

ACTA UNIV. SAPIENTIAE INFORMATICA 14, 1 (2022) 119–136

DOI: 10.2478/ausi-2022-0008

Annihilator graphs of a commutative semigroup whose Zero-divisor graphs are a complete graph with an end vertex

Seyed Mohammad SAKHDARI

Department of Basic Sciences, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran email: sakhdari85@yahoo.com Mojgan AFKHAMI

Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran email: mojgan.afkhami@yahoo.com

Abstract. Suppose that the zero-divisor graph of a commutative semigroup S, be a complete graph with an end vertex. In this paper, we determine the structure of the annihilator graph S and we show that if Z(S) = S, then the annihilator graph S is a disconnected graph.

1 Introduction

In this paper S is a commutative semigroup with zero whose operation is written multiplicatively and Z(S) is the set of all zero-divisors of S also $Z(S)^* = Z(S) \setminus \{0\}$.

The zero-divisor graph of a commutative semigroup S with zero, is denoted by $\Gamma(S)$, is an undirected graph with vertex set $Z(S)^*$ and two distinct vertices x and y are adjacent if and only if xy = 0. $\Gamma(S)$ is a connected graph and the

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 68R15

Key words and phrases: zero-divisor graph, annihilator graph, isolated vertex, connected graph, complete graph

diameter of $\Gamma(S)$ is less than or equal to three. For other results on zero divisor graphs one can see [5, 6, 7, 8, 9, 10].

In [1], we introduced and studied the annihilator graph for a commutative semigroup S, and showed it with AG(S). The graph AG(S) is an undirected graph with vertex set $Z(S)^*$ and two distinct vertices x and y are adjacent if and only if $\operatorname{ann}_S(xy) \neq \operatorname{ann}_S(x) \cup \operatorname{ann}_S(y)$, where $\operatorname{ann}_S(x) = \{s \in S \mid xs = 0\}$. We proved that if $Z(S) \neq S$, then $\Gamma(S)$ is a subgraph of AG(S), and so AG(S) is connected. Also if Z(S) = S, then AG(S) may be connected or disconnected and if there exists $x \in S^* = S \setminus \{0\}$ such that x is adjacent to all vertices in $\Gamma(S)$, then x is an isolated vertex in AG(S).

In [1, section 4] and in [2], we characterized all annihilator graphs with three and four vertices. Also in [3], we studied the structure of the annihilator graph of a commutative semigroup S whose $\Gamma(S)$ is a refinement of a star graph.

A complete graph and a complete graph with an end vertex are one of the graphs can be zero-divisor graph of a commutative semigroup.

In this paper, we study the annihilator graph associated with a commutative semigroup with zero using the zero-divisor graph $\Gamma(S)$, where $\Gamma(S)$ is a complete graph K_n with an end vertex $u \notin V(K_n)$ and u is only adjacent to $z \in V(K_n)$. Let \mathfrak{m} be the number of edges between \mathfrak{u} and $V(K_n)$ in AG(S). We show that the following four statements hold.

- (i) Let $u^2 = 0$. If $Z(S) \neq S$, then $m \in \{1, 2, 3,, n\}$ and if Z(S) = S, then $m \in \{0, 1, 2, 3,, n 1\}$.
- (ii) Let $u^2 = z$. If $Z(S) \neq S$, then m = n and so u is adjacent to all vertices of $V(K_n)$ in AG(S) and if Z(S) = S, then m = n-1 and u is not adjacent to z in AG(S).
- (iii) Let $u^2 = u$. If $Z(S) \neq S$, then $m \in \{1, 2, 3,, n-1\}$ and if Z(S) = S, then $m \in \{0, 1, 2, 3,, n-2\}$ and so there is at least one vertex of $V(K_n)$ that u is not adjacent to it in AG(S).
- (iv) Let $u^2 = b \notin \{0, z, u\}$. If $Z(S) \neq S$, then $m \in \{n 1, n\}$ and so there is at most one vertex $(u^2 = b)$ of $V(K_n)$ that u is not adjacent to it in AG(S). Also if Z(S) = S, then $m \in \{n - 1, n - 2\}$ and u is not adjacent to z in AG(S).

2 Preliminaries

In this section, we recall some definitions and notations of graphs and we use the standard terminology of graphs is contained in [4]. Here, G is a graph with vertex set V(G) and edge set E(G). If a is adjacent to b in G, then the edge between a and b will denote by $\{ab\}$ and we write $a \sim b$.

The *distance* between two distinct vertices x and y is the length of the shortest path connecting x and y and will denote by d(x, y), if such a path exists; otherwise, we use $d(x, y) := \infty$. Also $diam(G) = sup\{d(x, y) : x \text{ and } y \text{ are distinct vertices of } G\}$ is the *diameter* of the graph G.

The girth of G, denoted by gr(G), is the length of the shortest cycle in G. If there exists a path between any two distinct vertices of G, we say that graph G is a *connected* graph, and if for each two vertices x and y of V(G) we have x is adjacent to y, we say that G is a complete graph and K_n is the complete graph with n vertices. If no two vertices of G are adjacent, we say that G is a *totally disconnected* graph and nK_1 is the totally disconnected graph with n vertices.

We say that u is an end vertex in G. If u is adjacent to only one vertex of G and if for each vertex $x \in V(G)$ we have u is not adjacent to x, then we say that u is an *isolated* vertex in G.

Suppose that H and G are two graphs. We use the notation $G \leq H$ to denote that G is a subgraph of H and if H is isomorphic to G, we write $H \cong G$. Let G be a graph. $G \setminus \{\{x_1y_1\}, \{x_2y_2\}, \{x_3y_3\}, ..., \{x_ny_n\}\}$ is a graph such that edges $\{x_1y_1\}, \{x_2y_2\}, \{x_3y_3\}, ..., \{x_ny_n\}$ are deleted.

 P_n is the path of length n and C_n is the cycle of length n.

