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Abstract. Suppose that the zero-divisor graph of a commutative semi-
group S, be a complete graph with an end vertex. In this paper, we
determine the structure of the annihilator graph S and we show that if
Z(S) = S, then the annihilator graph S is a disconnected graph.

1 Introduction

In this paper S is a commutative semigroup with zero whose operation is
written multiplicatively and Z(S) is the set of all zero-divisors of S also Z(S)∗ =
Z(S) \ {0}.

The zero-divisor graph of a commutative semigroup S with zero, is denoted
by Γ(S), is an undirected graph with vertex set Z(S)∗ and two distinct vertices
x and y are adjacent if and only if xy = 0. Γ(S) is a connected graph and the
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diameter of Γ(S) is less than or equal to three. For other results on zero divisor
graphs one can see [5, 6, 7, 8, 9, 10].

In [1], we introduced and studied the annihilator graph for a commutative
semigroup S, and showed it with AG(S). The graph AG(S) is an undirected
graph with vertex set Z(S)∗ and two distinct vertices x and y are adjacent if
and only if annS(xy) 6= annS(x) ∪ annS(y), where annS(x) = {s ∈ S | xs = 0}.
We proved that if Z(S) 6= S, then Γ(S) is a subgraph of AG(S), and so AG(S)
is connected. Also if Z(S) = S, then AG(S) may be connected or disconnected
and if there exists x ∈ S∗ = S \ {0} such that x is adjacent to all vertices in
Γ(S), then x is an isolated vertex in AG(S).

In [1, section 4 ] and in [2], we characterized all annihilator graphs with three
and four vertices. Also in [3], we studied the structure of the annihilator graph
of a commutative semigroup S whose Γ(S) is a refinement of a star graph.

A complete graph and a complete graph with an end vertex are one of the
graphs can be zero-divisor graph of a commutative semigroup.

In this paper, we study the annihilator graph associated with a commutative
semigroup with zero using the zero-divisor graph Γ(S), where Γ(S) is a complete
graph Kn with an end vertex u /∈ V(Kn) and u is only adjacent to z ∈ V( Kn).
Let m be the number of edges between u and V(Kn) in AG(S). We show that
the following four statements hold.

(i) Let u2 = 0. If Z(S) 6= S, then m ∈ {1, 2, 3, ....., n} and if Z(S) = S, then
m ∈ {0, 1, 2, 3, ....., n− 1}.

(ii) Let u2 = z. If Z(S) 6= S, then m = n and so u is adjacent to all vertices
of V(Kn) in AG(S) and if Z(S) = S, then m = n−1 and u is not adjacent
to z in AG(S).

(iii) Let u2 = u. If Z(S) 6= S, then m ∈ {1, 2, 3, ....., n − 1} and if Z(S) = S,
then m ∈ {0, 1, 2, 3, ....., n−2} and so there is at least one vertex of V(Kn)
that u is not adjacent to it in AG(S).

(iv) Let u2 = b /∈ {0, z, u}. If Z(S) 6= S, then m ∈ {n− 1, n} and so there is at
most one vertex (u2 = b) of V(Kn) that u is not adjacent to it in AG(S).
Also if Z(S) = S, then m ∈ {n − 1, n − 2} and u is not adjacent to z in
AG(S).
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2 Preliminaries

In this section, we recall some definitions and notations of graphs and we use
the standard terminology of graphs is contained in [4]. Here, G is a graph with
vertex set V(G) and edge set E(G). If a is adjacent to b in G, then the edge
between a and b will denote by {ab} and we write a ∼ b .

The distance between two distinct vertices x and y is the length of the
shortest path connecting x and y and will denote by d(x, y), if such a path
exists; otherwise, we use d(x, y) := ∞. Also diam(G) = sup{d(x, y) : x and y
are distinct vertices of G} is the diameter of the graph G.

The girth of G, denoted by gr(G), is the length of the shortest cycle in G. If
there exists a path between any two distinct vertices of G, we say that graph
G is a connected graph, and if for each two vertices x and y of V(G) we have
x is adjacent to y, we say that G is a complete graph and Kn is the complete
graph with n vertices. If no two vertices of G are adjacent, we say that G is a
totally disconnected graph and nK1 is the totally disconnected graph with n
vertices.

We say that u is an end vertex in G, If u is adjacent to only one vertex of
G and if for each vertex x ∈ V(G) we have u is not adjacent to x, then we say
that u is an isolated vertex in G.

