

Acta Univ. Sapientiae Informatica 14, 1 (2022) 119–136

DOI: 10.2478/ausi-2022-0008

Annihilator graphs of a commutative semigroup whose Zero-divisor graphs are a complete graph with an end vertex

[Seyed Mohammad](http://www.iaus.ac.ir/faculty/mohammad-sakhdari) [SAKHDARI](http://www.iaus.ac.ir/faculty/mohammad-sakhdari)

Department of Basic Sciences, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran email: sakhdari85@yahoo.com

[Mojgan AFKHAMI](https://afkhami.neyshabur.ac.ir/math/afkhami/en/)

Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran email: mojgan.afkhami@yahoo.com

Abstract. Suppose that the zero-divisor graph of a commutative semigroup S, be a complete graph with an end vertex. In this paper, we determine the structure of the annihilator graph S and we show that if $Z(S) = S$, then the annihilator graph S is a disconnected graph.

1 Introduction

In this paper S is a commutative semigroup with zero whose operation is written multiplicatively and $Z(S)$ is the set of all zero-divisors of S also $Z(S)^* =$ $Z(S) \setminus \{0\}.$

The zero-divisor graph of a commutative semigroup S with zero, is denoted by $\Gamma(S)$, is an undirected graph with vertex set $\mathsf{Z}(S)^*$ and two distinct vertices x and y are adjacent if and only if $xy = 0$. $\Gamma(S)$ is a connected graph and the

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 68R15

Key words and phrases: zero-divisor graph, annihilator graph, isolated vertex, connected graph, complete graph

diameter of $\Gamma(S)$ is less than or equal to three. For other results on zero divisor graphs one can see [\[5,](#page-17-0) [6,](#page-17-1) [7,](#page-17-2) [8,](#page-17-3) [9,](#page-17-4) [10\]](#page-17-5).

In $[1]$, we introduced and studied the annihilator graph for a commutative semigroup S, and showed it with $AG(S)$. The graph $AG(S)$ is an undirected graph with vertex set $Z(S)^*$ and two distinct vertices x and y are adjacent if and only if $\text{ann}_S(xy) \neq \text{ann}_S(x) \cup \text{ann}_S(y)$, where $\text{ann}_S(x) = \{s \in S \mid xs = 0\}$. We proved that if $Z(S) \neq S$, then $\Gamma(S)$ is a subgraph of $AG(S)$, and so $AG(S)$ is connected. Also if $Z(S) = S$, then $AG(S)$ may be connected or disconnected and if there exists $x \in S^* = S \setminus \{0\}$ such that x is adjacent to all vertices in $\Gamma(S)$, then x is an isolated vertex in AG(S).

In $[1, \text{section } 4]$ $[1, \text{section } 4]$ and in $[2]$, we characterized all annihilator graphs with three and four vertices. Also in [\[3\]](#page-17-7), we studied the structure of the annihilator graph of a commutative semigroup S whose $\Gamma(S)$ is a refinement of a star graph.

A complete graph and a complete graph with an end vertex are one of the graphs can be zero-divisor graph of a commutative semigroup.

In this paper, we study the annihilator graph associated with a commutative semigroup with zero using the zero-divisor graph $\Gamma(S)$, where $\Gamma(S)$ is a complete graph K_n with an end vertex $u \notin V(K_n)$ and u is only adjacent to $z \in V(K_n)$. Let m be the number of edges between u and $V(K_n)$ in $AG(S)$. We show that the following four statements hold.

- (i) Let $u^2 = 0$. If $Z(S) \neq S$, then $m \in \{1, 2, 3, \dots, n\}$ and if $Z(S) = S$, then $m \in \{0, 1, 2, 3, \ldots, n - 1\}.$
- (ii) Let $u^2 = z$. If $Z(S) \neq S$, then $m = n$ and so u is adjacent to all vertices of $V(K_n)$ in $AG(S)$ and if $Z(S) = S$, then $m = n-1$ and u is not adjacent to z in $AG(S)$.
- (iii) Let $u^2 = u$. If $Z(S) \neq S$, then $m \in \{1, 2, 3, \dots, n 1\}$ and if $Z(S) = S$, then $m \in \{0, 1, 2, 3, \dots, n-2\}$ and so there is at least one vertex of $V(K_n)$ that u is not adjacent to it in $AG(S)$.
- (iv) Let $u^2 = b \notin \{0, z, u\}$. If $Z(S) \neq S$, then $m \in \{n-1, n\}$ and so there is at most one vertex $(u^2 = b)$ of $V(K_n)$ that u is not adjacent to it in AG(S). Also if $\mathsf{Z}(S) = S$, then $\mathfrak{m} \in {\mathfrak{n}} - 1$, $\mathfrak{n} - 2$ and \mathfrak{u} is not adjacent to z in $AG(S)$.

2 Preliminaries

In this section, we recall some definitions and notations of graphs and we use the standard terminology of graphs is contained in $[4]$. Here, G is a graph with vertex set $V(G)$ and edge set $E(G)$. If a is adjacent to b in G, then the edge between a and b will denote by ${ab}$ and we write $a \sim b$.

The *distance* between two distinct vertices x and y is the length of the shortest path connecting x and y and will denote by $d(x, y)$, if such a path exists; otherwise, we use $d(x, y) := \infty$. Also $diam(G) = sup{d(x, y) : x$ and y are distinct vertices of G is the *diameter* of the graph G .

The girth of G, denoted by $gr(G)$, is the length of the shortest cycle in G. If there exists a path between any two distinct vertices of G, we say that graph G is a *connected* graph, and if for each two vertices x and y of $V(G)$ we have x is adjacent to y, we say that G is a complete graph and K_n is the complete graph with n vertices. If no two vertices of G are adjacent, we say that G is a totally disconnected graph and nK_1 is the totally disconnected graph with n vertices.

We say that μ is an end vertex in G , If μ is adjacent to only one vertex of G and if for each vertex $x \in V(G)$ we have u is not adjacent to x, then we say that u is an *isolated* vertex in G .

Suppose that H and G are two graphs. We use the notation $G \leq H$ to denote that G is a subgraph of H and if H is isomorphic to G, we write $H \cong \mathsf{G}$. Let G be a graph. $G \setminus \{\{x_1y_1\}, \{x_2y_2\}, \{x_3y_3\}, \ldots, \{x_ny_n\}\}\$ is a graph such that edges ${x_1y_1}, {x_2y_2}, {x_3y_3}, ..., {x_ny_n}$ are deleted.

 P_n is the path of length n and C_n is the cycle of length n.

 mK_n is a graph with m components such that each component is isomorphic to K_n . G ∪ H, the union of the graphs G and H, is a graph with vertex set $V(G) \cup V(H)$ and edge set $E(H) \cup E(G)$.

Now, we recall some results which we are used in the next section.

Theorem 1 [\[1\]](#page-16-0) If $Z(S) \neq S$, then we have $\Gamma(S) \leq AG(S)$.

