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Abstract. The rupture degree is one the most important vulnerability
parameter in networks which are modelled by graphs. Let G(V (G),E (G))
be a simple undirected graph. The rupture degree is defined by r(G) =
max{w(G–S )–|S |–m(G–S ):S⊂V (G) and w(G–S )>1} where m(G–S ) is
the order of a largest connected component in G–S and w(G–S ) is the
number of components of G–S, respectively. In this paper, we consider the
vertex contraction method based on the network agglomeration operation
for each vertex of G. Then, we have presented two graph vulnerability
parameters called by agglomeration rupture degree and average lower ag-
glomeration rupture degree. Furthermore, the exact values of them for
some graph families are given. Finally, we proposed a polynomial time
heuristic algorithm to obtain the values of agglomeration rupture degree
and average lower agglomeration rupture degree.

1 Introduction

Networks can be modeled with graphs. The servers or hubs are illustrated by
vertices and edges are connecting medium between them in any graph G. The
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vulnerability of a network is of main significance to network planners accord-
ing to the nodes and links [7, 12]. Recently, networks vulnerability has been
studied in widespread multidisciplinary area such as informatics, mathematics,
computer science, chemistry and many other applied science and engineering
science. The vulnerability value of networks is defined as the durability of the
network after the breakdown of some vertices or edges until a communication
disruption [12, 22].

In this paper, we consider only simple graphs. Now, some notations will
be given. Let G(V (G),E (G)) be a simple connected graph whose vertex
and edge sets are denoted by V (G) and E (G), where V (G)={v1,v2,. . . ,vn},
E (G)={e1,e2,. . . ,em}, |V (G)|=n and |E (G)|=m. Let u∈V (G).The set
N (u)={v∈V (G)|(u,v)∈E (G)} is called the open neighborhood of u. Further-
more, the number of |N (u)| is called the degree of vertex u and is denoted by
dG(u). The maximum degree of G is denoted by ∆(G) is defined by max{dG(v)
| v∈V (G)}. Similarly, the minimum degree of G is denoted by δ(G) is defined
by min{dG(v) | v∈V (G)} [18, 33]. The set N [u]={u}∪N (u) is called the closed
neighborhood of the vertex u. The d(u,v) represents the distance between two
vertices as u and v. Furthermore, the distance is defined as the length of a
shortest path between them [18, 33].

The connectivity value of any graph G is the best-known vulnerability mea-
sures in the literature. It is defined that to obtain disconnected graph after
the minimum number of vertices are deleted from the given graph, also is
denoted by k(G) for any graph G [16]. The connectivity of any graph G is
computed with polynomial time. There are many vulnerability measures for
the networks. For example, integrity [9], toughness [12], tenacity [13], global
distribution number [14] are considered and studied in many areas. Further-
more, there are many average vulnerability parameters are proposed to obtain
the vulnerability values of the networks. For example, the average lower dom-
ination number [17], the average lower independence number [6], the average
lower bondage number [32], the average lower reinforcement number [31], the
average lower residual domination number [29], the average lower link residual
domination numbers [30] etc. are considered and studied in many areas. The
values of these parameters are not computed in polynomial time. Because they
are classes of NP-Hard or NP-Complete.

The rupture degree is other best known vulnerability parameter. It is de-
fined by Li et al. in [23] and the definition of it as the following:

r(G) = max{w(G–S )–|S |–m(G–S ):S⊂V (G) and w(G–S )>1},
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where m(G–S ) and w(G–S ) denote the is the largest connected component
in G–S and the number of components of the graph G–S, respectively.

Let C6 be a cycle graph. It is showed by in Figure 1. The alternative rupture-
sets of C6 are showed with the set of darkened vertices. Clearly, |S |=3, w(C6−
S) = 3 and m(C6 − S) = 1. As a result,r(C6)=1 is obtained.