Suppose that H and G are two graphs. We use the notation G ≤ H to denote
that G is a subgraph of H and if H is isomorphic to G, we write H ∼= G. Let
G be a graph. G \ {{x1y1}, {x2y2}, {x3y3}, ..., {xnyn}} is a graph such that edges
{x1y1}, {x2y2}, {x3y3}, ..., {xnyn} are deleted.
Pn is the path of length n and Cn is the cycle of length n.
mKn is a graph with m components such that each component is isomorphic
to Kn. G ∪ H, the union of the graphs G and H, is a graph with vertex set
V(G) ∪ V(H) and edge set E(H) ∪ E(G).

Now, we recall some results which we are used in the next section.

Theorem 1 [1] If Z(S) 6= S, then we have Γ(S) ≤ AG(S).

Theorem 2 [1] Let Z(S) = S and there exists x ∈ S∗ such that, for each non
zero element y 6= x of S, we have xy = 0. Then x is an isolated vertex in
AG(S).

Lemma 3 [2] If Z(S) 6= S and Γ(S) ∼= P3, then AG(S) ∼= C4.

Lemma 4 [2] Let Z(S) 6= S. Then AG(S) ∼= C4 if and only if we either have
Γ(S) ∼= P3 or Γ(S) ∼= C4.
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Lemma 5 [2] Let Z(S) = S. Then AG(S) ∼= P3 with x ∼ w ∼ z ∼ y if and only
if Γ(S) ∼= P3 with w ∼ x ∼ y ∼ z.

Lemma 6 [2] Let S be a commutative semigroup with Z(S) 6= S, and let Γ(S) ∼=
K3 + {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= K4 \ {wy} if and only
if the relations between the zero-divisors of S satisfies in one of the following
four conditions.

(i) wy = y, wz = x, w2 = y2 = y, x2 = 0, and z2 ∈ {0, x}.

(ii) wy = wz = x, w2 = y2 = x2 = 0, and z2 = x.

(iii) wy = y = wz, w2 = w, z2 = x, and y2 = x2 = 0.

Lemma 7 [2] Let S be a commutative semigroup with Z(S) 6= S, and let Γ(S) ∼=
K3 + {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= K4 if and only if the
relations between the zero-divisors of S satisfies in one of the following eleven
conditions.

(i) wx = xy = yz = zx = 0, wy = x, wz = y, y2 = x2 = 0, w2 = z and
z2 = x.

(ii) wx = xy = yz = zx = 0, wy = z, wz = x, w2 = y, y2 = x and
z2 = x2 = 0.

(iii) wx = xy = yz = zx = 0, wy = wz = x, x2 = 0 and one of the following
nine cases holds.

(1) w2 = 0, y2 = x and z2 = x.

(2) w2 = y, y2 = 0 and z2 ∈ {0, x}.

(3) w2 = z, z2 = 0 and y2 ∈ {0, x}.

(4) w2 = x, y2 = 0 and z2 ∈ {0, x}.

(5) w2 = x, y2 = x and z2 ∈ {0, x}.

Lemma 8 [2] Let S be a commutative semigroup with Z(S) 6= S, and let Γ(S) ∼=
K3 + {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= K3 + {wx} with
w ∼ x ∼ y ∼ z ∼ x if and only if the relations between the zero-divisors of S
satisfies in one of the following nineteen conditions.

(i) wx = xy = yz = zx = 0, wy = y = wz, z2 = y2 = 0, w2 = w and
x2 ∈ {0, x}.



Annihilator graphs of a commutative semigroup 123

(ii) wx = xy = yz = zx = 0, wz = wy = x and w2 = y2 = z2 = x2 = 0.

(iii) wx = xy = yz = zx = 0, wz = z = wy, w2 = w, y2 = z2 = 0 and
x2 ∈ {0, x}.

(iv) wx = xy = yz = zx = 0, wz = y, wy = z, w2 = w, y2 = z2 = 0 and
x2 ∈ {0, x}.

(v) wx = xy = yz = zx = 0, wy = y, wz = z, w2 = w and we have the
following twelve situations.

(1) y2 = 0, z2 = 0 and x2 ∈ {0, x}.

(2) y2 = 0, z2 = z and x2 ∈ {0, x}.

(3) y2 = 0, z2 = y and x2 ∈ {0, x}.

(4) y2 = y, z2 = 0 and x2 ∈ {0, x}.

(5) y2 = y, z2 = z and x2 ∈ {0, x}.

(6) y2 = z, z2 = 0 and x2 ∈ {0, x}.

Lemma 9 [2] Let S be a commutative semigroup with Z(S) = S, and let Γ(S) ∼=
K3+ {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= 2K1 ∪K2, where x and
w are isolated vertices and z is adjacent to y, if and only if the semigroup S
satisfies in one of the nineteen conditions of Lemma (8).

Lemma 10 [2] Let S be a commutative semigroup with Z(S) = S. Then
AG(S) ∼= K1,2 ∪ K1, where x is an isolated vertex and the vertices y, z,
w form a star graph with center z, if and only if Γ(S) ∼= K3 + {wx} with
wx = xy = yz = zx = 0, and the semigroup S satisfies in one of the four
conditions of Lemma (6).

