
Acta Univ. Sapientiae Informatica 15, 2 (2023) 239–266

DOI: 10.2478/ausi-2023-0016

Parallelising semantic checking in an IDE:

A way toward improving profits and

sustainability, while maintaining

high-quality software development

Kristóf SZABADOS
Eötvös Loránd University,

Budapest, Hungary
email: SzabadosKristf@gmail.com

Abstract. After recent improvements brought the incremental compila-
tion of large industrial test suites down to a few seconds, the first seman-
tic checking of a project became one of the longest-running processes.
As multi-core systems are now the standard, we derived a parallelisation
using software engineering laws to improve the performance of semantic
checking.

Our measurements show that even an outdated laptop is fast enough
for daily use. The performance improvements came without performance
regressions, and we can’t expect additional massive benefits even from
infinitely scaling Cloud resources.

Companies should utilise cheaper machines that still offer enough
performance for longer. This approach can help businesses increase prof-
its, reduce electronic waste and promote sustainability while maintaining
high-quality software development practices.

Key words and phrases: parallel computing, cloud computing, semantic checking, in-
tegrated development environment, software development tools, software engineering laws,
TTCN-3, performance improvement, sustainability, cost reduction, profit increase

239

https://doi.org/10.2478/ausi-2023-0016
https://www.researchgate.net/profile/Kristof-Szabados-2
http://www.elte.hu/
http://www.elte.hu/
mailto:SzabadosKristf@gmail.com

240 K. Szabados

1 Introduction

Software is ubiquitous in modern society. It helps us navigate, communicate,
and manage energy resources. It drives companies, trades on markets, and
supports healthcare.

As software products grow, so do their test systems. Some industrial test
systems contain millions of lines of code [1, 63]. For a long time, compiling such
codes for several minutes was the most time-consuming part of developers’
daily work. Companies used clusters of remote servers or Cloud solutions to
make the required performance available.

But, recent improvements [11] brought the incremental compilation of such
systems down to a few seconds, leaving the first single-threaded semantic
checking of the IDE as one of the longest-running processes. This process
can still take several seconds on our industry partner’s codes. Too long for an
IDE that should be interactive.

However, nowadays, single-threaded execution is an unnecessary constraint,
with multi-core and multi-CPU hardware readily and commercially available.

In this paper, we report on how we improved the IDE of our industry partner
with parallel processing of the semantic analysis, making better use of available
processing power. Our industry partner might no longer need to use Cloud or
remote servers, as the laptop their employees would use to reach those services,
might already be powerful enough.

We organised this paper as follows. Section 2 presents related works. Section
3 shows a technical description, and 4 is our proposal for the opportunity.
Section 5 presents our measurement method, and 6 shows our measurements
and observations. Section 7 their validity. Finally, 8 shows our summary, and
9 offers ideas for further research.

2 Related works

In this section, we present earlier related works. In the first group of sections,
factors that serve as general requirements for our chosen solution and its gen-
eral applicability: organisations intentionally design and govern the overall ar-
chitecture of their products to achieve their business targets (Section 2.1), the
generality and inevitability of the internal structure of large software systems
(Section 2.3), unavoidability of dependency cycles (Section 2.5), all software
systems evolving similar size distributions (Section 2.4).

In the second group of sections, we present how organisations use Project
Management to predictably deliver the right products at the right time [21]

Parallelising semantic checking in an IDE 241

(Section 2.2), how all software systems evolve in a similarly predictable way
(Section 2.6) to show that our chosen method permanently solves the problem.

2.1 Previous work on the impact of organisational factors on
software systems

Empirical observations have identified an isomorphic relationship [71] between
an organisation’s communication structure and product structure, known as
Conway’s law [7] or Mirroring law [39]. Nagappan et al. [46] showed that
organisational metrics predict failure-proneness better than code complexity,
coverage, internal dependencies, churn and pre-release bug measures. This
phenomenon was first recognised [39] for its significant managerial impact in
2012. By 2022 researchers observed it as likely the superior strategy used by
92% of investigated firms [6] and that alignments and “mirror breaking” in
organisations are strategic to maximise business benefits [38].