Figure 1: The rupture-set of the graph C6

In [26], the authors showed that calculating the rupture degree problem is
an NP-complete problem. However, it is possible to determine the rupture
degree of large classes of graphs. For more results on rupture degree, we refer
the readers to see [1, 2, 3, 4, 5, 8, 20, 21, 25, 27]. Furthermore, Li gave an
algorithm whose complexity is O(n2) for isolating rupture degree in Trees
of order n [24]. Another interesting study about the rupture degree is the
references [15] by Durgut et al. In [15], a heuristic algorithm is given to find
the rupture degree for any graph G. A similar study is in [11], where Berberler
et al. gave a polynomial time heuristic algorithm for computing the integrity
of any given graph G.

When investigating the vulnerability of complex networks, the finding node
importance is used for each node recently. There are some different methods
for determining importance of each node. In this paper, we use node contrac-
tion method based on network agglomeration. Then, new two vulnerability
parameter definitions have been made by combining node contraction method
based on network agglomeration method and the rupture degree. By using
methods based on agglomeration, more efficient results can be obtained in
terms of vulnerability. Let vi∈V (G). The node contraction is defined as fol-
lows: the node vi and other dG(vi) nodes connected with vi into a new node
v
′
i, which takes place of the primary dG(vi)+1 nodes, and links connected with
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dG(vi)–1 nodes originally turn to the new node v
′
i now. For example, if the

center node is contracted in a star-network, the network is agglomerated to
one node. Another example can be seen in Figure 2.

The agglomeration operation has been used in different network vulnera-
bility measures, some of these can be seen in [10, 19, 28]. In this paper, we
incorporate the concept of the rupture degree and agglomeration operation,
as well as the idea of the average vulnerability parameters, to introduce new
graph parameters called the agglomeration rupture degree (ARD), denoted by
ragg(G), and the average lower agglomeration rupture degree (ALARD), de-
noted by raggav (G), for any given graph G. Furthermore, we consider the ARD
and ALARD to be two metrics for network vulnerability.

Figure 2: The agglomeration operation on the vertex w.

In this paper, there are 6-Sections. The ARD and ALARD are defined in
Section 2. In Section 3, the difference of the ARD and ALARD is shown with
different examples. The values of ARD and ALARD are obtained some well-
known graph families in Section 4. In Section 5, we give a polynomial time
heuristic algorithm to compute the values of ARD and ALARD, then the
computational test results are presented. Finally, we give our conclusions in
Section 6.
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2 The definitions of the ARD and ALARD

The definitions of ARD and ALARD are given in this section. For a vertex
vk of a graph G, the lower agglomeration rupture degree, denoted by raggvk (G),
is the minimum cardinality of the rupture set in G derived from the graph G
after the agglomeration operation for the vertex vk. The agglomeration rupture
degree of a graph G is defined as:

ragg(G) = maxvk∈V (G){raggvk
(G)}.

Furthermore, the average lower rupture degree of G is defined by

raggav (G) =
1

|V (G)|
∑

vk∈V (G)

raggvk
(G).

Example 1.1. Let the graph G, which are showed in Figure3, be a graph
with 6-vertices and 6-edges. Clearly, the connectivity number and the rupture
degree of G is one. The rupture set of G is {v1,v4} and r(G)=1.

Figure 3: The graph G whose number of vertices and edges is 6.

Vertices raggvk (G)

v1 -1

v2 0

v3 1

v4 1

v5 1

v6 0

Table 1: The lower agglomeration rupture degree of every vertex vk ∈ V (G)
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The lower agglomeration rupture degree of every vertex vk ∈ V (G) is pre-
sented in Table 1.

Clearly, we have raggv1 (G)=-1, raggv2 (G)=0, raggv3 (G)=1, raggv4 (G)=1, raggv5 (G)=1,
and raggv6 (G)=0. Thus, ragg(G)=1 and raggav (G)=(-1+0+1+1+1+0)/6=2/6=0.33
are obtained.