Lemma 11 [2] Let S be a commutative semigroup with Z(S) = S, and let
Γ(S) ∼= K3+ {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= K3 ∪K1, where
x is an isolated vertex and the vertices w, z, y form a triangle if and only if
the semigroup S satisfies in one of the eleven conditions of Lemma (7).

Suppose that G is a complete graph Kn with an end vertex u that u is
adjacent to z ∈ V(Kn) and n = 1. Then Γ(S) ∼= K2. Now if Z(S) = S, then
clearly AG(S) ∼= 2K1, and if Z(S) 6= S, then AG(S) ∼= Γ(S) ∼= K2.

Let n = 2. We have Γ(S) ∼= K1,2 = P2 with u ∼ z ∼ x. In [1], we show that,
if Z(S) = S, then AG(S) ∼= 3K1 or AG(S) ∼= K1 ∪ K2, and if Z(S) 6= S, then
AG(S) ∼= K1,2 or AG(S) ∼= K3 .
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Morover assume that complete graph K2 has two end vertices u1 and u2
adjacent to z1 and z2. Then Γ(S) ∼= P3 with u1 ∼ z1 ∼ z2 ∼ u2. Now by lemma
5, if Z(S) = S, then AG(S) ∼= P3 with z1 ∼ u1 ∼ u2 ∼ z2 such that z1 and z2 are
two end vertices in AG(S), and by lemma 3, if Z(S) 6= S, then AG(S) ∼= C4.

3 Properties of AG(S)

In this section, we assume that |Z(S)∗| ≥ 4 and Kn is a complete graph with
at least three vertices and z ∈ V( Kn) and u /∈ V(Kn). we add to Kn an end
vertex u, which is adjacent to a unique vertex z of V(Kn) and denote it by
Γ(S) ∼= Kn + {uz} and so Γ(S) ∼= Kn + {uz} is the graph of a commutative
semigroup such that Z(S) = V(Kn) ∪ {0} ∪ {u}. Thus for each two distinct
vertices x and y inV(Kn), we have xy = zu = 0 and xu 6= 0 and Since z is a
cut vertex in Γ(S), thus {0, z} is an ideal of S and so z2 = 0 or z2 = z.

In following, we distinguish the structure of the annihilator graph a com-
mutative semigroup whose Γ(S) ∼= Kn + {uz}, for cases u2 = 0 or u2 = z or
u2 = u or u2 6= 0, z, u.

The following lemma show that if Γ(S) is a complete graph Kn with an end
vertex u, then for all x, y ∈ V(Kn) \ {z} always, x is adjacent to y in AG(S).

Lemma 12 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Then for all x, y ∈ V(Kn) \ {z}, we have x is adjacent to y in AG(S).

Proof. Since Γ(S) ∼= Kn + {uz} and x, y ∈ V(Kn) \ {z}, we have xy = 0 and so
annS(xy) = S. since u is an end vertex adjacent to only z in Γ(S) thus ux 6= 0
and uy 6= 0 so u /∈ annS(x)∪ annS(y) which follows that annS(x)∪ annS(y) 6=
annS(xy). Therefore x is adjacent to y in AG(S). �

Lemma 13 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Then the following statements hold.

(i) If Z(S) 6= S, then AG(S) is a connected graph and u is adjacent to z in
AG(S).

(ii) If Z(S) = S, then AG(S) is a disconnected graph and z is an isolated
vertex in AG(S).

Proof. (i) Since Z(S) 6= S by theorem 1, we have Γ(S) ≤ AG(S). Since Γ(S) is a
connected graph and z is adjacent to u in Γ(S), we have AG(S) is a connected
graph and u is adjacent to z in AG(S).
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(ii) Since z is adjacent to all vertices in Γ(S) and Z(S) = S by theorem 2, z
is an isolated vertex in AG(S) and so AG(S) is a disconnected graph. �

Let Γ(S) ∼= Kn+ {uz}. By lemma 12 and lemma 13, to study the graph AG(S),
it is sufficient to examine the edges between u and x, for all x ∈ V(Kn) \ {z}.

Proposition 14 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = 0 and x, y ∈ V(Kn) \ {z}. Then ux = z, z2 = 0 and
x2 = 0 or x2 = z.