Following these laws, contemporary System Architects take several environ-
mental factors (among others: Taxation [10], Export Control [5], Geopolitics
[50] and Standardisation1) into consideration when planning software architec-
ture and the organisation developing it. Contemporary Project Management
recommends [22] tailoring a selected development approach first for the organ-
isation and second to the project. To ensure that individual project decisions
do not threaten larger strategic goals.

2.2 Previous work on the impact of project management on
software projects

Researchers have identified [68, 55, 43] that Project Management2 techniques
and processes are the critical factors contributing to project success.

Empirical observers have noted [8] that 94% of troubles and possibilities
for improvement are the responsibility of management. Instead of rewarding
managers for solving crises and heroes for putting out fires, companies should
reward managers for preventing problems with systemic problem-solving per-
formed with scientific rigour [17, 59, 4].

Project Management has a long history of evolving systematic practices [70]
since the first use of Test Driven Development [3] by the first programmers

1As a form of Test-First Development, companies join to create and standardise auto-
mated tests, precisely determining required capabilities and interfaces for future products
[29].

2Defined as “the application of knowledge, skills, tools, and techniques to project activities
to meet the project requirements” [21].

242 K. Szabados

in the 1940s [26, 2], Iterative and Incremental Development practices in the
1950s.

Nowadays, Professional Managers can use Agile and Lean methodologies to
detect and reduce unnecessary activities before they happen. They can delay
their decisions until the last responsible minute. They can direct developers to
follow test-first practices to ensure the quality of new developments. Managers
can use Continuous Integration to detect unapproved changes to supported
requirements. Understanding, that writing programs “is only a small part of
Software Engineering” ([51]).

2.3 Previous work on the dependency networks of software
systems

Empirical researchers have shown that several architectural properties of soft-
ware systems are scale-free like many real-life networks. Class collaboration
graphs of the C++ language [45], Class, method, and package collaboration
graphs of Java [20, 69], connections between the modules in TTCN-33 [61, 63],
file inclusion graphs in C [44], and the object graph (the objects instances cre-
ated at runtime) of most of the Object Oriented Programming languages in
general [53], the relationships of distributed software packages [31, 28] show
scale-free properties.

Taube-Schock et al. [65] showed, that approximately scale-free structures
should arise for both between-module and overall connectivity from the pref-
erential attachment-based models (like software), not as the result of poor
design. Concluding, that high coupling is not avoidable, and might even be
necessary for good design, contradicting previous ideas about software struc-
ture, in particular the “high cohesion/low coupling” maxim.

2.4 Previous work on the size distribution of software systems

Empirical studies have revealed that several metrics correlate to the point of
redundancy4 [40]. Measuring SLOC would be enough to obtain a landscape of
the evolution of the size and complexity of FreeBSD [19]. Stating that ”what-
ever is measured in a large scale system” the graph shows similar logarithmic
distribution in most cases [1].

3Testing and Test Control Notation Version 3
4Cyclomatic Complexity, the Number of Lines of Code, Statements, Classes, Files, public

APIs, and public undocumented APIs are redundant metrics, with Cyclomatic Complexity
in classes and functions measuring the same subject

Parallelising semantic checking in an IDE 243

Empirical researchers have shown module length distribution of IBM 360/370
and PL/S code forming logarithm shape [58], Java class sizes following log-
normal distribution [73], token distribution in Java code following Zipf’s law
[72, 74], all metrics measured on FreeBSD following lognormal and power-law
distributions [19], double-Pareto distribution for five (C, C++, Java, Python,
Lisp) of the top seven programming languages used in the Linux code [18] and
LOC following lognormal distribution in Smart Contracts written in Solidity
deployed on the Ethereum blockchain [66].

Hatton proposed [15] that the Conservation of Hartley-Shannon Information
might play the same role in discrete systems as the Conservation of Energy
does in physical systems, proving [16] Zipf’s Law in the case of homogeneous
systems and showing strong evidence for unusually long components being an
inevitable by-product of the total size of the system. He validated the claims
on 100 million lines of code in 7 programming languages and 24 Fortran 90
packages.