 $\mathfrak{m}K_n$ is a graph with \mathfrak{m} components such that each component is isomorphic to K_n . $G \cup H$, the union of the graphs G and H, is a graph with vertex set $V(G) \cup V(H)$ and edge set $E(H) \cup E(G)$.

Now, we recall some results which we are used in the next section.

Theorem 1 [1] If $Z(S) \neq S$, then we have $\Gamma(S) \leq AG(S)$.

Theorem 2 [1] Let Z(S) = S and there exists $x \in S^*$ such that, for each non zero element $y \neq x$ of S, we have xy = 0. Then x is an isolated vertex in AG(S).

Lemma 3 [2] If $Z(S) \neq S$ and $\Gamma(S) \cong P_3$, then $AG(S) \cong C_4$.

Lemma 4 [2] Let $Z(S) \neq S$. Then $AG(S) \cong C_4$ if and only if we either have $\Gamma(S) \cong P_3$ or $\Gamma(S) \cong C_4$.

Lemma 5 [2] Let Z(S) = S. Then $AG(S) \cong P_3$ with $x \sim w \sim z \sim y$ if and only if $\Gamma(S) \cong P_3$ with $w \sim x \sim y \sim z$.

Lemma 6 [2] Let S be a commutative semigroup with $Z(S) \neq S$, and let $\Gamma(S) \cong K_3 + \{wx\}$ with wx = xy = yz = zx = 0. Then $AG(S) \cong K_4 \setminus \{wy\}$ if and only if the relations between the zero-divisors of S satisfies in one of the following four conditions.

- (i) wy = y, wz = x, $w^2 = y^2 = y$, $x^2 = 0$, and $z^2 \in \{0, x\}$.
- (ii) wy = wz = x, $w^2 = y^2 = x^2 = 0$, and $z^2 = x$.
- (*iii*) wy = y = wz, $w^2 = w$, $z^2 = x$, and $y^2 = x^2 = 0$.

Lemma 7 [2] Let S be a commutative semigroup with $Z(S) \neq S$, and let $\Gamma(S) \cong K_3 + \{wx\}$ with wx = xy = yz = zx = 0. Then $AG(S) \cong K_4$ if and only if the relations between the zero-divisors of S satisfies in one of the following eleven conditions.

- (i) wx = xy = yz = zx = 0, wy = x, wz = y, $y^2 = x^2 = 0$, $w^2 = z$ and $z^2 = x$.
- (ii) wx = xy = yz = zx = 0, wy = z, wz = x, $w^2 = y$, $y^2 = x$ and $z^2 = x^2 = 0$.
- (iii) wx = xy = yz = zx = 0, wy = wz = x, $x^2 = 0$ and one of the following nine cases holds.
 - (1) $w^2 = 0$, $y^2 = x$ and $z^2 = x$. (2) $w^2 = y$, $y^2 = 0$ and $z^2 \in \{0, x\}$. (3) $w^2 = z$, $z^2 = 0$ and $y^2 \in \{0, x\}$. (4) $w^2 = x$, $y^2 = 0$ and $z^2 \in \{0, x\}$. (5) $w^2 = x$, $y^2 = x$ and $z^2 \in \{0, x\}$.

Lemma 8 [2] Let S be a commutative semigroup with $Z(S) \neq S$, and let $\Gamma(S) \cong K_3 + \{wx\}$ with wx = xy = yz = zx = 0. Then $AG(S) \cong K_3 + \{wx\}$ with $w \sim x \sim y \sim z \sim x$ if and only if the relations between the zero-divisors of S satisfies in one of the following nineteen conditions.

(i) wx = xy = yz = zx = 0, wy = y = wz, $z^2 = y^2 = 0$, $w^2 = w$ and $x^2 \in \{0, x\}$.

- (*ii*) wx = xy = yz = zx = 0, wz = wy = x and $w^2 = y^2 = z^2 = x^2 = 0$.
- (iii) wx = xy = yz = zx = 0, wz = z = wy, $w^2 = w$, $y^2 = z^2 = 0$ and $x^2 \in \{0, x\}$.
- (iv) wx = xy = yz = zx = 0, wz = y, wy = z, $w^2 = w$, $y^2 = z^2 = 0$ and $x^2 \in \{0, x\}$.
- (v) wx = xy = yz = zx = 0, wy = y, wz = z, $w^2 = w$ and we have the following twelve situations.
 - (1) $y^2 = 0$, $z^2 = 0$ and $x^2 \in \{0, x\}$. (2) $y^2 = 0$, $z^2 = z$ and $x^2 \in \{0, x\}$. (3) $y^2 = 0$, $z^2 = y$ and $x^2 \in \{0, x\}$. (4) $y^2 = y$, $z^2 = 0$ and $x^2 \in \{0, x\}$. (5) $y^2 = y$, $z^2 = z$ and $x^2 \in \{0, x\}$. (6) $y^2 = z$, $z^2 = 0$ and $x^2 \in \{0, x\}$.

Lemma 9 [2] Let S be a commutative semigroup with Z(S) = S, and let $\Gamma(S) \cong K_3 + \{wx\}$ with wx = xy = yz = zx = 0. Then $AG(S) \cong 2K_1 \cup K_2$, where x and w are isolated vertices and z is adjacent to y, if and only if the semigroup S satisfies in one of the nineteen conditions of Lemma (8).

Lemma 10 [2] Let S be a commutative semigroup with Z(S) = S. Then AG(S) $\cong K_{1,2} \cup K_1$, where x is an isolated vertex and the vertices y, z, w form a star graph with center z, if and only if $\Gamma(S) \cong K_3 + \{wx\}$ with wx = xy = yz = zx = 0, and the semigroup S satisfies in one of the four conditions of Lemma (6).

Lemma 11 [2] Let S be a commutative semigroup with Z(S) = S, and let $\Gamma(S) \cong K_3 + \{wx\}$ with wx = xy = yz = zx = 0. Then $AG(S) \cong K_3 \cup K_1$, where x is an isolated vertex and the vertices w, z, y form a triangle if and only if the semigroup S satisfies in one of the eleven conditions of Lemma (7).