Proof. Since u is not adjacent to x in Γ(S), we have ux 6= 0. If ux = u, then
uy = (ux)y = u(xy) = 0, which is impossible and so ux 6= u. Now let ux = y.
We have uy = u(ux) = u2x = 0 which is again impossible. Since Z(S) =
V(Kn) ∪ {0} ∪ {u}, we have ux = z and so z2 = (ux)z = u(xz) = 0. Finally,
since ux = z, we have ux2 = (ux)x = zx = 0 and so x2 ∈ annS(u) = {0, u, z}.
If x2 = u, then uy = x2y = x(xy) = 0, which is impossible. Therefore x2 = 0
or x2 = z. �

Let u2 = 0. The following lemma states which vertices of V(Kn) \ {z} are
connected to the end vertex u in AG(S)

Lemma 15 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Also assume that u2 = 0 and x, y ∈ V(Kn)\ {z}. Then the following statements
hold.

(i) u is adjacent to x in AG(S) if and only if x2 = z.

(ii) u is not adjacent to x in AG(S) if and only if x2 = 0.

Proof. (i) By proposition 14, we have u2 = z2 = uz = 0, ux = z and x2 = 0

or x2 = z.
First suppose that x2 = z. Then x /∈ annS(x). Since ux = z so x /∈ annS(u)

and since zx = 0, we have x ∈ annS(z) = annS(ux). Thus annS(x)∪annS(u) 6=
annS(ux). Therefore x is adjacent to u in AG(S).

Conversely, assume that u is adjacent to x in AG(S) and x2 = 0. Then
annS(x) = V(Kn). Also annS(u) = {0, u, z} hence annS(x) ∪ annS(u) = Z(S) =
annS(z) = annS(ux). Thus u is not adjacent to x in AG(S) which is impossible.
Therefore x2 6= 0 and by proposition 14, x2 = z.

(ii) It is clear. �

By the above lemma, we have the following theorem.

Theorem 16 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = 0. Also assume that Z(S) 6= S and V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}.
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Then AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}} if and only if for all
0 ≤ i ≤ m and m+ 1 ≤ j ≤ n− 1, we have xi

2 = 0 and xj
2 = z.

Proof. First suppose that AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}}.
Then for all 0 ≤ i ≤ m, we have u is not adjacent to xi in AG(S) and for all
m+ 1 ≤ j ≤ n− 1, we have u is adjacent to xj in AG(S). By lemma 15, for all
0 ≤ i ≤ m and m+ 1 ≤ j ≤ n− 1, we have xi

2 = 0 and xj
2 = z.

Conversely, Since Z(S) 6= S by theorem 1, we have Γ(S) ≤ AG(S) and
by lemma 15, for all 0 ≤ i ≤ m and m + 1 ≤ j ≤ n − 1, we have u is
not adjacent to xi in AG(S) and u is adjacent to xj in AG(S). Therefore
AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}}. �

If m = 0 or m = 1 or m = n− 1, we have the following corollary.

Corollary 17 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = 0. Also assume that Z(S) 6= S and V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}.
Then the following statements hold.

(i) AG(S) ∼= Kn+1 if and only if for all 1 ≤ i ≤ n− 1, we have xi
2 = z.

(ii) AG(S) ∼= Kn+1 \ {{ux1}} if and only if x1
2 = 0 and for all 2 ≤ i ≤ n − 1,

we have xi
2 = z.

(iii) AG(S) ∼= Kn + {uz} if and only if for all 1 ≤ i ≤ n− 1, we have xi
2 = 0.

The next corollary follows from theorem 16.

Corollary 18 Suppose that Γ(S) is a complete graph Kn with an end vertex
u and u2 = 0. Also assume that V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}. Then the
following statements hold.

(i) If Z(S) 6= S, then AG(S) can be one of the graphs: Kn+1 or Kn+1 \ {{ux1}}
or Kn+1 \ {{ux1}, {ux2}} or Kn+1 \ {{ux1}, {ux2}, {ux3}} or ..... or Kn+1 \
{{ux1}, {ux2}, {ux3}, ., ., ., {uxn−1}} = Kn + {uz}

(ii) If Z(S) = S, then AG(S) can be one of the graphs: K1 ∪ Kn or K1 ∪
Kn \ {{ux1}} or K1 ∪Kn \ {{ux1}, {ux2}} or K1 ∪Kn \ {{ux1}, {ux2}, {ux3}} or
.......or K1 ∪ Kn \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxn−1}} = 2K1 ∪ Kn−1 with u
and z are two isolated vertices.

Proof. If Z(S) 6= S, by theorem 1, then Γ(S) ≤ AG(S) and if Z(S) = S, by
theorem 2, then z is an isolated vertex in AG(S). Now by theorem 16, the
results hold. �
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Example 19 Suppose that Γ(S) is a complete graph K3 with an end vertex u
and u2 = 0. Also assume that V(K3) = {x, y, z}. Then xy = xz = yz = uz = 0
and we have ux = uy = z and z2 = 0. Moreover we have one of the following
three statements.