Theorem 2 [\[1\]](#page-16-0) Let $Z(S) = S$ and there exists $x \in S^*$ such that, for each non zero element $y \neq x$ of S, we have $xy = 0$. Then x is an isolated vertex in $AG(S)$.

Lemma 3 [\[2\]](#page-17-6) If $Z(S) \neq S$ and $\Gamma(S) \cong P_3$, then AG(S) $\cong C_4$.

Lemma 4 [\[2\]](#page-17-6) Let $Z(S) \neq S$. Then AG(S) \cong C₄ if and only if we either have $\Gamma(S) \cong P_3$ or $\Gamma(S) \cong C_4$.

Lemma 5 [\[2\]](#page-17-6) Let $Z(S) = S$. Then $AG(S) \cong P_3$ with $x \sim w \sim z \sim y$ if and only if $\Gamma(S) \cong P_3$ with $w \sim x \sim y \sim z$.

Lemma 6 [\[2\]](#page-17-6) Let S be a commutative semigroup with $Z(S) \neq S$, and let $\Gamma(S) \cong \Gamma(S)$ $K_3 + \{wx\}$ with $wx = xy = yz = zx = 0$. Then $AG(S) \cong K_4 \setminus \{wy\}$ if and only if the relations between the zero-divisors of S satisfies in one of the following four conditions.

- (i) wy = y, wz = x, $w^2 = y^2 = y$, $x^2 = 0$, and $z^2 \in \{0, x\}$.
- (*ii*) $wy = wz = x$, $w^2 = y^2 = x^2 = 0$, and $z^2 = x$.
- (iii) $wy = y = wz, w^2 = w, z^2 = x, and y^2 = x^2 = 0.$

Lemma 7 [\[2\]](#page-17-6) Let S be a commutative semigroup with $Z(S) \neq S$, and let $\Gamma(S) \cong$ $K_3 + \{wx\}$ with $wx = xy = yz = zx = 0$. Then $AG(S) \cong K_4$ if and only if the relations between the zero-divisors of S satisfies in one of the following eleven conditions.

- (i) $wx = xy = yz = zx = 0$, $wy = x$, $wz = y$, $y^2 = x^2 = 0$, $w^2 = z$ and $z^2 = x$.
- (ii) $wx = xy = yz = zx = 0$, $wy = z$, $wz = x$, $w^2 = y$, $y^2 = x$ and $z^2 = x^2 = 0.$
- (iii) $wx = xy = yz = zx = 0$, $wy = wz = x$, $x^2 = 0$ and one of the following nine cases holds.
	- (1) $w^2 = 0$, $y^2 = x$ and $z^2 = x$. (2) $w^2 = y$, $y^2 = 0$ and $z^2 \in \{0, x\}.$ (3) $w^2 = z$, $z^2 = 0$ and $y^2 \in \{0, x\}.$ (4) $w^2 = x$, $y^2 = 0$ and $z^2 \in \{0, x\}.$ (5) $w^2 = x$, $y^2 = x$ and $z^2 \in \{0, x\}.$

Lemma 8 [\[2\]](#page-17-6) Let S be a commutative semigroup with $Z(S) \neq S$, and let $\Gamma(S) \cong \Gamma(S)$ $K_3 + \{wx\}$ with $wx = xy = yz = zx = 0$. Then $AG(S) \cong K_3 + \{wx\}$ with $w \sim x \sim y \sim z \sim x$ if and only if the relations between the zero-divisors of S satisfies in one of the following nineteen conditions.

(i) $wx = xy = yz = zx = 0$, $wy = y = wz$, $z^2 = y^2 = 0$, $w^2 = w$ and $x^2 \in \{0, x\}.$

- (*ii*) $wx = xy = yz = zx = 0$, $wz = wy = x$ and $w^2 = y^2 = z^2 = x^2 = 0$.
- (iii) $wx = xy = yz = zx = 0$, $wz = z = wy$, $w^2 = w$, $y^2 = z^2 = 0$ and $x^2 \in \{0, x\}.$
- (iv) $wx = xy = yz = zx = 0$, $wz = y$, $wy = z$, $w^2 = w$, $y^2 = z^2 = 0$ and $x^2 \in \{0, x\}.$
- (v) $wx = xy = yz = zx = 0$, $wy = y$, $wz = z$, $w^2 = w$ and we have the following twelve situations.
	- (1) $y^2 = 0$, $z^2 = 0$ and $x^2 \in \{0, x\}.$ (2) $y^2 = 0$, $z^2 = z$ and $x^2 \in \{0, x\}.$ (3) $y^2 = 0$, $z^2 = y$ and $x^2 \in \{0, x\}.$ (4) $y^2 = y$, $z^2 = 0$ and $x^2 \in \{0, x\}.$ (5) $y^2 = y$, $z^2 = z$ and $x^2 \in \{0, x\}.$ (6) $y^2 = z$, $z^2 = 0$ and $x^2 \in \{0, x\}.$

Lemma 9 [\[2\]](#page-17-6) Let S be a commutative semigroup with $Z(S) = S$, and let $\Gamma(S) \cong \Gamma(S)$ $K_3 + \{wx\}$ with $wx = xy = yz = zx = 0$. Then $AG(S) \cong 2K_1 \cup K_2$, where x and w are isolated vertices and z is adjacent to y, if and only if the semigroup S satisfies in one of the nineteen conditions of Lemma [\(8\)](#page-3-0).

Lemma 10 [\[2\]](#page-17-6) Let S be a commutative semigroup with $Z(S) = S$. Then $AG(S) \cong K_{1,2} \cup K_1$, where x is an isolated vertex and the vertices y, z, w form a star graph with center z, if and only if $\Gamma(S) \cong K_3 + \{wx\}$ with $wx = xy = yz = zx = 0$, and the semigroup S satisfies in one of the four conditions of Lemma [\(6\)](#page-3-1).

Lemma 11 [\[2\]](#page-17-6) Let S be a commutative semigroup with $Z(S) = S$, and let $\Gamma(S) \cong K_3 + \{wx\}$ with $wx = xy = yz = zx = 0$. Then $\text{AG}(S) \cong K_3 \cup K_1$, where x is an isolated vertex and the vertices w, z, y form a triangle if and only if the semigroup S satisfies in one of the eleven conditions of Lemma [\(7\)](#page-3-2).

Suppose that G is a complete graph K_n with an end vertex u that u is adjacent to $z \in V(K_n)$ and $n = 1$. Then $\Gamma(S) \cong K_2$. Now if $\mathsf{Z}(S) = S$, then clearly $AG(S) \cong 2K_1$, and if $Z(S) \neq S$, then $AG(S) \cong \Gamma(S) \cong K_2$.

Let $n = 2$. We have $\Gamma(S) \cong K_{1,2} = P_2$ with $u \sim z \sim x$. In [\[1\]](#page-16-0), we show that, if $\mathsf{Z}(S) = S$, then $\mathsf{AG}(S) \cong 3\mathsf{K}_1$ or $\mathsf{AG}(S) \cong \mathsf{K}_1 \cup \mathsf{K}_2$, and if $\mathsf{Z}(S) \neq S$, then $AG(S) \cong K_{1,2}$ or $AG(S) \cong K_3$.