3 Vulnerability examples of the ARD and ALARD

The ARD and ALARD can be more efficient than the connectivity and the
rupture degree in measuring the vulnerability of some graphs. In this section,
this situation is showed with different two examples.

In the first example, we consider the graphs G1 and G2 that are presented
in Figure 4. Then, we want to show the values of ARD and ALARD can be
used to distinguish between two given graphs. Clearly, the values of connec-
tivity and domination number, and also the numbers of vertices and edges of
the graphs G1 and G2 are equal. That is, k(G1)=k(G2)=1, r(G1)=r(G2)=1,
|V (G1)|=|V (G2)|=8 and |E (G1)|=|E (G2)|=8.

Figure 4: The graphs G1 and G2 with 8-vertices and 8-edges

The ARD of the graphs G1 and G2 are ragg(G1)=2 and ragg(G2)=1, while
the ALARDs of these two graphs G1 and G2 are raggav (G1) = 1

2 and raggav (G2)
= 1

4 , respectively.
In the second example, we consider the graphs G3 and G4 that are presented

in Figure 5. Then, we want to show the value of ALARD can be used to
distinguish between two given graphs. Clearly, the values of connectivity, the
rupture degree and the agglomeration rupture degree of the graphs G3 and G4

are equal, with k(G3)=k(G4)=1, r(G3)=r(G4)=1 and ragg(G3)= ragg(G4)=1.
Additionally, the numbers of vertices and edges of the graphs G3 and G4 are
equal as like |V (G3)|=|V (G4)|=6 and |E (G3)|=|E (G4)|=6.
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Figure 5: The graphs G3 and G4 with 6-vertices and 6-edges

The ALARD of the graphs G3 and G4 are raggav (G3) = 1
3 and raggav (G4) = 0,

respectively.
With these examples, we can say that these two new parameters ARD and

ALARD may be more distinctive than other vulnerability parameters.

4 Computing the ARD and ALARD of well-known
graphs

In this section, we compute the values of ARD and ALARD of well-known
graphs such as the path graph Pn, the cycle graph Cn , the complete graph
Kn, the star graph K1,n-1, the wheel graph W1,n and complete bipartite graph
Kn,m.

Theorem 1 Let G ∼= Pn be a path graph of order n, where n ≥ 4. Then,

(a) ragg(Pn) = 0 (b) raggav (Pn) =

{
−2/n, if n is odd;

(2− n)/n, if n is even.

Proof. We know that r(Pn) = -1 if n is even; r(Pn) = 0 if n is odd (see
[23]), and let {v1,v2,. . . ,vn-1,vn} be vertices of Pn. In here, we say that the
vertices v1 and vn are minor vertices, remaining vertices are called major ver-
tices. Clearly, number of minor and major vertices are 2 and n-2, respectively.
While we are calculating the ARD and ALARD of the path graph Pn, we have
two cases depending on n.
Case 1. Let n be even. We distinguish two sub cases depending on the ver-
tices of Pn.

Subcase 1.1. If a minor vertex is agglomerated, then a path Pn-1 is obtained.
Due to n is even, we have r(Pn-1) = 0. So, we obtain raggv1 (G)=0 and raggvn (G)=0.
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Subcase 1.2. If a major vertex is agglomerated, then a path Pn-2 is obtained.
Due to n is even, we have r(Pn-2) = -1. So, we obtain raggvk (G)=-1, where k ∈
{2,3,. . . ,n-1}.

Finally, we get ragg(Pn)=0 by the definition of ARD and the Subcases 1.1
and 1.2.

Furthermore, we get

raggav (G) =
1

|V (G)|

 ∑
vk∈V (G)

raggvk (G)


=

1

n

(
raggv1 (G) + raggvn (G) +

n−1∑
k=2

raggvk
(G)

)
=

1

n

(
2(0) + (−1(n− 2))

)
=

2− n
n

.