(i) x2 = 0 and y2 = z or x2 = z and y2 = 0. In this case if Z(S) 6= S, by
lemma 6, we have AG(S) ∼= K4 \ {{ux}} or AG(S) ∼= K4 \ {{uy}} and if
Z(S) = S, by lemma 10, we have AG(S) ∼= K1 ∪ K3 \ {{ux}} or AG(S) ∼=
K1 ∪ K3 \ {{uy}}.

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(ii) x2 = z and y2 = z. In this case if Z(S) 6= S, by lemma 7, we have
AG(S) ∼= K4 and if Z(S) = S, by lemma 11, we have AG(S) ∼= K1 ∪ K3.

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(iii) x2 = y2 = 0. In this case if Z(S) 6= S, by lemma 8, we have AG(S) ∼=
K4 \ {{ux}, {uy}} = K3 + {uz} and if Z(S) = S, by lemma 9, we have
AG(S) ∼= 2K1∪K2 such that u and z are two isolated vertices in AG(S).

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

In the following we study the case of u2 = z and we show that u is adjacent
to x, for all x ∈ V(Kn) \ {z}.
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Proposition 20 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = z and x, y ∈ V(Kn) \ {z}. Then ux = z, z2 = 0 and
x2 = 0 or x2 = z.

Proof. Since u2 = z, we have z2 = u2z = u(uz) = u0 = 0 and since u is not
adjacent to x in Γ(S), we have ux 6= 0. If ux = u, then uy = (ux)y = u(xy) = 0
and if for all y ∈ V(Kn)\{z}, we have ux = y, then uy = u(ux) = u2x = zx = 0
which are impossible. Thus ux /∈ {0, u} ∪V(Kn) \ {z}. Therefore ux = z. Since
ux = z, we have ux2 = (ux)x = zx = 0 and so x2 ∈ annS(u) = {0, z}.

�

Lemma 21 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Also assume that u2 = z and x ∈ V(Kn) \ {z}. Then u is adjacent to x in
AG(S).

Proof. By proposition 20, we have z2 = uz = 0, ux = z and x2 = 0 or x2 = z.
Since z2 = uz = 0, we have annS(z) = Z(S). On the other hand, since u2 = z
and ux = z, so u /∈ annS(x)∪ annS(u) which follows that annS(x)∪ annS(u) 6=
Z(S) = annS(z) = annS(ux). Therefore x is adjacent to u in AG(S). �

By the above lemma, we have the following theorem.

Theorem 22 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = z. Then the following two statements hold.

(i) If Z(S) 6= S, then AG(S) ∼= Kn+1.

(ii) If Z(S) = S, then AG(S) ∼= K1 ∪ Kn.

Proof. (i) Since Z(S) 6= S by theorem 1, we have Γ(S) ≤ AG(S). By lemma 21,
for all x ∈ V(Kn) \ {z}, we have u is adjacent to x in AG(S). Also by lemmas
12 and 13, for all x, y ∈ V(Kn), we have x is adjacent to y in AG(S). Therefore
AG(S) ∼= Kn+1.

(ii) Sincs Z(S) = S by theorem 2, we have z is an isolated vertex in AG(S).
Now by lemmas 12, 13, 21, we have AG(S) ∼= K1 ∪ Kn. �

Example 23 Suppose that Γ(S) is a complete graph K3 with an end vertex u
and u2 = z. Also assume that V(K3) = {x, y, z}. Then xy = xz = yz = uz = 0
and we have ux = uy = z and z2 = 0. Moreover we have one of the following
three statements.

(i) x2 = 0 and y2 = z or x2 = z and y2 = 0.



Annihilator graphs of a commutative semigroup 129

(ii) x2 = y2 = z.

(iii) x2 = y2 = 0.

In three cases if Z(S) 6= S, by lemma 7, we have AG(S) ∼= K4 and if
Z(S) = S, by ,lemma 11, we have AG(S) ∼= K1 ∪ K3

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

In the following we study the case of u2 = u and we show that there is at
least one vertex y ∈ V(Kn) such that u is not adjacent to y in AG(S) and so
in this case AG(S) is not a complete graph.

Proposition 24 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = u and x, y are two distincet vertices in V(Kn) \ {z}.
Then z2 = 0 or z2 = z. and ux ∈ Z(S) \ {0, z, u} = V(Kn) \ {z}. Also we have
the following two statements.

(i) If ux = x, then x2 = 0 or x2 = x or x2 = y and uy = y.

(ii) If ux = y, then uy = y and y2 = 0 and also x2 = 0 or x2 = z.

Proof. Since u is not adjacent to x in Γ(S), we have ux 6= 0. If ux = z, then
z = ux = u2x = u(ux) = uz = 0 this is impossible and if ux = u, then
uy = (ux)y = u(xy) = 0 which is again impossible. So ux /∈ {0, z, u} and thus
ux ∈ Z(S) \ {0, z, u} = V(Kn) \ {z}.