Suppose that G is a complete graph K_n with an end vertex u that u is adjacent to $z \in V(K_n)$ and n = 1. Then $\Gamma(S) \cong K_2$. Now if Z(S) = S, then clearly $AG(S) \cong 2K_1$, and if $Z(S) \neq S$, then $AG(S) \cong \Gamma(S) \cong K_2$.

Let n = 2. We have $\Gamma(S) \cong K_{1,2} = P_2$ with $u \sim z \sim x$. In [1], we show that, if Z(S) = S, then $AG(S) \cong 3K_1$ or $AG(S) \cong K_1 \cup K_2$, and if $Z(S) \neq S$, then $AG(S) \cong K_{1,2}$ or $AG(S) \cong K_3$.

Moreover assume that complete graph K_2 has two end vertices u_1 and u_2 adjacent to z_1 and z_2 . Then $\Gamma(S) \cong P_3$ with $u_1 \sim z_1 \sim z_2 \sim u_2$. Now by lemma 5, if Z(S) = S, then $AG(S) \cong P_3$ with $z_1 \sim u_1 \sim u_2 \sim z_2$ such that z_1 and z_2 are two end vertices in AG(S), and by lemma 3, if $Z(S) \neq S$, then $AG(S) \cong C_4$.

3 Properties of AG(S)

In this section, we assume that $|Z(S)^*| \ge 4$ and K_n is a complete graph with at least three vertices and $z \in V(K_n)$ and $u \notin V(K_n)$. we add to K_n an end vertex u, which is adjacent to a unique vertex z of $V(K_n)$ and denote it by $\Gamma(S) \cong K_n + \{uz\}$ and so $\Gamma(S) \cong K_n + \{uz\}$ is the graph of a commutative semigroup such that $Z(S) = V(K_n) \cup \{0\} \cup \{u\}$. Thus for each two distinct vertices x and y in $V(K_n)$, we have xy = zu = 0 and $xu \neq 0$ and Since z is a cut vertex in $\Gamma(S)$, thus $\{0, z\}$ is an ideal of S and so $z^2 = 0$ or $z^2 = z$.

In following, we distinguish the structure of the annihilator graph a commutative semigroup whose $\Gamma(S) \cong K_n + \{uz\}$, for cases $u^2 = 0$ or $u^2 = z$ or $u^2 = u$ or $u^2 \neq 0, z, u$.

The following lemma show that if $\Gamma(S)$ is a complete graph K_n with an end vertex u, then for all $x, y \in V(K_n) \setminus \{z\}$ always, x is adjacent to y in AG(S).

Lemma 12 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Then for all $x, y \in V(K_n) \setminus \{z\}$, we have x is adjacent to y in AG(S).

Proof. Since $\Gamma(S) \cong K_n + \{uz\}$ and $x, y \in V(K_n) \setminus \{z\}$, we have xy = 0 and so $\operatorname{ann}_S(xy) = S$. since u is an end vertex adjacent to only z in $\Gamma(S)$ thus $ux \neq 0$ and $uy \neq 0$ so $u \notin \operatorname{ann}_S(x) \cup \operatorname{ann}_S(y)$ which follows that $\operatorname{ann}_S(x) \cup \operatorname{ann}_S(y) \neq \operatorname{ann}_S(xy)$. Therefore x is adjacent to y in AG(S).

Lemma 13 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Then the following statements hold.

- (i) If $Z(S) \neq S$, then AG(S) is a connected graph and u is adjacent to z in AG(S).
- (ii) If Z(S) = S, then AG(S) is a disconnected graph and z is an isolated vertex in AG(S).

Proof. (i) Since $Z(S) \neq S$ by theorem 1, we have $\Gamma(S) \leq AG(S)$. Since $\Gamma(S)$ is a connected graph and z is adjacent to u in $\Gamma(S)$, we have AG(S) is a connected graph and u is adjacent to z in AG(S).

(ii) Since z is adjacent to all vertices in $\Gamma(S)$ and Z(S) = S by theorem 2, z is an isolated vertex in AG(S) and so AG(S) is a disconnected graph. Let $\Gamma(S) \cong K_n + \{uz\}$. By lemma 12 and lemma 13, to study the graph AG(S), it is sufficient to examine the edges between u and x, for all $x \in V(K_n) \setminus \{z\}$.

Proposition 14 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex \mathfrak{u} . Also assume that $\mathfrak{u}^2 = 0$ and $x, y \in V(K_n) \setminus \{z\}$. Then $\mathfrak{u} x = z$, $z^2 = 0$ and $x^2 = 0$ or $x^2 = z$.

Proof. Since u is not adjacent to x in $\Gamma(S)$, we have $ux \neq 0$. If ux = u, then uy = (ux)y = u(xy) = 0, which is impossible and so $ux \neq u$. Now let ux = y. We have $uy = u(ux) = u^2x = 0$ which is again impossible. Since $Z(S) = V(K_n) \cup \{0\} \cup \{u\}$, we have ux = z and so $z^2 = (ux)z = u(xz) = 0$. Finally, since ux = z, we have $ux^2 = (ux)x = zx = 0$ and so $x^2 \in \operatorname{ann}_S(u) = \{0, u, z\}$. If $x^2 = u$, then $uy = x^2y = x(xy) = 0$, which is impossible. Therefore $x^2 = 0$ or $x^2 = z$.

Let $u^2 = 0$. The following lemma states which vertices of $V(K_n) \setminus \{z\}$ are connected to the end vertex u in AG(S)

Lemma 15 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = 0$ and $x, y \in V(K_n) \setminus \{z\}$. Then the following statements hold.

(i) \mathfrak{u} is adjacent to \mathfrak{x} in AG(S) if and only if $\mathfrak{x}^2 = \mathfrak{z}$.

(ii) u is not adjacent to x in AG(S) if and only if $x^2 = 0$.

Proof. (i) By proposition 14, we have $u^2 = z^2 = uz = 0$, ux = z and $x^2 = 0$ or $x^2 = z$.