Case 2. Let n be odd. We distinguish two sub cases depending on the vertices
of Pn.

Subcase 2.1. If a minor vertex is agglomerated, then a path Pn-1 is ob-
tained. Due to n is odd, we have r(Pn-1) = −1. So, we obtain raggv1 (G)=−1
and raggvn (G)=−1.

Subcase 2.2. If a major vertex is agglomerated, then a path Pn-2 is obtained.
Due to n is odd, we have r(Pn-2) = 0. So, we obtain raggvk (G)=0, where k ∈
{2,3,. . . ,n-1}.

Finally, we get ragg(Pn)=0 by the definition of ARD and the Subcases 2.1
and 2.2.

Furthermore, we get

raggav (G) =
1

|V (G)|

( ∑
vk∈V (G)

raggvk (G)

)

=
1

n

(
raggv1 (G) + raggvn (G) +

n−1∑
k=2

raggvk
(G)

)
=

1

n

(
2(−1) + (0(n− 2))

)
=
−2

n
.
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By the Cases 1 and 2, the proof is completed. �

Theorem 2 Let G ∼= Cn be a cycle graph of order n, where n ≥ 5. Then,

ragg(Cn) = raggav (Cn) =

{
−2, if n is odd;
−1, if n is even.

Proof. We know that r(Cn) = -1 if n is even; r(Cn) = -2 if n is odd (see [23]),
and let {v1,v2,. . . ,vn-1,vn} be vertices of Cn. If a vertex is agglomerated in the
graph Cn, then a cycle Cn-2 is obtained. We have two cases depending on n.

Case 1. Let n be even. Due to n is even, we have r(Cn-2) = -1. So, we
obtain raggvk (G)=-1, where k ∈ {1,2,. . . ,n}.

Case 2. Let n be odd. Due to n is odd, we have r(Cn-2) = -2. So, we obtain
raggvk (G)=-2, where k ∈ {1,2,. . . ,n}.

Finally, we get

ragg(Cn) = raggav (Cn) =

{
−2, if n is odd ;
−1, if n is even.

By the Cases 1 and 2, the proof is completed. �

Theorem 3 Let G ∼= Kn be a complete graph of order n, where n ≥ 3. Then,

ragg(Kn) = raggav (Kn) = 0.

Proof. The rupture degree of Kn is defined as r(Kn)=1−n [23]. Let {v1,v2,. . . ,
vn-1,vn} be vertices of Kn. If a vertex is agglomerated in the graph Kn, then
the graph K1 is obtained. Clearly, r(K1)=0. So, we get raggvk (G)=0, where k ∈
{1,2,. . . ,n}. Thus, ragg(Kn)=raggav (Kn)=0 is obtained. �

Theorem 4 Let G ∼= K1,n−1 be a star graph of order n, where n ≥ 4. Then,

(a) ragg(K1,n−1) = n− 4 (b) raggav (K1,n−1) =
n2 − 5n+ 4

n
.
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Proof. The rupture degree of K1,n-1 is defined as r(K1,n-1)=n-3 [23]. Let
{vc,v1,v2,. . . ,vn-2,vn-1} be vertices of K1,n-1, where the vertex vc is the cen-
ter vertex of K1,n-1. We distinguish two cases depending on the vertices of
K1,n-1.

Case 1. If the center vertex vc is agglomerated, then the complete graph
K1 is obtained. We know r(K1)=0 [23]. So, we obtain raggvc (G) = 0.

Case 2. If a vertex vk, where k ∈ {2,3,. . . ,n-1}, is agglomerated, then a star
graph K1,n-1 is obtained. Thus, we get raggvk (G) = n− 4 for k ∈ {2,3,. . . ,n-1}.

Finally, we have ragg(K1,n-1)=0 by the definition of ARD and the Cases 1
and 2.