Morover assume that complete graph K_2 has two end vertices u_1 and u_2 adjacent to z_1 and z_2 . Then $\Gamma(S) \cong P_3$ with $u_1 \sim z_1 \sim z_2 \sim u_2$. Now by lemma [5,](#page-2-0) if $Z(S) = S$, then $AG(S) \cong P_3$ with $z_1 \sim u_1 \sim u_2 \sim z_2$ such that z_1 and z_2 are two end vertices in $AG(S)$, and by lemma [3,](#page-2-1) if $Z(S) \neq S$, then $AG(S) \cong C_4$.

3 Properties of AG(S)

In this section, we assume that $|Z(S)^*| \geq 4$ and K_n is a complete graph with at least three vertices and $z \in V(K_n)$ and $u \notin V(K_n)$. we add to K_n an end vertex u, which is adjacent to a unique vertex z of $V(K_n)$ and denote it by $Γ(S) \cong K_n + {uz}$ and so $Γ(S) \cong K_n + {uz}$ is the graph of a commutative semigroup such that $Z(S) = V(K_n) \cup \{0\} \cup \{u\}$. Thus for each two distinct vertices x and y inV(K_n), we have $xy = zu = 0$ and $xu \neq 0$ and Since z is a cut vertex in $\Gamma(S)$, thus $\{0, z\}$ is an ideal of S and so $z^2 = 0$ or $z^2 = z$.

In following, we distinguish the structure of the annihilator graph a commutative semigroup whose $\Gamma(S) \cong K_n + \{uz\}$, for cases $u^2 = 0$ or $u^2 = z$ or $u^2 = u$ or $u^2 \neq 0, z, u$.

The following lemma show that if $\Gamma(S)$ is a complete graph K_n with an end vertex u, then for all $x, y \in V(K_n) \setminus \{z\}$ always, x is adjacent to y in AG(S).

Lemma 12 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u . Then for all $x, y \in V(K_n) \setminus \{z\}$, we have x is adjacent to y in AG(S).

Proof. Since $\Gamma(S) \cong K_n + \{uz\}$ and $x, y \in V(K_n) \setminus \{z\}$, we have $xy = 0$ and so anns(xy) = S. since u is an end vertex adjacent to only z in $\Gamma(S)$ thus ux $\neq 0$ and $\mathfrak{u} \mathfrak{y} \neq 0$ so $\mathfrak{u} \notin \text{ann}_{S}(\mathfrak{x}) \cup \text{ann}_{S}(\mathfrak{y})$ which follows that $\text{ann}_{S}(\mathfrak{x}) \cup \text{ann}_{S}(\mathfrak{y}) \neq 0$ anns(xy). Therefore x is adjacent to y in $AG(S)$.

Lemma 13 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u . Then the following statements hold.

- (i) If $\mathsf{Z}(S) \neq S$, then $\mathsf{AG}(S)$ is a connected graph and u is adjacent to z in $AG(S)$.
- (ii) If $Z(S) = S$, then AG(S) is a disconnected graph and z is an isolated vertex in $AG(S)$.

Proof. (i) Since $Z(S) \neq S$ by theorem [1,](#page-2-2) we have $\Gamma(S) \leq AG(S)$. Since $\Gamma(S)$ is a connected graph and z is adjacent to **u** in $\Gamma(S)$, we have $\text{AG}(S)$ is a connected graph and μ is adjacent to z in AG(S).

(ii) Since z is adjacent to all vertices in $\Gamma(S)$ and $\Gamma(S) = S$ by theorem [2,](#page-2-3) z is an isolated vertex in $AG(S)$ and so $AG(S)$ is a disconnected graph. \square Let $\Gamma(S) \cong K_n + \{uz\}$. By lemma [12](#page-5-0) and lemma [13,](#page-5-1) to study the graph AG(S), it is sufficient to examine the edges between u and x, for all $x \in V(K_n) \setminus \{z\}$.

Proposition 14 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = 0$ and $x, y \in V(K_n) \setminus \{z\}$. Then $ux = z, z^2 = 0$ and $x^2 = 0 \text{ or } x^2 = z.$

Proof. Since u is not adjacent to x in $\Gamma(S)$, we have $ux \neq 0$. If $ux = u$, then $uy = (ux)y = u(xy) = 0$, which is impossible and so $ux \neq u$. Now let $ux = y$. We have $uy = u(ux) = u^2x = 0$ which is again impossible. Since $Z(S) =$ $V(K_n) \cup \{0\} \cup \{u\}$, we have $ux = z$ and so $z^2 = (ux)z = u(xz) = 0$. Finally, since $ux = z$, we have $ux^2 = (ux)x = zx = 0$ and so $x^2 \in \text{ann}_S(u) = \{0, u, z\}.$ If $x^2 = u$, then $uy = x^2y = x(xy) = 0$, which is impossible. Therefore $x^2 = 0$ or $x^2 = z$. $2 = z$.

Let $u^2 = 0$. The following lemma states which vertices of $V(K_n) \setminus \{z\}$ are connected to the end vertex u in $AG(S)$

Lemma 15 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u . Also assume that $u^2 = 0$ and $x, y \in V(K_n) \setminus \{z\}$. Then the following statements hold.

(i) u is adjacent to x in AG(S) if and only if $x^2 = z$.

(ii) u is not adjacent to x in AG(S) if and only if $x^2 = 0$.

Proof. (i) By proposition [14,](#page-6-0) we have $u^2 = z^2 = uz = 0$, $ux = z$ and $x^2 = 0$ or $x^2 = z$.

First suppose that $x^2 = z$. Then $x \notin \text{ann}_S(x)$. Since $ux = z$ so $x \notin \text{ann}_S(u)$ and since $zx = 0$, we have $x \in \text{ann}_S(z) = \text{ann}_S(ux)$. Thus $\text{ann}_S(x) \cup \text{ann}_S(u) \neq$ anns(ux). Therefore x is adjacent to u in $AG(S)$.

Conversely, assume that **u** is adjacent to **x** in $AG(S)$ and $x^2 = 0$. Then anns(x) = V(K_n). Also anns(u) = {0, u, z} hence anns(x) ∪ anns(u) = Z(S) = $\text{ann}_S(z) = \text{ann}_S(ux)$. Thus u is not adjacent to x in AG(S) which is impossible. Therefore $x^2 \neq 0$ and by proposition [14,](#page-6-0) $x^2 = z$.

(ii) It is clear.

By the above lemma, we have the following theorem.

Theorem 16 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex μ and $u^2 = 0$. Also assume that $Z(S) \neq S$ and $V(K_n) = \{x_1, x_2, x_3, \ldots, x_{n-1}, z\}.$

Then $AG(S) \cong K_{n+1} \setminus \{ \{ux_1\}, \{ux_2\}, \{ux_3\}, \ldots, \{ux_m\} \}$ if and only if for all $0 \le i \le m$ and $m + 1 \le j \le n - 1$, we have $x_i^2 = 0$ and $x_j^2 = z$.