Hatton also highlighted the importance of changing software design tech-
niques, from attempting to avoid the essentially unavoidable to mitigating its
damaging effects.

2.5 Previous work on circular dependencies in software sys-
tems

Empirical studies have shown the existence of circular dependencies in several
successful and known programs written in Java [49, 42, 9], C# [49], TTCN-
3 [64], even in the binaries of Windows Server 2003 [75]. These studies offer
empirical evidence for the understanding that if a program has enough com-
ponents to support them, it is likely to have dependency cycles (with cycle
sizes of 1000 classes [42] or involving a substantial part of all classes [49]).

2.6 Previous work on the evolution of software systems

Since Lehman started his work on software evolution [36], showed that com-
mercial systems have a clear linear growth [37] and published the laws of
software evolution [34], this phenomenon has been attracting researchers.

There is plenty of empirical research [37, 35, 33, 24, 27, 23, 25, 54, 30, 76] in
which the authors show that the laws seem to be supported by solid evidence.

Turski even showed [67] that the gross growth trends can be predicted by a
mean absolute error of order 6%. Also observed by others [13, 30, 76].

244 K. Szabados

Looking at the impact of outside effects on software growth, empirical re-
searchers observed [30] that “the introduction of continuous integration, the
existence of tool support for quality improvements in itself, changing the devel-
opment methodologies (from waterfall to agile), changing technical and line
management structure and personnel caused no measurable change in the
trends of the observed Code Smells”, on industrial Java and C++ projects
[76], that changing architects, going open source or the organisation moving
to a different building had no easily discernible effect on development.

The works performed on large open source systems [24, 13, 35, 27, 23, 25, 76]
serve as observations supporting the understanding that there was no hard-
ware, software, tooling, methodological, social, or other change at least since
1995, that would have significantly changed the development speed of large
software systems already started.

3 Opportunity description

In this section, we present the opportunity in more technical terms. We de-
scribe what is already available in Titan [81], and what we were working with.
We show what we can expect from large-scale scale-free systems, and how
circular dependencies constrain our work.

3.1 What was already available and what we worked with

The tool of our industry partner performed syntactical analysis of source files
in parallel. The complete semantic checking of the parsed modules was avail-
able, done sequentially. Parsing [62] and semantic checking [48] could be in-
cremental.

Semantic analysis happens recursively, starting with the components of a se-
mantic entity (including entities contained within or reachable via references),
followed by itself, checking each semantic entity at most once per semantic
checking.

Although the optimal order is unknown before the first semantic checking of
a project, executing the process for each module in the project, in any order,
will check every semantic entity exactly once.

As semantic checking was single-threaded, the implementation does not have
any locks or guards against parallel access/modification on the level of the
entities. Locks only protect against overlapping semantic checks on a project.

Parallelising semantic checking in an IDE 245

3.2 Constraints on parallel processing

Previous works have already revealed properties of software systems that can
be constraints for reaching optimal parallelization:

� Large differences in module sizes (Section 2.4):

– Uneven size distribution means uneven processing time.

– Processing order of independent modules matters for performance.

� Scale-free distribution of dependencies (Section 2.3):

– The maximum number of imports in a module being ≥ 10% of
the modules, semantic checking such a module might also check all
reachable modules in the same thread, sub-optimal parallelization.

– Many modules depending on the same module creates contention
waiting for its processing to finish. Large amounts of modules be-
come available when that happens.

� Dependency cycles (Section 2.5):

– The modules of dependency cycles can’t be processed in parallel
safely without the risk of introducing deadlocks, but processing a
cycle as 1 unit by the same thread is sub-optimal parallelism.

– Before checking any module from a cycle, all depend on a not yet
checked module. Without deep pre-processing, it is not possible to
break cycles optimally.

� Gathering more information also costs time [48]:

– Sequential pre-processing for optimal parallelism might make the
entire process last longer.

– Only the import relations and the number of definitions/assign-
ments in a module are known without semantic checking.

