(k) = min{g(k), h(k)}. If for some
k ∈ N we have that, g(k) = h(k) then f(k) is said to be tied or equal-valued.
If g(k) 6= h(k) then f(k) is said to be non-tied or decisive. A graph of order
n and size q can be called a (n, q)-graph. It is obvious from Theorems 4 and

5 that the function, f1(n, q) = min{
⌊
n+1
2

⌋
,
⌊
1+
√
1+4q
2

⌋
} is tied (equal-valued)

for all (2k− 1, k(k− 1))-graphs.
Problem 4. Prove that f2(n, q) is non-tied (or decisive) for all (g(k), h(k))-

graphs if the functions, n = g(k)k∈N 6= 2k− 1 or q = h(k)k∈N 6= k(k− 1).
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