Proof. First suppose that $AG(S) \cong K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, \ldots, \{ux_m\}\}.$ Then for all $0 \leq i \leq m$, we have **u** is not adjacent to x_i in $AG(S)$ and for all $m+1 \leq j \leq n-1$, we have u is adjacent to x_j in AG(S). By lemma [15,](#page-6-1) for all $0 \le i \le m$ and $m + 1 \le j \le n - 1$, we have $x_i^2 = 0$ and $x_j^2 = z$.

Conversely, Since $\mathsf{Z}(S) \neq S$ by theorem [1,](#page-2-2) we have $\Gamma(S) \leq \mathsf{AG}(S)$ and by lemma [15,](#page-6-1) for all $0 \le i \le m$ and $m + 1 \le j \le n - 1$, we have u is not adjacent to x_i in $AG(S)$ and u is adjacent to x_j in $AG(S)$. Therefore $AG(S) \cong K_{n+1} \setminus \{ \{ux_1\}, \{ux_2\}, \{ux_3\}, \dots, \{ux_m\}.$

If $m = 0$ or $m = 1$ or $m = n - 1$, we have the following corollary.

Corollary 17 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = 0$. Also assume that $Z(S) \neq S$ and $V(K_n) = \{x_1, x_2, x_3, \ldots, x_{n-1}, z\}.$ Then the following statements hold.

- (i) $AG(S) \cong K_{n+1}$ if and only if for all $1 \leq i \leq n-1$, we have $x_i^2 = z$.
- (ii) $AG(S) \cong K_{n+1} \setminus \{ \{ux_1\} \}$ if and only if $x_1^2 = 0$ and for all $2 \le i \le n-1$, we have $x_i^2 = z$.
- (iii) $AG(S) \cong K_n + \{uz\}$ if and only if for all $1 \le i \le n-1$, we have $x_i^2 = 0$.

The next corollary follows from theorem [16.](#page-6-2)

Corollary 18 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = 0$. Also assume that $V(K_n) = \{x_1, x_2, x_3, \ldots, x_{n-1}, z\}$. Then the following statements hold.

- (i) If $Z(S) \neq S$, then AG(S) can be one of the graphs: K_{n+1} or $K_{n+1} \setminus \{\{ux_1\}\}\$ or $K_{n+1} \setminus \{ \{ux_1\}, \{ux_2\} \}$ or $K_{n+1} \setminus \{ \{ux_1\}, \{ux_2\}, \{ux_3\} \}$ or or $K_{n+1} \setminus$ $\{\{ux_1\}, \{ux_2\}, \{ux_3\}, \ldots, \{ux_{n-1}\}\} = K_n + \{uz\}$
- (ii) If $Z(S) = S$, then AG(S) can be one of the graphs: K₁ ∪ K_n or K₁ ∪ $K_n \setminus \{ \{ux_1\} \}$ or $K_1 \cup K_n \setminus \{ \{ux_1\}, \{ux_2\} \}$ or $K_1 \cup K_n \setminus \{ \{ux_1\}, \{ux_2\}, \{ux_3\} \}$ oror $K_1 \cup K_n \setminus \{ \{ux_1\}, \{ux_2\}, \{ux_3\}, \dots, \{ux_{n-1}\} \} = 2K_1 \cup K_{n-1}$ with u and z are two isolated vertices.

Proof. If $Z(S) \neq S$, by theorem [1,](#page-2-2) then $\Gamma(S) \leq AG(S)$ and if $Z(S) = S$, by theorem [2,](#page-2-3) then z is an isolated vertex in $AG(S)$. Now by theorem [16,](#page-6-2) the results hold.

Example 19 Suppose that $\Gamma(S)$ is a complete graph K_3 with an end vertex μ and $u^2 = 0$. Also assume that $V(K_3) = \{x, y, z\}$. Then $xy = xz = yz = uz = 0$ and we have $ux = uy = z$ and $z^2 = 0$. Moreover we have one of the following three statements.

(i) $x^2 = 0$ and $y^2 = z$ or $x^2 = z$ and $y^2 = 0$. In this case if $Z(S) \neq S$, by lemma [6,](#page-3-1) we have $AG(S) \cong K_4 \setminus \{ \{ux\} \}$ or $AG(S) \cong K_4 \setminus \{ \{uy\} \}$ and if $Z(S) = S$, by lemma [10,](#page-4-0) we have $AG(S) \cong K_1 \cup K_3 \setminus \{ \{ux\} \}$ or $AG(S) \cong$ $K_1 \cup K_3 \setminus \{\{uy\}\}.$

(ii) $x^2 = z$ and $y^2 = z$. In this case if $Z(S) \neq S$, by lemma [7,](#page-3-2) we have $AG(S) \cong K_4$ and if $Z(S) = S$, by lemma [11,](#page-4-1) we have $AG(S) \cong K_1 \cup K_3$.

(iii) $x^2 = y^2 = 0$. In this case if $Z(S) \neq S$, by lemma [8,](#page-3-0) we have $AG(S) \cong$ $K_4 \setminus {\rm {[tux]}}, {\rm {[tuy]}} = K_3 + {\rm {[uz]} }$ and if $Z(S) = S$, by lemma [9,](#page-4-2) we have $AG(S) \cong 2K_1 \cup K_2$ such that u and z are two isolated vertices in AG(S).

In the following we study the case of $u^2 = z$ and we show that u is adjacent to x, for all $x \in V(K_n) \setminus \{z\}.$

Proposition 20 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = z$ and $x, y \in V(K_n) \setminus \{z\}$. Then $ux = z, z^2 = 0$ and $x^2 = 0 \text{ or } x^2 = z.$

Proof. Since $u^2 = z$, we have $z^2 = u^2z = u(uz) = u0 = 0$ and since u is not adjacent to x in $\Gamma(S)$, we have $ux \neq 0$. If $ux = u$, then $uu = (ux)u = u(xu) = 0$ and if for all $y \in V(K_n) \setminus \{z\}$, we have $ux = y$, then $uy = u(ux) = u^2x = zx = 0$ which are impossible. Thus $ux \notin \{0, u\} \cup V(K_n) \setminus \{z\}$. Therefore $ux = z$. Since $ux = z$, we have $ux^2 = (ux)x = zx = 0$ and so $x^2 \in \text{ann}_S(u) = \{0, z\}.$

Lemma 21 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u . Also assume that $u^2 = z$ and $x \in V(K_n) \setminus \{z\}$. Then u is adjacent to x in $AG(S)$.