First suppose that $x^2 = z$. Then $x \notin \operatorname{ann}_S(x)$. Since ux = z so $x \notin \operatorname{ann}_S(u)$ and since zx = 0, we have $x \in \operatorname{ann}_S(z) = \operatorname{ann}_S(ux)$. Thus $\operatorname{ann}_S(x) \cup \operatorname{ann}_S(u) \neq \operatorname{ann}_S(ux)$. Therefore x is adjacent to u in AG(S).

Conversely, assume that \mathfrak{u} is adjacent to \mathfrak{x} in AG(S) and $\mathfrak{x}^2 = 0$. Then $\operatorname{ann}_S(\mathfrak{x}) = V(K_n)$. Also $\operatorname{ann}_S(\mathfrak{u}) = \{0, \mathfrak{u}, z\}$ hence $\operatorname{ann}_S(\mathfrak{x}) \cup \operatorname{ann}_S(\mathfrak{u}) = Z(S) = \operatorname{ann}_S(\mathfrak{u}\mathfrak{x})$. Thus \mathfrak{u} is not adjacent to \mathfrak{x} in AG(S) which is impossible. Therefore $\mathfrak{x}^2 \neq 0$ and by proposition 14, $\mathfrak{x}^2 = \mathfrak{z}$.

(ii) It is clear.

By the above lemma, we have the following theorem.

Theorem 16 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = 0$. Also assume that $Z(S) \neq S$ and $V(K_n) = \{x_1, x_2, x_3, ..., x_{n-1}, z\}$.

Then $AG(S) \cong K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, ., ., ., \{ux_m\}\}$ if and only if for all $0 \le i \le m$ and $m+1 \le j \le n-1$, we have $x_i^2 = 0$ and $x_j^2 = z$.

Proof. First suppose that $AG(S) \cong K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, ..., .., \{ux_m\}\}$. Then for all $0 \le i \le m$, we have u is not adjacent to x_i in AG(S) and for all $m+1 \le j \le n-1$, we have u is adjacent to x_j in AG(S). By lemma 15, for all $0 \le i \le m$ and $m+1 \le j \le n-1$, we have $x_i^2 = 0$ and $x_j^2 = z$.

Conversely, Since $Z(S) \neq S$ by theorem 1, we have $\Gamma(S) \leq AG(S)$ and by lemma 15, for all $0 \leq i \leq m$ and $m + 1 \leq j \leq n - 1$, we have u is not adjacent to x_i in AG(S) and u is adjacent to x_j in AG(S). Therefore $AG(S) \cong K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, ..., .., \{ux_m\}\}$.

If m = 0 or m = 1 or m = n - 1, we have the following corollary.

Corollary 17 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = 0$. Also assume that $Z(S) \neq S$ and $V(K_n) = \{x_1, x_2, x_3, ., ., ., x_{n-1}, z\}$. Then the following statements hold.

- (i) $AG(S) \cong K_{n+1}$ if and only if for all $1 \le i \le n-1$, we have $x_i^2 = z$.
- (ii) $AG(S) \cong K_{n+1} \setminus \{\{ux_1\}\}$ if and only if $x_1^2 = 0$ and for all $2 \le i \le n-1$, we have $x_i^2 = z$.
- (iii) $AG(S) \cong K_n + \{uz\}$ if and only if for all $1 \le i \le n-1$, we have $x_i^2 = 0$.

The next corollary follows from theorem 16.

Corollary 18 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = 0$. Also assume that $V(K_n) = \{x_1, x_2, x_3, ..., x_{n-1}, z\}$. Then the following statements hold.

- (i) If $Z(S) \neq S$, then AG(S) can be one of the graphs: K_{n+1} or $K_{n+1} \setminus \{\{ux_1\}\}\$ or $K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}\}\$ or $K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}\}\$ or or $K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, ..., or K_{n+1}\}\} = K_n + \{uz\}$

Proof. If $Z(S) \neq S$, by theorem 1, then $\Gamma(S) \leq AG(S)$ and if Z(S) = S, by theorem 2, then z is an isolated vertex in AG(S). Now by theorem 16, the results hold.

Example 19 Suppose that $\Gamma(S)$ is a complete graph K_3 with an end vertex u and $u^2 = 0$. Also assume that $V(K_3) = \{x, y, z\}$. Then xy = xz = yz = uz = 0 and we have ux = uy = z and $z^2 = 0$. Moreover we have one of the following three statements.

(i) $x^2 = 0$ and $y^2 = z$ or $x^2 = z$ and $y^2 = 0$. In this case if $Z(S) \neq S$, by lemma 6, we have $AG(S) \cong K_4 \setminus \{\{ux\}\}\$ or $AG(S) \cong K_4 \setminus \{\{uy\}\}\$ and if Z(S) = S, by lemma 10, we have $AG(S) \cong K_1 \cup K_3 \setminus \{\{ux\}\}\$ or $AG(S) \cong K_1 \cup K_3 \setminus \{\{uy\}\}$.

(ii) $x^2 = z$ and $y^2 = z$. In this case if $Z(S) \neq S$, by lemma 7, we have $AG(S) \cong K_4$ and if Z(S) = S, by lemma 11, we have $AG(S) \cong K_1 \cup K_3$.

(iii) $x^2 = y^2 = 0$. In this case if $Z(S) \neq S$, by lemma 8, we have $AG(S) \cong K_4 \setminus \{\{ux\}, \{uy\}\} = K_3 + \{uz\}$ and if Z(S) = S, by lemma 9, we have $AG(S) \cong 2K_1 \cup K_2$ such that u and z are two isolated vertices in AG(S).

In the following we study the case of $u^2 = z$ and we show that u is adjacent to x, for all $x \in V(K_n) \setminus \{z\}$.

Proposition 20 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex \mathfrak{u} . Also assume that $\mathfrak{u}^2 = z$ and $x, y \in V(K_n) \setminus \{z\}$. Then $\mathfrak{u} x = z$, $z^2 = 0$ and $x^2 = 0$ or $x^2 = z$.