As software evolves predictably (Section 2.6) towards long-standing busi-
ness goals of an infrequently changing organization (Section 2.1) and governed
by people dedicated to ensuring smooth progress (Section 2.2), once some
hardware becomes fast enough it will stay that way for a long time. Moore’s
law and the linear growth trend of software systems can ensure a practically
permanent solution.

246 K. Szabados

4 Our method

Our method structures the semantic checking of the list of modules into an
initial sequential part, a parallel part, and a final synchronisation point.

Initial sequential part:

1. The list of modules to be processed is ordered descending according to
the number of definitions/assignments inside them.

2. An executor service with a thread pool is created and filled with new
runnable tasks for each module without imports.

In the parallel part:

1. When a thread has processed its module, it creates a new runnable task
for each module not yet processed but having all their imported modules
processed.

2. To break cycles, if the thread is the last running and it does not find any
new modules to process, while there are still modules to be processed, it
selects the first not yet processed module for processing.

The processing ends when all modules are processed.
Titan developers merged our changes with a bug fixed later5.

5 Measurement methodology

In this section, we present our measurement methodology and its calibration.
At the timing precision required, we had to set up a measurement methodology
that let us separate the effects of our method from those of the environment.

First, we explored the limitations of the hardware6 (5.1). Then, we gener-
ated a project that could support ideal scaling (5.2), decided on the default
measurement process (5.3) and performed exploratory data analysis on 10.000

measurements to calibrate it (5.4). Finally, we used this methodology on the
ideal project to establish a baseline (5.5).

5https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/-/merge_

requests/918, last accessed: 2023.05.15
6Measurements were performed on a Lenovo Legion R7000 laptop, with an AMD Ryzen�

7 4800H 8-core 16-thread CPU (at a base Clock of 2.9GHz that can boost to 4.2GHz), 1*8
GB Kingston 3200 MHz SODIMM RAM, using an SSD, running Windows 10 Home and the
3.0.7-1 version of Cygwin, GCC 11.3.0, Eclipse 4.20.0, Java SDK 16.0.2 .

https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/-/merge_requests/918
https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/-/merge_requests/918

Parallelising semantic checking in an IDE 247

5.1 The limitations of the hardware

We explored the relevant limitations of the hardware using STREAM [41]7.
The source code was compiled with: gcc -O2 -DSTREAM ARRAY SIZE =

80000000 -DNTIMES=100 -fopenmp stream.c -o stream.80M.exe
We performed execution from the command line, controlling the thread

count via the “OMP NUM THREADS” environmental variable.

Table 1: The maximum and minimum STREAM results compared to the
single-threaded case and their thread count location.

max bandwidth min bandwidth

Project vs test ratio location ratio location

Copy +18.58% 4 +9.47% 22
Scale +3.27% 2 -14.93% 18
Add +4.34% 2 -17.93% 18
Triad +4.59% 3 -18.18% 16

Our measurements show (Table 1) the most bandwidth available using 2-4
threads. At higher thread counts, for all but the “Copy” function, the measured
memory bandwidth is below the single-threaded case. The measured values fell
into a limited range (Figure 1).

0

5000

10000

0 10 20 30
#Threads

B
an

dw
id

th
 M

B
/s

Function

Copy

Scale

Add

Triad

Figure 1: Memory Bandwith measured by STREAM.

7https://www.cs.virginia.edu/stream/FTP/Code/, version (”5.10”) downloaded in
May. 2022., last accessed: 2023.05.15

https://www.cs.virginia.edu/stream/FTP/Code/

248 K. Szabados

In practical terms, the hardware does not support increasing thread counts
with enough bandwidth for memory-bound operations. The hardware also
seems to suffer from some constraints or limitations, as the numbers we mea-
sured do not reach the peak transfer rate of the standard. This laptop is a
good sample for an outdated laptop, that was never meant for professional
development work and cannot support theoretically ideal scaling.

5.2 The Ideal project

To explore the parallel limits of the solution in finer detail and to calibrate
the measurement process in an ideal setting, we created a synthetic project,
“Ideal”, by copying the RAWCodingAttributes.ttcn file from [12] 16 times8.