Proof. By proposition [20,](#page-8-0) we have $z^2 = uz = 0$, $ux = z$ and $x^2 = 0$ or $x^2 = z$. Since $z^2 = uz = 0$, we have $\text{ann}_{S}(z) = Z(S)$. On the other hand, since $u^2 = z$ and $ux = z$, so $u \notin \text{ann}_S(x) \cup \text{ann}_S(u)$ which follows that $\text{ann}_S(x) \cup \text{ann}_S(u) \neq$ $Z(S) = \text{ann}_S(z) = \text{ann}_S(ux)$. Therefore x is adjacent to u in AG(S). By the above lemma, we have the following theorem.

Theorem 22 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex μ and $u^2 = z$. Then the following two statements hold.

- (i) If $\mathsf{Z}(S) \neq S$, then $\mathsf{AG}(S) \cong \mathsf{K}_{n+1}$.
- (ii) If $\mathsf{Z}(S) = S$, then $\mathsf{AG}(S) \cong \mathsf{K}_1 \cup \mathsf{K}_n$.

Proof. (i) Since $Z(S) \neq S$ by theorem [1,](#page-2-2) we have $\Gamma(S) \leq AG(S)$. By lemma [21,](#page-9-0) for all $x \in V(K_n) \setminus \{z\}$, we have **u** is adjacent to **x** in AG(S). Also by lemmas [12](#page-5-0) and [13,](#page-5-1) for all $x, y \in V(K_n)$, we have x is adjacent to y in AG(S). Therefore $AG(S) \cong K_{n+1}$.

(ii) Sincs $Z(S) = S$ by theorem [2,](#page-2-3) we have z is an isolated vertex in $AG(S)$. Now by lemmas [12,](#page-5-0) [13,](#page-5-1) [21,](#page-9-0) we have $AG(S) \cong K_1 \cup K_n$. $□$

Example 23 Suppose that $\Gamma(S)$ is a complete graph K_3 with an end vertex μ and $u^2 = z$. Also assume that $V(K_3) = \{x, y, z\}$. Then $xy = xz = yz = uz = 0$ and we have $ux = uy = z$ and $z^2 = 0$. Moreover we have one of the following three statements.

(i)
$$
x^2 = 0
$$
 and $y^2 = z$ or $x^2 = z$ and $y^2 = 0$.

$$
\Box
$$

- (*ii*) $x^2 = y^2 = z$.
- (*iii*) $x^2 = y^2 = 0$.

In three cases if $\mathsf{Z}(S) \neq S$, by lemma [7,](#page-3-2) we have $\mathsf{AG}(S) \cong \mathsf{K}_4$ and if $\mathsf{Z}(S) = S$, by ,lemma [11,](#page-4-1) we have $\mathsf{AG}(S) \cong \mathsf{K}_1 \cup \mathsf{K}_3$

In the following we study the case of $u^2 = u$ and we show that there is at least one vertex $y \in V(K_n)$ such that u is not adjacent to y in AG(S) and so in this case $AG(S)$ is not a complete graph.

Proposition 24 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = u$ and x, y are two distincet vertices in $V(K_n) \setminus \{z\}$. Then $z^2 = 0$ or $z^2 = z$. and $ux \in Z(S) \setminus \{0, z, u\} = V(K_n) \setminus \{z\}$. Also we have the following two statements.

- (i) If $ux = x$, then $x^2 = 0$ or $x^2 = x$ or $x^2 = y$ and $uy = y$.
- (ii) If $ux = y$, then $uy = y$ and $y^2 = 0$ and also $x^2 = 0$ or $x^2 = z$.

Proof. Since u is not adjacent to x in $\Gamma(S)$, we have $ux \neq 0$. If $ux = z$, then $z = ux = u^2x = u(ux) = uz = 0$ this is impossible and if $ux = u$, then $uy = (ux)y = u(xy) = 0$ which is again impossible. So $ux \notin \{0, z, u\}$ and thus $ux \in Z(S) \setminus \{0, z, u\} = V(K_n) \setminus \{z\}.$

(i) Also suppose that $ux = x$. Then $ux^2 = x^2$. If $x^2 = z$, then $z = uz = 0$ and if $x^2 = u$, then $uy = x^2y = x(xy) = 0$ which are impossible. So $x^2 \notin \{z, u\}$ and thus $x^2 \in Z(S) \setminus \{z, u\} = V(K_n) \setminus \{z\}$. Therefore $x^2 = 0$ or $x^2 = x$ or $x^2 = y$. Also if $x^2 = y$, then $uy = ux^2 = (ux)x = x^2 = y$.

(ii) Now assume that $ux = y$. Then $y^2 = (ux)y = u(xy) = 0$ and $uy =$ $u(ux) = u^2x = ux = y$. Since $ux^2 = (ux)x = yx = 0$, we have $x^2 \in \text{ann}_S(u) =$ $\{0, z\}$ and thus $x^2 = 0$ or $x^2 = z$.

Let $u^2 = u$. The following lemma states which vertices of $V(K_n) \setminus \{z\}$ are connected to the end vertex u in $AG(S)$.

Lemma 25 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u . Also assume that $u^2 = u$ and $x, y \in V(K_n) \setminus \{z\}$. Then the following two statements hold.

- (i) u is adjacent to x in AG(S) if and only if $ux = y$ and $x^2 = z$.
- (ii) u is not adjacent to x in AG(S) if and only if $ux = x$ or $ux = y$ and $x^2 = 0$. Moreover if $ux = y$, then in both cases $x^2 = z$, and $x^2 = 0$ we have u is not adjacent to u in $AG(S)$.

Proof.

(i) First suppose that u is adjacent to x in AG(S). Then $ux \neq x$ and by proposition [24,](#page-10-0) $ux = y$ and $y^2 = 0$ and $x^2 = 0$ or $x^2 = z$. If $x^2 = 0$, then anns(x) ∪ anns(u) = $V(K_n) \cup \{0, z\} = V(K_n) \cup \{0\} = \text{ann}_S(y) = \text{ann}_S(ux)$ and so **u** is not adjacent to **x** in $AG(S)$ this is impossible. Therefore $x^2 \neq 0$ and so $x^2 = z$.

Conversely, assum that $ux = y$ and $x^2 = z$. Then $x \notin \text{ann}_S(x) \cup \text{ann}_S(u)$ and $x \in \text{ann}_{S}(y)$ and so u is adjacent to x in AG(S).

(ii) First suppose that **u** is not adjacent to **x** in $\Gamma(S)$ and $ux \neq x$. Then by proposition [24,](#page-10-0) we have $ux = y$, $y^2 = 0$ and also $x^2 = 0$ or $x^2 = z$. If $x^2 = z$, then **u** is adjacent to **x** in $AG(S)$ this is impossible. Therefore $x^2 = 0$.

Conversely, if $ux = x$, then u is not adjacent to x in AG(S). Now assume that $ux \neq x$. Then by proposition [24,](#page-10-0) we have $ux = y$, $y^2 = 0$ and since $x^2 = 0$, we have $\text{ann}_S(x) = \text{ann}_S(y) = \text{ann}_S(ux)$ and so u is not adjacent to x in $AG(S)$.