Furthermore, we get

raggav (G) =
1

|V (G)|

( ∑
vk∈V (G)

raggvk (G)

)

=
1

n

(
raggvc (G) +

n−1∑
k=1

raggvk
(G)

)
=

1

n

(
(n− 1)(n− 4)

)
=
n2 − 5n+ 4

n
.

By the Cases 1 and 2, the proof is completed. �

Theorem 5 Let G ∼= W1,n be a wheel graph of order n+1, where n ≥ 5. Then,

(a) ragg(W1,n) = 0 (b) raggav (W1,n) =

{
−2n/(n+ 1), if n is odd;
−n/(n+ 1), if n is even.

Proof. The rupture degree of W1,n is defined as r(W1,n) = -2 if n is even,
and r(W1,n) = -3 if n is odd (see [23]). Let {vc,v1,v2,. . . ,vn-1,vn} be vertices
of W1,n, where the vertex vc is the center vertex of W1,n. We distinguish two
cases depending on the vertices of W1,n.

Case 1. If the center vertex vc is agglomerated, then the complete graph K1

is obtained. We know r(K1)=0 [23]. So, we obtain raggvc (G)=0.
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Case 2. If a vertex vk, where k ∈ {1,2,. . . ,n}, is agglomerated, then a join
graph K1+Pn−3 is obtained. We distinguish two sub cases depending on the
number of n.

Subcase 2.1. If n is even, then n-3 will be odd. Due to is n−3 odd, then we
get r(K1+Pn−3)=−1 [23]. That is raggvk (G)=−1, where k ∈ {1,2,. . . ,n}.
Subcase 2.2. If n is odd, then n−3 will be even. Due to is n−3 even, then
we get r(K1+Pn−3)=−2 [23]. That is raggvk (G)=−2, where k ∈ {1,2,. . . ,n}.
Finally, we get ragg(W1,n)=0 by the definition of ARD and the Cases 1 and 2.
Thus, we get

raggav (G) =
1

|V (G)|

 ∑
vk∈V (G)

raggvk (G)

 =
1

n

(
raggvc (G) +

n−1∑
k=1

raggvk
(G)

)

=
1

n+ 1
(n)(−1) =

−n
n+ 1

, if n is even.

If n is odd, then we have

raggav (G) =
1

|V (G)|

 ∑
vk∈V (G)

raggvk (G)

 =
1

n

(
raggvc (G) +

n−1∑
k=1

raggvk
(G)

)

=
1

n+ 1
(n)(−2) =

−2n

n+ 1
.

By the Cases 1 and 2, the proof is completed. �

Theorem 6 Let G ∼= Kn,m be a complete bipartite graph of order n + m,
where 1 < n ≤ m. Then,

(a) ragg(Kn,m) = m− 3 (b) raggav (Kn,m) =
m2 + n2 − 3m− 3n

n+m
.

Proof. The rupture degree of Kn,m is defined as r(Kn,m)=1−m−n [23].
Let {v1,v2,. . . ,vn,v′1, v

′
2,. . . ,v′n} be vertices of Kn,m. We distinguish two cases

depending on the vertices of Kn,m.

Case 1. If a vertex vk, where k ∈ {1,2,. . . ,n}, is agglomerated, then a star
graph K1,n−1 is obtained. We have r(K1,n−1)=n−3. Thus, we get raggvk (G)=n−3
for k ∈ {1,2,. . . ,n}.
Case 2. If a vertex v′k, where k ∈ {1,2,. . . ,m}, is agglomerated, then a star
graph K1,m−1 is obtained. We have r(K1,m−1)=m−3. Thus, we get raggvk (G)=
m−3 for k ∈ {1,2,. . . ,m}.
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We have r(Kn,m)=max{n−3,m−3}. Due to n≤m, we obtain r(Kn,m)=m−3
by Cases 1 and 2.