In this project, all files are standalone and processable in parallel, have the
same content, and need identical processing. The files are large enough9 for
the analysis to be practically measurable, and their number matches the CPU
thread count.

5.3 The default process

We decided to use the closing and opening of a project for measurement, as
this deletes all information the IDE knows about that project and triggers its
analysis.

We created a small program to perform measurements in a loop, sleeping
at the end of each iteration (eliminating its potential impact).

Settings used for the measurements:

� The measurement Eclipse was started with:

-Xms4G -Xmx4G -XX: UseG1GC-server

� The laptop was in “Quiet Mode”10.

� The analysis threads were started with priority 1 (lowest) and after
checking each Assignment11/Definition12 a “Thread.yield()” call is exe-
cuted.

8Adding their index to both the file and module name to forego collisions.
97090 lines.

10Description from manufacturer: “Keep quiet by reducing your computer performance
and fan speed where possible with low power consumption”.

11https://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf, last
accessed: 2023.05.15

12https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.14.01_60/

es_20187301v041401p.pdf, last accessed: 2023.05.15

https://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.14.01_60/es_20187301v041401p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.14.01_60/es_20187301v041401p.pdf

Parallelising semantic checking in an IDE 249

5.4 Calibration of the measurement process

During our measurements, we had to account for the Just-in-time compilation
and optimisation of Java, the language of the IDE.

We set the helper program to perform 10.000 measurements.

0.00

0.05

0.10

0.15

0.20

0.25

0 2500 5000 7500 10000
Iteration

D
ur

at
io

n
se

c

(a) Direct measurements

0

50

100

150

200

0.00 0.05 0.10 0.15 0.20 0.25
Duration sec

M

ea
su

re
m

en
ts

(b) Histogram

Figure 2: The execution durations for the iterations (2(a)) and their histogram
(2(b)) for a 10.000 iteration execution. For visualisation purposes, the first
execution (taking 1.6 seconds) is not shown.

Our observations showed (Figure 2) that the first measurement is an outlier.
The following measurements form 4 clusters using K-means clustering (means:
0.1021, 0.1158, 0.1225, 0.1536).

At this point, we could devise the routine for measurements:

1. To determine a sufficient sleep duration, perform three iterations manu-
ally with the new settings set.

2. Turn off all potential interference and restart the hardware.

3. Do three iterations manually.

4. Execute the automation code for 200 iterations and extract the last 50

measurement points ([14]).

5.5 Measurements on the Ideal project

The overall duration of analysing the project (Figure 3) drops from an average
of 0.39s at 1 to 0.23s at 2, 0.147s at 4, 0.131s at 8, and 0.13s at unlimited thread
counts. The maximum speed-up of 3.18 is at 10 threads. In practical terms,
most performance gains happen till 4-thread parallelism. Higher thread counts

250 K. Szabados

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 u
Thread limit

T
im

e
se

c

Type

overall_duration

duration_of_module

Figure 3: The overall duration for the semantic checking on the ideal project,
and the single module duration from the closest to average execution, for each
thread limit (u meaning unlimited).

seem to produce only marginally better results. At the same time, there is also
no reason to use any smaller setting in practice.

The individual module analysis times from the closest to the average ex-
ecution of that thread count revealed that the analysis duration of a given
module approximately linearly depends on the thread count, indicating that
the hardware is memory bandwidth limited.

6 Measurements

In this section, we present our measurements.
Section 6.1 presents that our chosen method solves the problem on large

code bases and that further parallelisation is limited by the structure of the
problem, not the hardware. Section 6.2 shows that there are no noticeable
performance degradations in existing features.

6.1 Standardized test suites

We have analysed the behaviour of our method on all test suites created by
3GPP13 and publicly available at www.ttcn3.org14.

Used test suites:

� 3GPP UTRA UE Test Suites [80]: SSNITZ, UTRAN.

133rd Generation Partnership Project
14We downloaded all packages in July 2021.