Moreover if $ux = y$, then $uy = u(ux) = u^2x = ux = y$ and so u is not adjacent to ψ in AG(S).

By proposition [24,](#page-10-0) for all $x \in V(K_n) \setminus \{z\}$, we have $ux \in Z(S) \setminus \{0, z, u\}$ $V(K_n) \setminus \{z\}$ and $ux = x$ or there is $y \in V(K_n) \setminus \{z, x\}$ that $ux = y$ and $uy = y$. So u is not adjacent to x in $AG(S)$ or u is not adjacent to y in $AG(S)$. Therefore there is at least one vertex $x \in V(K_n) \setminus \{z\}$ that is not adjacent to u in AG(S) and thus $AG(S)$ is not a commplete graph.

Corollary 26 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = u$. Then $AG(S)$ is not a complete graph.

Theorem 27 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex μ and $u^2 = u$. Also assume that $Z(S) \neq S$ and $V(K_n) = \{x_1, x_2, x_3, \ldots, x_{n-1}, z\}.$ Then $AG(S) \cong K_{n+1} \setminus \{ \{ux_1\}, \{ux_2\}, \{ux_3\}, \ldots, \{ux_m\} \}$ if and only if for all $1 \leq i \leq m$ and $m + 1 \leq j \leq n - 1$, we have the following two statements.

- (*i*) either $ux_i = x_i$ or $ux_i = x_t$ and $1 \le t \le m$ also $x_i^2 = 0$.
- (*ii*) $ux_j = x_i$ and $x_j^2 = z$

Proof. (i) First suppose that $AG(S) \cong K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, \ldots, \{ux_m\}\}.$ Then **u** is not adjacent to x_i in $AG(S)$ and by lemma [25](#page-10-1) for all $1 \le i \le m$, we have $ux_i = x_i$ or $ux_i = x_t$ and $x_i^2 = 0$. Moreover if $ux_i = x_t$, then $ux_t = x_t$ and so **u** is not adjacent to x_t in AG(S). Thus $1 \le t \le m$.

(ii)Since **u** is adjacent to x_j in AG(S) by lemma [25](#page-10-1) for all $m+1 \le j \le n-1$, we have $ux_j = x_t$ and $x_j^2 = z$. Also if $ux_j = x_t$, then $ux_t = x_t$ and so u is not adjacent to x_t in AG(S). Thus $1 \le t \le m$. Therefore $ux_j = x_i$.

Conversely, by lemma [25,](#page-10-1) if statement (i) holds, then for all $1 \le i \le m$, we have μ is not adjacent to x_i in $AG(S)$ and if statement (ii) holds, then for all $m + 1 \leq j \leq n - 1$, we have u is adjacent to x_j in AG(S) and so $AG(S) \cong K_{n+1} \setminus \{ \{ux_1\}, \{ux_2\}, \{ux_3\}, \ldots, \{ux_m\} \}.$

In the above theorem, since $AG(S)$ is not a commplete graph so $m \neq 0$. If $m = 1$ or $m = n - 1$, then we have the following corollary.

Corollary 28 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = u$. Also assume that $Z(S) \neq S$ and $V(K_n) = \{x_1, x_2, x_3, \ldots, x_{n-1}, z\}.$ Then the following statements hold.

- (i) $AG(S) \cong K_{n+1} \setminus \{ \{ux_1\} \}$ if and only if $ux_1 = x_1$ and for all $2 \le i \le n-1$, we have $ux_i = x_1$ and $x_1^2 = 0$ and $x_i^2 = z$.
- (ii) $AG(S) \cong K_n + \{uz\}$ if and only if for all $1 \le i, j \le n 1$, we have if $ux_i \neq x_i$, then $ux_i = x_j$ and $x_i^2 = x_j^2 = 0$.

The next corollary follows from theorem [27.](#page-11-0)

Corollary 29 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = u$. Also assume that $V(K_n) = \{x_1, x_2, x_3, \ldots, x_{n-1}, z\}$. Then the following statements hold.

- (i) If $Z(S) \neq S$, then $AG(S)$ can be one of the graphs: $K_{n+1} \setminus \{ \{ux_1\} \}$ or $K_{n+1} \setminus \{ \{ux_1\}, \{ux_2\} \}$ or $K_{n+1} \setminus \{ \{ux_1\}, \{ux_2\}, \{ux_3\} \}$ or,......, or $K_{n+1} \setminus$ $\{\{ux_1\}, \{ux_2\}, \{ux_3\}, \ldots, \{ux_{n-1}\}\}.$
- (ii) If $Z(S) = S$, then $AG(S)$ can be one of the graphs: K₁ ∪ K_n \ {{ux₁}} or K₁ ∪ K_n \ {{ux₁}, {ux₂}} or K₁ ∪ K_n \ {{ux₁}, {ux₂}, {ux₃}} or,.......,or $K_1 \cup K_n \setminus \{ \{ux_1\}, \{ux_2\}, \{ux_3\}, \ldots, \{ux_{n-1}\} \} = 2K_1 \cup K_{n-1}$ with u and z are two isolated vertices.

Proof. By corollary [26,](#page-11-1) AG(S) is not a complete graph. If $Z(S) \neq S$ by theorem [1,](#page-2-2) we have $\Gamma(S) \leq AG(S)$ and if $\mathsf{Z}(S) = S$ by theorem [2,](#page-2-3) we have z is an isolated vertex in $AG(S)$. Now by theorem [27,](#page-11-0) the results hold.

Example 30 Suppose that $\Gamma(S)$ is a complete graph K₃ with an end vertex **u** and $u^2 = u$. Also assume that $V(K_3) = \{x, y, z\}$. Then $xy = xz = yz = uz = 0$ and $z^2 = 0$ or $z^2 = z$. Moreover we have one of the following three statements.

(i) $ux = y = uy, x^2 = z, y^2 = z^2 = 0$ or $ux = x = uy, y^2 = z$ and $x^2 = z^2 = 0$,. In this case if $\mathsf{Z}(S) \neq S$, by lemma [6,](#page-3-1) we have $\mathsf{AG}(S) \cong \mathsf{Z}(S)$ K₄ \{{uy}} or $AG(S) \cong K_4 \setminus \{ \{ ux \} \}$ and if $Z(S) = S$, by lemma [10,](#page-4-0) we have $AG(S) \cong K_1 \cup K_3 \setminus {\{uy\}}$ or $AG(S) \cong K_1 \cup K_3 \setminus {\{ux\}}$.

(ii) $z^2 \in \{0, z\}$ and $ux = y = uy, x^2 = y^2 = 0$, or $ux = x = uy, x^2 = y^2 = 0$ or $ux = y$, $uy = x$, $x^2 = y^2 = 0$. In this case if $Z(S) \neq S$, by lemma [8,](#page-3-0) we have $AG(S) \cong K_4 \setminus {\{ux\}, {uy\}} = K_3 + {uz}$ and if $Z(S) = S$, by lemma [9,](#page-4-2) we have $AG(S) \cong 2K_1 \cup K_2$ such that u and z are two isolated vertices in $AG(S)$.