Proof. Since $u^2 = z$, we have $z^2 = u^2 z = u(uz) = u0 = 0$ and since u is not adjacent to x in $\Gamma(S)$, we have $ux \neq 0$. If ux = u, then uy = (ux)y = u(xy) = 0 and if for all $y \in V(K_n) \setminus \{z\}$, we have ux = y, then $uy = u(ux) = u^2x = zx = 0$ which are impossible. Thus $ux \notin \{0, u\} \cup V(K_n) \setminus \{z\}$. Therefore ux = z. Since ux = z, we have $ux^2 = (ux)x = zx = 0$ and so $x^2 \in ann_S(u) = \{0, z\}$.

Lemma 21 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = z$ and $x \in V(K_n) \setminus \{z\}$. Then u is adjacent to x in AG(S).

Proof. By proposition 20, we have $z^2 = uz = 0$, ux = z and $x^2 = 0$ or $x^2 = z$. Since $z^2 = uz = 0$, we have $\operatorname{ann}_{S}(z) = Z(S)$. On the other hand, since $u^2 = z$ and ux = z, so $u \notin \operatorname{ann}_{S}(x) \cup \operatorname{ann}_{S}(u)$ which follows that $\operatorname{ann}_{S}(x) \cup \operatorname{ann}_{S}(u) \neq Z(S) = \operatorname{ann}_{S}(z) = \operatorname{ann}_{S}(ux)$. Therefore x is adjacent to u in AG(S). \Box By the above lemma, we have the following theorem.

Theorem 22 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = z$. Then the following two statements hold.

- (i) If $Z(S) \neq S$, then $AG(S) \cong K_{n+1}$.
- (*ii*) If Z(S) = S, then $AG(S) \cong K_1 \cup K_n$.

Proof. (i) Since $Z(S) \neq S$ by theorem 1, we have $\Gamma(S) \leq AG(S)$. By lemma 21, for all $x \in V(K_n) \setminus \{z\}$, we have u is adjacent to x in AG(S). Also by lemmas 12 and 13, for all $x, y \in V(K_n)$, we have x is adjacent to y in AG(S). Therefore $AG(S) \cong K_{n+1}$.

(ii) Since Z(S) = S by theorem 2, we have z is an isolated vertex in AG(S). Now by lemmas 12, 13, 21, we have $AG(S) \cong K_1 \cup K_n$.

Example 23 Suppose that $\Gamma(S)$ is a complete graph K_3 with an end vertex u and $u^2 = z$. Also assume that $V(K_3) = \{x, y, z\}$. Then xy = xz = yz = uz = 0 and we have ux = uy = z and $z^2 = 0$. Moreover we have one of the following three statements.

(i) $x^2 = 0$ and $y^2 = z$ or $x^2 = z$ and $y^2 = 0$.

- (*ii*) $x^2 = y^2 = z$.
- (*iii*) $x^2 = y^2 = 0$.

In three cases if $Z(S) \neq S$, by lemma 7, we have $AG(S) \cong K_4$ and if Z(S) = S, by ,lemma 11, we have $AG(S) \cong K_1 \cup K_3$

In the following we study the case of $u^2 = u$ and we show that there is at least one vertex $y \in V(K_n)$ such that u is not adjacent to y in AG(S) and so in this case AG(S) is not a complete graph.

Proposition 24 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = u$ and x, y are two distincet vertices in $V(K_n) \setminus \{z\}$. Then $z^2 = 0$ or $z^2 = z$. and $ux \in Z(S) \setminus \{0, z, u\} = V(K_n) \setminus \{z\}$. Also we have the following two statements.

- (i) If ux = x, then $x^2 = 0$ or $x^2 = x$ or $x^2 = y$ and uy = y.
- (ii) If ux = y, then uy = y and $y^2 = 0$ and also $x^2 = 0$ or $x^2 = z$.

Proof. Since u is not adjacent to x in $\Gamma(S)$, we have $ux \neq 0$. If ux = z, then $z = ux = u^2x = u(ux) = uz = 0$ this is impossible and if ux = u, then uy = (ux)y = u(xy) = 0 which is again impossible. So $ux \notin \{0, z, u\}$ and thus $ux \in Z(S) \setminus \{0, z, u\} = V(K_n) \setminus \{z\}$.

(i) Also suppose that ux = x. Then $ux^2 = x^2$. If $x^2 = z$, then z = uz = 0and if $x^2 = u$, then $uy = x^2y = x(xy) = 0$ which are impossible. So $x^2 \notin \{z, u\}$ and thus $x^2 \in Z(S) \setminus \{z, u\} = V(K_n) \setminus \{z\}$. Therefore $x^2 = 0$ or $x^2 = x$ or $x^2 = y$. Also if $x^2 = y$, then $uy = ux^2 = (ux)x = x^2 = y$.

(ii) Now assume that ux = y. Then $y^2 = (ux)y = u(xy) = 0$ and $uy = u(ux) = u^2x = ux = y$. Since $ux^2 = (ux)x = yx = 0$, we have $x^2 \in \operatorname{ann}_S(u) = \{0, z\}$ and thus $x^2 = 0$ or $x^2 = z$.

Let $u^2 = u$. The following lemma states which vertices of $V(K_n) \setminus \{z\}$ are connected to the end vertex u in AG(S).

Lemma 25 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = u$ and $x, y \in V(K_n) \setminus \{z\}$. Then the following two statements hold.

- (i) u is adjacent to x in AG(S) if and only if ux = y and $x^2 = z$.
- (ii) u is not adjacent to x in AG(S) if and only if ux = x or ux = y and $x^2 = 0$. Moreover if ux = y, then in both cases $x^2 = z$, and $x^2 = 0$ we have u is not adjacent to y in AG(S).

Proof.