Furthermore, we get

raggav (G) =
1

|V (G)|

( ∑
vk∈V (G)

raggvk (G)

)

=
1

n+m

( n∑
k=1

raggvk
(G) +

m∑
k=1

ragg
v′k

(G)

)

=
1

n+m

(
(n)(n− 3) + (m)(m− 3)

)

=
m2 + n2 − 3m− 3n

n+m
.

By the Cases 1 and 2, the proof is completed. �

5 A heuristic algorithm for computing the ARD
and ALARD

In this section, firstly we give the pseudocode of heuristic algorithm for ARD
and ALARD in Appendix A. This algorithm runs polynomial time to find
the ARD and ALARD of an arbitrary graph G. We give an example how the
proposed algorithm works on the following graph P4.

Let P4 be a path graph and the node array(labelled of nodes) is [0, 1, 2, 3]
into the operation function. This graph showed in the Figure 6.

Figure 6: The graph P4 whose vertices labelled by [0,1,2,3]

Let the vertex 1 and graph go to Agglomeration function in our Algorithm.
The content of our neighbors array will be [[1], [0,2], [1,3], [2]]. For example,
the content of the zeroth index is 1. So, the neighbor of node 0 will be 1.
The content of aggCluster array is also [0,2]. Then we add the corresponding
node and sort it from the largest number to the smallest number. The con-
tent would be [2, 1, 0]. Now we need to delete the row and column from the
two-dimensional graph array. This process is also based on aggCluster. After
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deletion, our components array is created, then we have components = [[0],
[1], [2,3]] as like the following Figure 7.

Figure 7: The graph P4 after the first deletion.

Now the neighbors are deleted from the array of components. In summary,
this is the function of keeping vertices that are not adjacent to the agglomer-
ation vertex in the array of components. Now, we have components = [[3]].

Then, labeledComponents = components has been made. Furthermore,
tag number is 1 in the loop. Since labeledComponents is single content, the
loop returns one and labeledComponents [0][0] = label number. In other words,
label 1 is given to the neighbor of the merged nodes(0) and the newGraf be-
comes P2 as like the following Figure 8.

Figure 8: The graph P2

The created newGraph is sent to the Rupture function which is proposed in
[15] and then returns -1. The Agglomeration function also returns this Integer
value. The Integer value from the operation function is added to the ruptures
sequence. This event is made for all nodes and ruptures = [0, -1, -1, 0] is
obtained. As a result, the maximum value will be ARD and its arithmetic
average will be ALARD, that is ragg(P4)=0 and raggav (P4) = −1

2 are obtained.

5.1 Computational tests

In this section, the datasets of the references [11] and [15] have been used to
perform our proposed algorithm. In the following tables, |V| is the number
of vertices; ARD is the Heuristic result of Agglomeration Rupture Degree;
ARDopt displays the Brute Force result of Agglomeration Rupture Degree;
ALARD is the Heuristic result of the Average Lower Agglomeration Rupture
Degree; ALARDopt, Brute Force result of Average Lower Agglomeration Rup-
ture Degree; t(s) represents the running time in seconds. Error is the absolute
gap, which is the magnitude of the difference between the values of ARD,
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ALARD and the results of ARD, ALARD obtained by the proposed algo-
rithm. Furthermore, 25%, 50%, 75% and 100% indicate the edge density of
the graph G.

The proposed algorithm is implemented in JAVA and tested on i5-7600U
machine with 2.9 GHz processor and 8 GB RAM. Clearly, we can see that the
results of the actual ARD and ALARD is almost similar the result of ARD and
ALARD obtained by proposed algorithm in Tables 2 and 3. We also tested our
algorithm for the medium size graphs whose numbers of vertices more than
100. Since we don’t know actual values of ARD and ALARD, we give only
heuristic result of ARD and ALARD with CPU time in the Tables 4 and 5.
As a result, we have tested the algorithm on some graph families which are
used in Theorems 1–6. Then, same values of ARD and ALARD are obtained
as given Theorems 1–6.