(iii) $z^2 \in \{0, z\}$ and $ux = x$, $uy = y$ and we have the following six cases.

(1) $y^2 = 0$, and $x^2 \in \{0, x, y\}.$ (2) $y^2 = y$, and $x^2 \in \{0, x\}.$ (3) $y^2 = x$, and $x^2 = 0$.

In this case if $\mathsf{Z}(S) \neq S$, *by lemma [8,](#page-3-0) we have* $\mathrm{AG}(S) \cong \mathrm{K}_4 \setminus \{ \{ ux\}, \{uy\} \} =$ $K_3 + \{uz\}$ and if $Z(S) = S$, by lemma [9,](#page-4-2) we have $AG(S) \cong 2K_1 \cup K_2$ such that u and z are two isolated vertices in $AG(S)$.

Finally, we study the case of $u^2 \notin \{0, z, u\}$ and so $u^2 = b \in V(K_n) \setminus \{z\}$. we show that u is adjacent to all vertices $y \in V(K_n) \setminus \{z, b\}$ in $AG(S)$ and u is adjacent to b in $AG(S)$ if and only if $ub \neq b$.

Proposition 31 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = b \notin \{0, z, u\}$. Then $u^2 = b \in V(K_n) \setminus \{z\}$ and we have the following two statements.

- (i) For all $x \in Z(S) \setminus \{0, z, u, b\}$, we have $ux = z$, $z^2 = 0$ and $x^2 = 0$ or $x^2 = z$.
- (ii) $ub = b$ and $b^2 = b$, or $ub = z$ and $b^2 = 0$ or $ub = y \in Z(S) \setminus \{0, z, u, b\}$ and $b^2 = z$, $y^2 = 0$.

Proof. (i) Suppose that $u^2 = b$. For all $x \in Z(S) \setminus \{0, z, u, b\}$, since u is not adjacent to x in $\Gamma(S)$, we have $ux \neq 0$. If $ux = u$, then $ub = (ux)b = u(xb) = 0$ which is impossible. For all $y \in V(K_n) \setminus \{z\}$, if $ux = y$, then $uy = u(ux)$ $u^2x = bx = 0$ which is again impossible and so $ux \notin \{0, u\} \cup V(K_n) \setminus \{z\}.$ Therefore $ux = z$ and $z^2 = (ux)z = u(xz) = 0$.

Since $ux = z$, we have $ux^2 = (ux)x = zx = 0$ and so $x^2 \in \text{ann}_S(u) = \{0, u\}.$ Therefore $x^2 = 0$ or $x^2 = z$.

(ii) Clearly $ub \neq 0$ and $ub \neq u$ so $ub \in V(K_n)$ and thus $ub = b$ or $ub = z$ or $ub = y \in V(K_n) \setminus \{z, b\}.$ Since $u^2 = b$, if $ub = b$, then $u^3 = uu^2 = ub = b = u^2$ and so $u^4 = u^3 = u^2$. Thus $b^2 = u^4 = u^3 = u^2 = b$ and if $ub = z$ we have $b^2 = bb = u^2b = u(ub) = uz = 0.$

Now assume that $ub = y \in Z(S) \setminus \{0, z, u, b\}$. Then $y^2 = (ub)y = u(by) = 0$. Since $uy = z$, we have $b^2 = bb = u^2b = u(ub) = uy = z$.

Lemma 32 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u . Also assume that $u^2 = b \in V(K_n) \setminus \{z\}$ and $x \in V(K_n) \setminus \{z, b\}$. Then u is

adjacent to x in $AG(S)$. Moreover u is adjacent to b in $AG(S)$ if and only if $ub \neq b$.

Proof. By proposition [31,](#page-14-0) For all $x \in V(K_n) \setminus \{z, b\}$, we have $ux = z$. Since $u^2 = b$ so $u \notin \text{ann}_S(x) \cup \text{ann}_S(u)$ and $u \in \text{ann}_S(z) = \text{ann}_S(ux)$. Thus u is adjacent to x in $AG(S)$.

Moreover if **u** is adjacent to **b** in $AG(S)$, then $ub \neq b$.

Conversely assume that $ub \neq b$. By proposition [31,](#page-14-0) we have $ub = z$ and $b^2 = 0$ or $ub = y \in Z(S) \setminus \{0, z, u, b\}$ and $b^2 = z, y^2 = 0$.

If $ub = z$ and $b^2 = 0$, then $u \notin \text{ann}_S(b) \cup \text{ann}_S(u)$ and $u \in \text{ann}_S(z) =$ anns(ub). Thus u is adjacent to b in AG(S). Also if $ub = y \in Z(S) \setminus \{0, z, u, b\}$ and $b^2 = z$, $y^2 = 0$, then $b \notin \text{ann}_S(b) \cup \text{ann}_S(u)$ and $b \in \text{ann}_S(y) = \text{ann}_S(ub)$. Therefore u is adjacent to b in $AG(S)$.

Corollary 33 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = b \in V(K_n) \setminus \{z\}$ and $Z(S) \neq S$. Then $AG(S)$ is not a commplete graph if and only if $ub = b$.

Theorem 34 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex μ and $u^2 = b \in V(K_n) \setminus \{z\}$. Then the following statements hold.

(i) If $\mathsf{Z}(S) \neq S$, then we have two cases.

(1) AG(S) \cong K_{n+1} if and only if ub \neq b.

(2) AG(S) \cong K_{n+1} \ {{ub}} if and only if ub = b.

(ii) If $\mathsf{Z}(S) = S$, then we have two cases.

(1) AG(S) \cong K₁ ∪ K_n if and only if ub \neq b.

(2) $AG(S) \cong K_1 \cup K_n \setminus {\{ub\}}$ if and only if $ub = b$.

Proof. If $Z(S) \neq S$, then $\Gamma(S) \leq AG(S)$. By lemma [32,](#page-14-1) for all $x \in V(K_n) \setminus \{z, b\}$, we have u is adjacent to x in $AG(S)$ and u is adjacent to b in $AG(S)$ if and only if $ub \neq b$. Thus the statement (i) holds.

(ii) Since $Z(S) = S$, we have z is an isolated vertex in $AG(S)$. Now by lemma [32,](#page-14-1) the results hold. \square

Example 35 Suppose that $\Gamma(S)$ is a complete graph K_3 with an end vertex \mathfrak{u} and $\mathfrak{u}^2 = \mathfrak{x}$ or $\mathfrak{u}^2 = \mathfrak{y}$. Also assume that $V(K_3) = \{x, y, z\}$. Then $xy =$ $xz = yz = uz = 0$ and $z^2 = 0$. Moreover we have one of the following two statements.