(i) First suppose that u is adjacent to x in AG(S). Then $ux \neq x$ and by proposition 24, ux = y and $y^2 = 0$ and $x^2 = 0$ or $x^2 = z$. If $x^2 = 0$, then $\operatorname{ann}_S(x) \cup \operatorname{ann}_S(u) = V(K_n) \cup \{0, z\} = V(K_n) \cup \{0\} = \operatorname{ann}_S(y) = \operatorname{ann}_S(ux)$ and so u is not adjacent to x in AG(S) this is impossible. Therefore $x^2 \neq 0$ and so $x^2 = z$.

Conversely, assum that ux = y and $x^2 = z$. Then $x \notin \operatorname{ann}_{S}(x) \cup \operatorname{ann}_{S}(u)$ and $x \in \operatorname{ann}_{S}(y)$ and so u is adjacent to x in AG(S).

(ii) First suppose that u is not adjacent to x in $\Gamma(S)$ and $ux \neq x$. Then by proposition 24, we have ux = y, $y^2 = 0$ and also $x^2 = 0$ or $x^2 = z$. If $x^2 = z$, then u is adjacent to x in AG(S) this is impossible. Therefore $x^2 = 0$.

Conversely, if ux = x, then u is not adjacent to x in AG(S). Now assume that $ux \neq x$. Then by proposition 24, we have ux = y, $y^2 = 0$ and since $x^2 = 0$, we have $ann_S(x) = ann_S(y) = ann_S(ux)$ and so u is not adjacent to x in AG(S).

Moreover if ux = y, then $uy = u(ux) = u^2x = ux = y$ and so u is not adjacent to y in AG(S).

By proposition 24, for all $x \in V(K_n) \setminus \{z\}$, we have $ux \in Z(S) \setminus \{0, z, u\} = V(K_n) \setminus \{z\}$ and ux = x or there is $y \in V(K_n) \setminus \{z, x\}$ that ux = y and uy = y. So u is not adjacent to x in AG(S) or u is not adjacent to y in AG(S). Therefore there is at least one vertex $x \in V(K_n) \setminus \{z\}$ that is not adjacent to u in AG(S) and thus AG(S) is not a commplete graph.

Corollary 26 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u. Also assume that $u^2 = u$. Then AG(S) is not a complete graph.

Theorem 27 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex \mathfrak{u} and $\mathfrak{u}^2 = \mathfrak{u}$. Also assume that $Z(S) \neq S$ and $V(K_n) = \{x_1, x_2, x_3, ..., x_{n-1}, z\}$. Then $AG(S) \cong K_{n+1} \setminus \{\{\mathfrak{u}x_1\}, \{\mathfrak{u}x_2\}, \{\mathfrak{u}x_3\}, ..., ., \{\mathfrak{u}x_m\}\}$ if and only if for all $1 \leq i \leq m$ and $m+1 \leq j \leq n-1$, we have the following two statements.

- (i) either $ux_i = x_i$ or $ux_i = x_t$ and $1 \le t \le m$ also $x_i^2 = 0$.
- (*ii*) $ux_j = x_i$ and $x_j^2 = z$

Proof. (i) First suppose that $AG(S) \cong K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, ., ., ., \{ux_m\}\}$. Then u is not adjacent to x_i in AG(S) and by lemma 25 for all $1 \le i \le m$, we have $ux_i = x_i$ or $ux_i = x_t$ and $x_i^2 = 0$. Moreover if $ux_i = x_t$, then $ux_t = x_t$ and so u is not adjacent to x_t in AG(S). Thus $1 \le t \le m$.

(ii)Since u is adjacent to x_j in AG(S) by lemma 25 for all $m+1 \le j \le n-1$, we have $ux_j = x_t$ and $x_j^2 = z$. Also if $ux_j = x_t$, then $ux_t = x_t$ and so u is not adjacent to x_t in AG(S). Thus $1 \le t \le m$. Therefore $ux_j = x_i$.

Conversely, by lemma 25, if statement (i) holds, then for all $1 \leq i \leq m$, we have u is not adjacent to x_i in AG(S) and if statement (ii) holds, then for all $m + 1 \leq j \leq n - 1$, we have u is adjacent to x_j in AG(S) and so $AG(S) \cong K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, ..., .., \{ux_m\}\}$.

In the above theorem, since AG(S) is not a commplete graph so $m \neq 0$. If m = 1 or m = n - 1, then we have the following corollary.

Corollary 28 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = u$. Also assume that $Z(S) \neq S$ and $V(K_n) = \{x_1, x_2, x_3, ., ., x_{n-1}, z\}$. Then the following statements hold.

- (i) $AG(S) \cong K_{n+1} \setminus \{\{ux_1\}\}\$ if and only if $ux_1 = x_1$ and for all $2 \le i \le n-1$, we have $ux_i = x_1$ and $x_1^2 = 0$ and $x_i^2 = z$.
- (ii) $AG(S) \cong K_n + \{uz\}$ if and only if for all $1 \le i, j \le n-1$, we have if $ux_i \ne x_i$, then $ux_i = x_j$ and $x_i^2 = x_j^2 = 0$.

The next corollary follows from theorem 27.

Corollary 29 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = u$. Also assume that $V(K_n) = \{x_1, x_2, x_3, ..., x_{n-1}, z\}$. Then the following statements hold.

- (i) If $Z(S) \neq S$, then AG(S) can be one of the graphs: $K_{n+1} \setminus \{\{ux_1\}\}\$ or $K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}\}\$ or $K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}\}\$ or,....., or $K_{n+1} \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, ..., .., \{ux_{n-1}\}\}.$
- (ii) If Z(S) = S, then AG(S) can be one of the graphs: $K_1 \cup K_n \setminus \{\{ux_1\}\}\$ or $K_1 \cup K_n \setminus \{\{ux_1\}, \{ux_2\}\}\$ or $K_1 \cup K_n \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}\}\$ or,....,or $K_1 \cup K_n \setminus \{\{ux_1\}, \{ux_2\}, \{ux_3\}, .., ., \{ux_{n-1}\}\} = 2K_1 \cup K_{n-1}\$ with u and z are two isolated vertices.