(i) Also suppose that ux = x. Then ux2 = x2. If x2 = z, then z = uz = 0

and if x2 = u, then uy = x2y = x(xy) = 0 which are impossible. So x2 /∈ {z, u}

and thus x2 ∈ Z(S)\ {z, u} = V(Kn)\ {z}. Therefore x2 = 0 or x2 = x or x2 = y.
Also if x2 = y, then uy = ux2 = (ux)x = x2 = y.

(ii) Now assume that ux = y. Then y2 = (ux)y = u(xy) = 0 and uy =
u(ux) = u2x = ux = y. Since ux2 = (ux)x = yx = 0, we have x2 ∈ annS(u) =
{0, z} and thus x2 = 0 or x2 = z. �

Let u2 = u. The following lemma states which vertices of V(Kn) \ {z} are
connected to the end vertex u in AG(S).
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Lemma 25 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Also assume that u2 = u and x, y ∈ V(Kn) \ {z}. Then the following two
statements hold.

(i) u is adjacent to x in AG(S) if and only if ux = y and x2 = z.

(ii) u is not adjacent to x in AG(S) if and only if ux = x or ux = y and
x2 = 0. Moreover if ux = y, then in both cases x2 = z, and x2 = 0 we
have u is not adjacent to y in AG(S).

Proof.
(i) First suppose that u is adjacent to x in AG(S). Then ux 6= x and by

proposition 24, ux = y and y2 = 0 and x2 = 0 or x2 = z. If x2 = 0, then
annS(x) ∪ annS(u) = V(Kn) ∪ {0, z} = V(Kn) ∪ {0} = annS(y) = annS(ux) and
so u is not adjacent to x in AG(S) this is impossible. Therefore x2 6= 0 and so
x2 = z.

Conversely, assum that ux = y and x2 = z. Then x /∈ annS(x) ∪ annS(u)
and x ∈ annS(y) and so u is adjacent to x in AG(S).

(ii) First suppose that u is not adjacent to x in Γ(S) and ux 6= x. Then by
proposition 24, we have ux = y, y2 = 0 and also x2 = 0 or x2 = z. If x2 = z,
then u is adjacent to x in AG(S) this is impossible. Therefore x2 = 0.

Conversely, if ux = x, then u is not adjacent to x in AG(S). Now assume
that ux 6= x. Then by proposition 24, we have ux = y, y2 = 0 and since
x2 = 0, we have annS(x) = annS(y) = annS(ux) and so u is not adjacent to x
in AG(S).

Moreover if ux = y, then uy = u(ux) = u2x = ux = y and so u is not
adjacent to y in AG(S). �

By proposition 24, for all x ∈ V(Kn) \ {z}, we have ux ∈ Z(S) \ {0, z, u} =
V(Kn) \ {z} and ux = x or there is y ∈ V(Kn) \ {z, x} that ux = y and uy = y.
So u is not adjacent to x in AG(S) or u is not adjacent to y in AG(S). Therefore
there is at least one vertex x ∈ V(Kn) \ {z} that is not adjacent to u in AG(S)
and thus AG(S) is not a commplete graph.

Corollary 26 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = u. Then AG(S) is not a complete graph.

Theorem 27 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = u. Also assume that Z(S) 6= S and V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}.
Then AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}} if and only if for all
1 ≤ i ≤ m and m+ 1 ≤ j ≤ n− 1, we have the following two statements.
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(i) either uxi = xi or uxi = xt and 1 ≤ t ≤ m also xi
2 = 0.

(ii) uxj = xi and xj
2 = z

Proof. (i) First suppose that AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}}.
Then u is not adjacent to xi in AG(S) and by lemma 25 for all 1 ≤ i ≤ m, we
have uxi = xi or uxi = xt and xi

2 = 0. Moreover if uxi = xt, then uxt = xt
and so u is not adjacent to xt in AG(S). Thus 1 ≤ t ≤ m.

(ii)Since u is adjacent to xj in AG(S) by lemma 25 for all m+1 ≤ j ≤ n−1,
we have uxj = xt and xj

2 = z. Also if uxj = xt, then uxt = xt and so u is not
adjacent to xt in AG(S). Thus 1 ≤ t ≤ m. Therefore uxj = xi.

Conversely, by lemma 25, if statement (i) holds, then for all 1 ≤ i ≤ m,
we have u is not adjacent to xi in AG(S) and if statement (ii) holds, then
for all m + 1 ≤ j ≤ n − 1, we have u is adjacent to xj in AG(S) and so
AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}}. �

In the above theorem, since AG(S) is not a commplete graph so m 6= 0. If
m = 1 or m = n− 1, then we have the following corollary.