(*i*) $ux = z$, $uy = y$, $u^2 = y^2 = y$, and $x^2 = 0$ or $x^2 = z$ or $uy = z$, $ux = x$, $u^2 = x^2 = x$, and $y^2 = 0$ or $y^2 = z$. In this case if $\mathsf{Z}(S) \neq S$, by lemma [6,](#page-3-1) we have $AG(S) \cong K_4 \setminus \{ \{uy\} \}$ or $AG(S) \cong K_4 \setminus \{ \{ux\} \}$ and if $Z(S) = S$, by *lemma [10,](#page-4-0) we have* $AG(S) \cong K_1 \cup K_3 \setminus \{ \{uy\} \}$ or $AG(S) \cong K_1 \cup K_3 \setminus \{ \{ux\} \}.$

(ii) Also we have the following four cases.

(1) $ux = y$, $uy = z$, $u^2 = x$, and $x^2 = y^2 = 0$. (2) $ux = z$, $uy = x$, $u^2 = y$, and $x^2 = 0$, $y^2 = z$. (3) $ux = uy = z$, $u^2 = y$, $y^2 = 0$ and $x^2 = 0$ or $x^2 = z$. (4) $ux = uy = z, u^2 = x, x^2 = 0 \text{ and } y^2 = 0 \text{ or } y^2 = z.$

In this case if $\mathsf{Z}(S) \neq S$, by lemma [7,](#page-3-2) we have $\mathsf{AG}(S) \cong \mathsf{K}_4$ and if $\mathsf{Z}(S) = S$, by lemma [11,](#page-4-1) we have $\mathsf{AG}(S) \cong \mathsf{K}_1 \cup \mathsf{K}_3$ such that u is an isolated vertex in AG(S).

Acknowledgements

The authors are deeply grateful to the referees for careful reading of the manuscript and helpful suggestions.

References

[1] M. [Afkhami,](https://afkhami.neyshabur.ac.ir/math/afkhami/en/) K. [Khashyarmanesh,](http://khashayar.profcms.um.ac.ir/index.php?mclang=en-GB) M. [Sakhdari,](http://www.iaus.ac.ir/faculty/mohammad-sakhdari) On the annihilator graphs of semigroups, *[J. Algebra and its Appl.](https://doi.org/10.1142/S0219498815500152)* **1**4 (2015) 1550015 – 1550029. ⇒[120,](#page-1-0) [121,](#page-2-4) [123](#page-4-3)

- [2] M. [Afkhami,](https://afkhami.neyshabur.ac.ir/math/afkhami/en/) K. [Khashyarmanesh,](http://khashayar.profcms.um.ac.ir/index.php?mclang=en-GB) M. [Sakhdari,](http://www.iaus.ac.ir/faculty/mohammad-sakhdari) Annihilator graphs with four vertices, *[Semigroup Forum.](https://link.springer.com/article/10.1007/s00233-016-9833-6)* **94** (2017) 139 – 166. \Rightarrow [120,](#page-1-0) [121,](#page-2-4) [122,](#page-3-3) [123](#page-4-3)
- [3] M. [Afkhami,](https://afkhami.neyshabur.ac.ir/math/afkhami/en/) K. [Khashyarmanesh,](http://khashayar.profcms.um.ac.ir/index.php?mclang=en-GB) M. [Sakhdari,](http://www.iaus.ac.ir/faculty/mohammad-sakhdari) Annihilator graph of a commutative semigroup whose zero-divisor graph is a refinement of a star graph, [Quasigroups and Related Systems.](http://www.quasigroups.eu/contents/download/2021/29_13.pdf) 29 (2021) 157–170. \Rightarrow [120](#page-1-0)
- [4] J. A. [Bondy](https://dl.acm.org/profile/81332490469/publications?Role=author&pageSize=20&startPage=1) and U. S. R. [Murty,](https://dl.acm.org/profile/81452615249) Graph Theory with Applications, [American](https://www.zib.de/groetschel/teaching/WS1314/BondyMurtyGTWA.pdf) [Elsevier,](https://www.zib.de/groetschel/teaching/WS1314/BondyMurtyGTWA.pdf) New York, 1976. \Rightarrow [121](#page-2-4)
- [5] F. [DeMeyer,](https://www.scopus.com/authid/detail.uri?authorId=6603356773) L. [DeMeyer,](https://www.scopus.com/authid/detail.uri?authorId=6506578030) Zero-divisor graphs of semigroups, [J. Algebra.](https://www.sciencedirect.com/science/article/pii/S0021869304004831#!) 283 (2005) 190–198. [⇒][120](#page-1-0)
- [6] L. [DeMeyer,](https://www.scopus.com/authid/detail.uri?authorId=6506578030) M. [Dsa,](https://www.researchgate.net/scientific-contributions/Michel-D-sa-2053558840) I. [Epstein,](https://www.semanticscholar.org/author/Inessa-Epstein/35823153) A. [Geiser](https://www.researchgate.net/scientific-contributions/Amanda-Geiser-2053562044) and K. [Smith,](https://scholar.google.com/citations?user=tF0pb3YAAAAJ&hl=en) Semigroups and the zero-divisor graph, *[Bull. Inst. Comb. Appl.](https://www.shsu.edu/~kws006/Professional/Kens_Papers_files/23_DeMeyerSmithetal_Aug25.pdf)* 57 (2009) 60–70. \Rightarrow [120](#page-1-0)
- [7] F. [DeMeyer,](https://www.scopus.com/authid/detail.uri?authorId=6603356773) T. [Mckenzie,](https://scholar.google.com/citations?user=zfIX8B0AAAAJ&hl=en) K. Schneider, The zero-divisor graph of a commutative semigroup, [Semigroup Forum.](https://doi.org/10.1007/s002330010128) 65 (2002) 206–214. \Rightarrow [120](#page-1-0)
- [8] T. [Wu,](https://www.scopus.com/authid/detail.uri?authorId=8843064500) D. [Lu,](https://www.scopus.com/authid/detail.uri?authorId=8530385300) Subsemigroups determined by the zero-divisor graph, [Discrete](https://doi.org/10.1016/j.disc.2007.09.032) *[Math.](https://doi.org/10.1016/j.disc.2007.09.032)* 308 (2008) 5122–5135. ⇒[120](#page-1-0)
- [9] T. [Wu,](https://www.scopus.com/authid/detail.uri?authorId=8843064500) F. [Cheng,](https://scholar.google.com.hk/citations?user=sFfkf94AAAAJ&hl=en) The structure of zero-divisor semigroups with graph $K_n \circ K_2$, [Semigroup Forum.](https://doi.org/10.1007/s00233-007-9032-6) ⁷6 (2008) 330–340. [⇒][120](#page-1-0)
- [10] T. [Wu,](https://www.scopus.com/authid/detail.uri?authorId=8843064500) Q. [Liu,](https://www.scopus.com/authid/detail.uri?authorId=55712251200) L. [Chen,](https://www.scopus.com/authid/detail.uri?authorId=14041395200) Zero-divisor semigroups and refinements of a star graph, [Discrete Math.](https://doi.org/10.1016/j.disc.2008.06.008) 309 (2009) 2510–2518. \Rightarrow [120](#page-1-0)

Received: June 6, 2022 • Revised: July 12, 2022