Table 2: Computational experiments on small-sized graphs for ARD.
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Table 3: Computational experiments on small-sized graphs for ALARD
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Table 4: Computational experiments on medium-sized graphs.



140 M. Ağtaş, T. Turacı

Table 5: Computational experiments on medium-sized graphs.
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6 Conclusion

In this paper, we considered agglomeration-based rupture degree in graphs.
We define and investigate the agglomeration rupture degree ragg(G) and the
average lower agglomeration rupture degree raggav (G), then these values have
been computed for well-known families of graphs. Finally, we proposed a poly-
nomial time heuristic algorithm to find the set of the lower agglomeration
rupture degree raggvk (G) for every vertex and also the values of ragg(G) and
raggav (G) for any graph G. Then, we present the results of computational
experiments on graphs with up to 200 vertices. The results show that the
proposed heuristic algorithm efficiently computes the values of ragg(G) and
raggav (G) of a given graph G. Developing of several heuristics for computing
the other agglomeration-based graph parameters of graphs are the subjects of
future work.
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APPENDIX

Void function Process(graph parameter mainGraph, node array parameter
arrayNode) {
ruptures[] � Ø
for i � 0 to arrayNode’s length {

ruptures[i] � Agglomeration(mainGraph, arrayNode[i]) }
Integer ARD � largest value of array ruptures
Double ALARD � sum of all ruptures array elements / arrayNode’s length
}. # end function

Integer function Agglomeration(graph parameter mainGraph, node parameter
Node) {
Graph � mainGraph # Cloning the master graph to avoid corruptions.
neighbors � neighboring nodes corresponding to each index.
aggCluster � neighbors[Node] # Finding the neighbors of the node.
for i � 0 to aggCluster’s length { # aggCluster nodes find their neighbors.

temp[i] � neighbors[aggCluster[i]]
for j � 0 to temp’s length {

if temp[i] isn’t equal to Node {
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add temp[j] to neighbors } } }

add Node to aggCluster
sort aggCluster by contents from largest to smallest
for i � 0 to aggCluster’s length { # Reset row and column.

for j � 0 to Graph’s length {
Graph[j][aggCluster[i]] � 0
Graph[aggCluster[i]][j] � 0 } }

components[][] � newly formed graph sets # add new graphs.
for i � 0 to length of components { # deleting the neighborhood from the
components array.

for j � 0 to length of components[i] {
if aggCluster contains components[i][j] {

components[i][0] � Ø } } }
for i � 0 to length of components {

if the length of components[i] is 0 {
remove the i. variable from components } }

# Creating tagged component _
labeledComponents[][] � Ø
labeledComponents � components

# new tags _
Integer tag number � 0
for i � 0 to length of labeledComponents {

for j � 0 to length of labeledComponents[i] {
tag number � tag number + 1
labeledComponents[i][j] � tag number } }

# remove if empty _
for i � 0 to length of labeledComponents {

if the length of labeledComponents[i] is 0 {
remove the i. variable from labeledComponents
remove the i. variable from components } }

# create new graph _
Integer value � Graph’s length – aggCluster’s length + 1
newGraph[value][value] � Ø # newGraph is the matrix with value*value
length.
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for i � 0 to length of labeledComponents {
for j � 0 to length of labeledComponents[i] {

if neighbors contain components[i][j] {
newGraph[0][labeledComponents[I][j]] � 1
newGraph[labeledComponents[I][j]][0] � 1 } } }

for i � 0 to length of components {
for j � 0 to length of components[i] {

for k � j to length of components[i] {
Integer a � Graph[components[i][j]][components[i][k]]
newGraph[labeledComponents[i][j]][labeledComponents[i][k]]� a
Integer b � Graph[components[i][k]][components[i][j]]
newGraph[labeledComponents[i][k]][labeledComponents[i][j]]� b

} } }

return function Rupture(newGraph) # Branched into the heuristic rupture
algorithm.
}. # end function
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