Corollary 28 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = u. Also assume that Z(S) 6= S and V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}.
Then the following statements hold.

(i) AG(S) ∼= Kn+1 \ {{ux1}} if and only if ux1 = x1 and for all 2 ≤ i ≤ n− 1,
we have uxi = x1 and x1

2 = 0 and xi
2 = z.

(ii) AG(S) ∼= Kn + {uz} if and only if for all 1 ≤ i, j ≤ n − 1, we have if
uxi 6= xi, then uxi = xj and xi

2 = xj
2 = 0.

The next corollary follows from theorem 27.

Corollary 29 Suppose that Γ(S) is a complete graph Kn with an end vertex
u and u2 = u. Also assume that V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}. Then the
following statements hold.

(i) If Z(S) 6= S, then AG(S) can be one of the graphs: Kn+1 \ {{ux1}} or
Kn+1 \ {{ux1}, {ux2}} or Kn+1 \ {{ux1}, {ux2}, {ux3}} or,...... ,or Kn+1 \

{{ux1}, {ux2}, {ux3}, ., ., ., {uxn−1}}.

(ii) If Z(S) = S, then AG(S) can be one of the graphs: K1 ∪ Kn \ {{ux1}}

or K1 ∪ Kn \ {{ux1}, {ux2}} or K1 ∪ Kn \ {{ux1}, {ux2}, {ux3}} or,......,or
K1∪Kn \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxn−1}} = 2K1∪Kn−1 with u and z are
two isolated vertices.
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Proof. By corollary 26, AG(S) is not a complete graph. If Z(S) 6= S by theorem
1, we have Γ(S) ≤ AG(S) and if Z(S) = S by theorem 2, we have z is an isolated
vertex in AG(S). Now by theorem 27, the results hold. �

Example 30 Suppose that Γ(S) is a complete graph K3 with an end vertex u
and u2 = u. Also assume that V(K3) = {x, y, z}. Then xy = xz = yz = uz = 0
and z2 = 0 or z2 = z. Moreover we have one of the following three statements.

(i) ux = y = uy, x2 = z, y2 = z2 = 0 or ux = x = uy, y2 = z and
x2 = z2 = 0,. In this case if Z(S) 6= S, by lemma 6, we have AG(S) ∼=
K4 \{{uy}} or AG(S) ∼= K4 \{{ux}} and if Z(S) = S, by lemma 10, we have
AG(S) ∼= K1 ∪ K3 \ {{uy}} or AG(S) ∼= K1 ∪ K3 \ {{ux}}.

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(ii) z2 ∈ {0, z} and ux = y = uy, x2 = y2 = 0, or ux = x = uy, x2 = y2 = 0
or ux = y, uy = x, x2 = y2 = 0. In this case if Z(S) 6= S, by lemma 8,
we have AG(S) ∼= K4 \ {{ux}, {uy}} = K3+ {uz} and if Z(S) = S, by lemma
9, we have AG(S) ∼= 2K1 ∪K2 such that u and z are two isolated vertices
in AG(S).

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(iii) z2 ∈ {0, z} and ux = x, uy = y and we have the following six cases.

(1) y2 = 0, and x2 ∈ {0, x, y}.

(2) y2 = y,and x2 ∈ {0, x}.

(3) y2 = x, and x2 = 0.



Annihilator graphs of a commutative semigroup 133

In this case if Z(S) 6= S, by lemma 8, we have AG(S) ∼= K4\{{ux}, {uy}} =
K3 + {uz} and if Z(S) = S, by lemma 9, we have AG(S) ∼= 2K1 ∪ K2 such
that u and z are two isolated vertices in AG(S).

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

Finally, we study the case of u2 /∈ {0, z, u} and so u2 = b ∈ V(Kn) \ {z}. we
show that u is adjacent to all vertices y ∈ V(Kn) \ {z, b} in AG(S) and u is
adjacent to b in AG(S) if and only if ub 6= b.

Proposition 31 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = b /∈ {0, z, u}. Then u2 = b ∈ V(Kn)\{z} and we have
the following two statements.

(i) For all x ∈ Z(S) \ {0, z, u, b}, we have ux = z, z2 = 0 and x2 = 0 or
x2 = z.

(ii) ub = b and b2 = b, or ub = z and b2 = 0 or ub = y ∈ Z(S) \ {0, z, u, b}
and b2 = z, y2 = 0.

Proof. (i) Suppose that u2 = b. For all x ∈ Z(S) \ {0, z, u, b}, since u is not
adjacent to x in Γ(S), we have ux 6= 0. If ux = u, then ub = (ux)b = u(xb) = 0
which is impossible. For all y ∈ V(Kn) \ {z}, if ux = y, then uy = u(ux) =
u2x = bx = 0 which is again impossible and so ux /∈ {0, u} ∪ V(Kn) \ {z}.
Therefore ux = z and z2 = (ux)z = u(xz) = 0.