Proof. By corollary 26, AG(S) is not a complete graph. If $Z(S) \neq S$ by theorem 1, we have $\Gamma(S) \leq AG(S)$ and if Z(S) = S by theorem 2, we have z is an isolated vertex in AG(S). Now by theorem 27, the results hold.

Example 30 Suppose that $\Gamma(S)$ is a complete graph K_3 with an end vertex u and $u^2 = u$. Also assume that $V(K_3) = \{x, y, z\}$. Then xy = xz = yz = uz = 0 and $z^2 = 0$ or $z^2 = z$. Moreover we have one of the following three statements.

(i) ux = y = uy, $x^2 = z$, $y^2 = z^2 = 0$ or ux = x = uy, $y^2 = z$ and $x^2 = z^2 = 0$. In this case if $Z(S) \neq S$, by lemma 6, we have $AG(S) \cong K_4 \setminus \{\{ux\}\}$ or $AG(S) \cong K_4 \setminus \{\{ux\}\}$ and if Z(S) = S, by lemma 10, we have $AG(S) \cong K_1 \cup K_3 \setminus \{\{ux\}\}$ or $AG(S) \cong K_1 \cup K_3 \setminus \{\{ux\}\}$.

(ii) $z^2 \in \{0, z\}$ and ux = y = uy, $x^2 = y^2 = 0$, or ux = x = uy, $x^2 = y^2 = 0$ or ux = y, uy = x, $x^2 = y^2 = 0$. In this case if $Z(S) \neq S$, by lemma 8, we have $AG(S) \cong K_4 \setminus \{\{ux\}, \{uy\}\} = K_3 + \{uz\}$ and if Z(S) = S, by lemma 9, we have $AG(S) \cong 2K_1 \cup K_2$ such that u and z are two isolated vertices in AG(S).

(iii) $z^2 \in \{0, z\}$ and ux = x, uy = y and we have the following six cases.

(1) $y^2 = 0$, and $x^2 \in \{0, x, y\}$. (2) $y^2 = y$, and $x^2 \in \{0, x\}$. In this case if $Z(S) \neq S$, by lemma 8, we have $AG(S) \cong K_4 \setminus \{\{ux\}, \{uy\}\} = K_3 + \{uz\}$ and if Z(S) = S, by lemma 9, we have $AG(S) \cong 2K_1 \cup K_2$ such that u and z are two isolated vertices in AG(S).

Finally, we study the case of $u^2 \notin \{0, z, u\}$ and so $u^2 = b \in V(K_n) \setminus \{z\}$. we show that u is adjacent to all vertices $y \in V(K_n) \setminus \{z, b\}$ in AG(S) and u is adjacent to b in AG(S) if and only if $ub \neq b$.

Proposition 31 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex \mathfrak{u} . Also assume that $\mathfrak{u}^2 = \mathfrak{b} \notin \{0, z, \mathfrak{u}\}$. Then $\mathfrak{u}^2 = \mathfrak{b} \in V(K_n) \setminus \{z\}$ and we have the following two statements.

- (i) For all $x \in Z(S) \setminus \{0, z, u, b\}$, we have ux = z, $z^2 = 0$ and $x^2 = 0$ or $x^2 = z$.
- (ii) ub = b and $b^2 = b$, or ub = z and $b^2 = 0$ or $ub = y \in Z(S) \setminus \{0, z, u, b\}$ and $b^2 = z$, $y^2 = 0$.

Proof. (i) Suppose that $u^2 = b$. For all $x \in Z(S) \setminus \{0, z, u, b\}$, since u is not adjacent to x in $\Gamma(S)$, we have $ux \neq 0$. If ux = u, then ub = (ux)b = u(xb) = 0 which is impossible. For all $y \in V(K_n) \setminus \{z\}$, if ux = y, then $uy = u(ux) = u^2x = bx = 0$ which is again impossible and so $ux \notin \{0, u\} \cup V(K_n) \setminus \{z\}$. Therefore ux = z and $z^2 = (ux)z = u(xz) = 0$.

Since ux = z, we have $ux^2 = (ux)x = zx = 0$ and so $x^2 \in \operatorname{ann}_S(u) = \{0, u\}$. Therefore $x^2 = 0$ or $x^2 = z$.

(ii) Clearly $ub \neq 0$ and $ub \neq u$ so $ub \in V(K_n)$ and thus ub = b or ub = z or $ub = y \in V(K_n) \setminus \{z, b\}$. Since $u^2 = b$, if ub = b, then $u^3 = uu^2 = ub = b = u^2$ and so $u^4 = u^3 = u^2$. Thus $b^2 = u^4 = u^3 = u^2 = b$ and if ub = z we have $b^2 = bb = u^2b = u(ub) = uz = 0$.

Now assume that $ub = y \in Z(S) \setminus \{0, z, u, b\}$. Then $y^2 = (ub)y = u(by) = 0$. Since uy = z, we have $b^2 = bb = u^2b = u(ub) = uy = z$.

Lemma 32 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex \mathfrak{u} . Also assume that $\mathfrak{u}^2 = \mathfrak{b} \in V(K_n) \setminus \{z\}$ and $\mathfrak{x} \in V(K_n) \setminus \{z, \mathfrak{b}\}$. Then \mathfrak{u} is adjacent to x in AG(S). Moreover u is adjacent to b in AG(S) if and only if $ub \neq b$.

Proof. By proposition 31, For all $x \in V(K_n) \setminus \{z, b\}$, we have ux = z. Since $u^2 = b$ so $u \notin \operatorname{ann}_S(x) \cup \operatorname{ann}_S(u)$ and $u \in \operatorname{ann}_S(z) = \operatorname{ann}_S(ux)$. Thus u is adjacent to x in AG(S).

Moreover if u is adjacent to b in AG(S), then $ub \neq b$.

Conversely assume that $ub \neq b$. By proposition 31, we have ub = z and $b^2 = 0$ or $ub = y \in Z(S) \setminus \{0, z, u, b\}$ and $b^2 = z$, $y^2 = 0$.

If ub = z and $b^2 = 0$, then $u \notin \operatorname{ann}_{S}(b) \cup \operatorname{ann}_{S}(u)$ and $u \in \operatorname{ann}_{S}(z) = \operatorname{ann}_{S}(ub)$. Thus u is adjacent to b in AG(S). Also if $ub = y \in Z(S) \setminus \{0, z, u, b\}$ and $b^2 = z, y^2 = 0$, then $b \notin \operatorname{ann}_{S}(b) \cup \operatorname{ann}_{S}(u)$ and $b \in \operatorname{ann}_{S}(y) = \operatorname{ann}_{S}(ub)$. Therefore u is adjacent to b in AG(S).

Corollary 33 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex \mathfrak{u} . Also assume that $\mathfrak{u}^2 = \mathfrak{b} \in V(K_n) \setminus \{z\}$ and $Z(S) \neq S$. Then AG(S) is not a commplete graph if and only if $\mathfrak{u}\mathfrak{b} = \mathfrak{b}$.

Theorem 34 Suppose that $\Gamma(S)$ is a complete graph K_n with an end vertex u and $u^2 = b \in V(K_n) \setminus \{z\}$. Then the following statements hold.

(i) If $Z(S) \neq S$, then we have two cases.

(1) $AG(S) \cong K_{n+1}$ if and only if $ub \neq b$.

(2) $AG(S) \cong K_{n+1} \setminus \{\{ub\}\}$ if and only if ub = b.

(ii) If Z(S) = S, then we have two cases.

- (1) $AG(S) \cong K_1 \cup K_n$ if and only if $ub \neq b$.
- (2) $AG(S) \cong K_1 \cup K_n \setminus \{\{ub\}\}\$ if and only if ub = b.

Proof. If $Z(S) \neq S$, then $\Gamma(S) \leq AG(S)$. By lemma 32, for all $x \in V(K_n) \setminus \{z, b\}$, we have u is adjacent to x in AG(S) and u is adjacent to b in AG(S) if and only if $ub \neq b$. Thus the statement (i) holds.

(ii) Since Z(S) = S, we have z is an isolated vertex in AG(S). Now by lemma 32, the results hold.

Example 35 Suppose that $\Gamma(S)$ is a complete graph K_3 with an end vertex u and $u^2 = x$ or $u^2 = y$. Also assume that $V(K_3) = \{x, y, z\}$. Then xy = xz = yz = uz = 0 and $z^2 = 0$. Moreover we have one of the following two statements.

(i) ux = z, uy = y, $u^2 = y^2 = y$, and $x^2 = 0$ or $x^2 = z$ or uy = z, ux = x, $u^2 = x^2 = x$, and $y^2 = 0$ or $y^2 = z$. In this case if $Z(S) \neq S$, by lemma 6, we have $AG(S) \cong K_4 \setminus \{\{uy\}\}$ or $AG(S) \cong K_4 \setminus \{\{ux\}\}$ and if Z(S) = S, by lemma 10, we have $AG(S) \cong K_1 \cup K_3 \setminus \{\{uy\}\}$ or $AG(S) \cong K_1 \cup K_3 \setminus \{\{ux\}\}$.

(ii) Also we have the following four cases.

(1) ux = y, uy = z, $u^2 = x$, and $x^2 = y^2 = 0$. (2) ux = z, uy = x, $u^2 = y$, and $x^2 = 0$, $y^2 = z$. (3) ux = uy = z, $u^2 = y$, $y^2 = 0$ and $x^2 = 0$ or $x^2 = z$. (4) ux = uy = z, $u^2 = x$, $x^2 = 0$ and $y^2 = 0$ or $y^2 = z$.

In this case if $Z(S) \neq S$, by lemma 7, we have $AG(S) \cong K_4$ and if Z(S) = S, by lemma 11, we have $AG(S) \cong K_1 \cup K_3$ such that u is an isolated vertex in AG(S).

Acknowledgements

The authors are deeply grateful to the referees for careful reading of the manuscript and helpful suggestions.

References

 M. Afkhami, K. Khashyarmanesh, M. Sakhdari, On the annihilator graphs of semigroups, J. Algebra and its Appl. 14 (2015) 1550015 – 1550029. ⇒120, 121, 123

- [2] M. Afkhami, K. Khashyarmanesh, M. Sakhdari, Annihilator graphs with four vertices, *Semigroup Forum*. **9**4 (2017) 139 166. \Rightarrow 120, 121, 122, 123
- [3] M. Afkhami, K. Khashyarmanesh, M. Sakhdari, Annihilator graph of a commutative semigroup whose zero-divisor graph is a refinement of a star graph, *Quasigroups and Related Systems.* 29 (2021) 157–170. ⇒120
- [4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976. ⇒121
- [5] F. DeMeyer, L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra. 283 (2005) 190–198. $\Rightarrow 120$
- [6] L. DeMeyer, M. Dsa, I. Epstein, A. Geiser and K. Smith, Semigroups and the zero-divisor graph, Bull. Inst. Comb. Appl. 57 (2009) 60–70. ⇒120
- [7] F. DeMeyer, T. Mckenzie, K. Schneider, The zero-divisor graph of a commutative semigroup, *Semigroup Forum.* 65 (2002) 206–214. ⇒ 120
- [8] T. Wu, D. Lu, Subsemigroups determined by the zero-divisor graph, *Discrete* Math. 308 (2008) 5122–5135. \Rightarrow 120
- [9] T. Wu, F. Cheng, The structure of zero-divisor semigroups with graph $K_n \circ K_2$, Semigroup Forum. 76 (2008) 330–340. \Rightarrow 120
- [10] T. Wu, Q. Liu, L. Chen, Zero-divisor semigroups and refinements of a star graph, *Discrete Math.* **3**09 (2009) 2510−2518. \Rightarrow 120

Received: June 6, 2022 • Revised: July 12, 2022