Since ux = z, we have ux2 = (ux)x = zx = 0 and so x2 ∈ annS(u) = {0, u}.
Therefore x2 = 0 or x2 = z.

(ii) Clearly ub 6= 0 and ub 6= u so ub ∈ V(Kn) and thus ub = b or ub = z or
ub = y ∈ V(Kn)\{z, b}. Since u2 = b, if ub = b, then u3 = uu2 = ub = b = u2

and so u4 = u3 = u2. Thus b2 = u4 = u3 = u2 = b and if ub = z we have
b2 = bb = u2b = u(ub) = uz = 0.

Now assume that ub = y ∈ Z(S)\{0, z, u, b}. Then y2 = (ub)y = u(by) = 0.
Since uy = z, we have b2 = bb = u2b = u(ub) = uy = z. �

Lemma 32 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Also assume that u2 = b ∈ V(Kn) \ {z} and x ∈ V(Kn) \ {z, b}. Then u is
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adjacent to x in AG(S). Moreover u is adjacent to b in AG(S) if and only if
ub 6= b.

Proof. By proposition 31, For all x ∈ V(Kn) \ {z, b}, we have ux = z. Since
u2 = b so u /∈ annS(x) ∪ annS(u) and u ∈ annS(z) = annS(ux). Thus u is
adjacent to x in AG(S).

Moreover if u is adjacent to b in AG(S), then ub 6= b.
Conversely assume that ub 6= b. By proposition 31, we have ub = z and

b2 = 0 or ub = y ∈ Z(S) \ {0, z, u, b} and b2 = z, y2 = 0.
If ub = z and b2 = 0, then u /∈ annS(b) ∪ annS(u) and u ∈ annS(z) =

annS(ub). Thus u is adjacent to b in AG(S). Also if ub = y ∈ Z(S)\{0, z, u, b}
and b2 = z, y2 = 0, then b /∈ annS(b)∪annS(u) and b ∈ annS(y) = annS(ub).
Therefore u is adjacent to b in AG(S). �

Corollary 33 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = b ∈ V(Kn) \ {z} and Z(S) 6= S. Then AG(S) is not
a commplete graph if and only if ub = b.

Theorem 34 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = b ∈ V(Kn) \ {z}. Then the following statements hold.

(i) If Z(S) 6= S, then we have two cases.

(1) AG(S) ∼= Kn+1 if and only if ub 6= b.

(2) AG(S) ∼= Kn+1 \ {{ub}} if and only if ub = b.

(ii) If Z(S) = S, then we have two cases.

(1) AG(S) ∼= K1 ∪ Kn if and only if ub 6= b.

(2) AG(S) ∼= K1 ∪ Kn \ {{ub}} if and only if ub = b.

Proof. If Z(S) 6= S, then Γ(S) ≤ AG(S). By lemma 32, for all x ∈ V(Kn)\{z, b},
we have u is adjacent to x in AG(S) and u is adjacent to b in AG(S) if and
only if ub 6= b. Thus the statement (i) holds.

(ii) Since Z(S) = S, we have z is an isolated vertex in AG(S). Now by lemma
32, the results hold. �

Example 35 Suppose that Γ(S) is a complete graph K3 with an end vertex
u and u2 = x or u2 = y. Also assume that V(K3) = {x, y, z}. Then xy =
xz = yz = uz = 0 and z2 = 0. Moreover we have one of the following two
statements.
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(i) ux = z, uy = y, u2 = y2 = y, and x2 = 0 or x2 = z or uy = z, ux = x,
u2 = x2 = x, and y2 = 0 or y2 = z. In this case if Z(S) 6= S, by lemma 6,
we have AG(S) ∼= K4 \ {{uy}} or AG(S) ∼= K4 \ {{ux}} and if Z(S) = S, by
lemma 10, we have AG(S) ∼= K1∪K3 \ {{uy}} or AG(S) ∼= K1∪K3 \ {{ux}}.

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(ii) Also we have the following four cases.

(1) ux = y, uy = z, u2 = x, and x2 = y2 = 0 .

(2) ux = z, uy = x, u2 = y, and x2 = 0, y2 = z .

(3) ux = uy = z, u2 = y, y2 = 0 and x2 = 0 or x2 = z.

(4) ux = uy = z, u2 = x, x2 = 0 and y2 = 0 or y2 = z.

In this case if Z(S) 6= S, by lemma 7, we have AG(S) ∼= K4 and if
Z(S) = S, by lemma 11, we have AG(S) ∼= K1 ∪ K3 such that u is an
isolated vertex in AG(S).

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))
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