Parallelising semantic checking in an IDE 251

� 3GPP IMS UE Test Suites [78]: IMS EUTRA, IMS IRAT, IMS NR5GC,
IMS UTRAN, IMS WLAN.

� 3GPP LTE UE Test Suites [77]: LTE, LTE A IRAT, LTE IRAT.

� 3GPP 5G UE Test Suites [79]: ENDC, NR5GC, NR5GC IRAT.

To process these test suites, we created a new “TITAN Project (Java)” with
the name of the TTCN-3 project, copied the source code from the downloaded
compressed files into its “src” folder, and converted all XSD files15. We man-
ually reviewed all problems detected by Titan on these projects and reported
the incorrect ones to the development team16.

Table 2 presents the most important properties of these projects and table
3 shows how well the logarithmic and power-law trend lines fit the measured
data for each project. Figure 4 presents the analysis durations measured for
each project.

Table 2: Importation data: number of modules, layers, maximum number of
imports, maximum number of being imported and lines of code

Project vs test Nof modules Nof layers17 Imax(project) Omax(project) LOC

SSNITZ 86 16 30 50 105.191
UTRAN 175 21 46 115 158.392
IMS EUTRA 207 20 40 131 106.429
IMS IRAT 207 19 40 140 182.561
IMS NR5GC 164 20 43 116 83.858
IMS UTRAN 128 17 35 72 108.732
IMS WLAN 103 16 24 57 41.297
LTE 230 23 50 171 249.161
LTE A IRAT 266 20 42 187 219.496
LTE IRAT 289 21 78 211 257.719
ENDC 250 22 49 190 152.194
NR5GC 201 19 47 161 130.907
NR5GC IRAT 242 20 47 178 141.135

6.1.1 Measurement: LTE IRAT

In this section, we present our observations for the largest project processed.

15Using the “xsd2ttcn” utility of Titan, using the -N flag.
16https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/-/issues/

456, last accessed: 2023.05.15

https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/-/issues/456
https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/-/issues/456

252 K. Szabados

Table 3: Trend fitting

log r2 power law r2

Project vs test I(module) O(module) I(module) O(module)

SSNITZ 0.92 0.96 0.81 0.83
UTRAN 0.97 0.82 0.84 0.92
IMS EUTRA 0.97 0.81 0.80 0.91
IMS IRAT 0.98 0.69 0.85 0.90
IMS NR5GC 0.97 0.68 0.85 0.89
IMS UTRAN 0.97 0.81 0.85 0.92
IMS WLAN 0.95 0.90 0.84 0.90
LTE 0.94 0.87 0.78 0.87
LTE A IRAT 0.98 0.73 0.80 0.87
LTE IRAT 0.97 0.78 0.78 0.87
ENDC 0.98 0.72 0.82 0.90
NR5GC 0.95 0.84 0.76 0.89
NR5GC IRAT 0.98 0.70 0.83 0.88

The average overall duration of the analysis (Figure 5) takes 25.16s using 1

thread, 14.25s using 2 threads, 11.92s using 3 threads, 11.01s using 4 threads,
9.49s using 8 threads, 10.30s using 16 threads and 10.10s without thread limits.
The overall speed-up is 2.48 without thread limits (2.64 using 8 threads).

Module “RRC MeasurementUG” takes the longest to analyse, with 6.78s
using 1 thread, 7.76s using 2 threads, 8.07s using 3 threads, 8.39s using 4

threads, 8.24s using 8 threads, 8.78s using 16 threads and 8.35s without thread
limits, a slowdown of approx. 23%.

With unlimited threads, the longest to analyse path contains the modules
“LTE IRAT Testsuite” with 0.03s, “RRC MeasurementUG” with 8.35s, “EU-
TRA Measurement Templates” with 0.90s and “EUTRA RRC Templates” with
0.13s to analyse. 9.41s of the 10.10s, or approx. 93% of analysing the project
with unlimited threads. Although this is not the critical path, it still shows that
no amount of increase in parallel processing threads/CPU cores alone would
be able to decrease the processing time further significantly.

The duration values for analysing a given module in descending order (Fig-
ure 6) are similar to the length values of modules plotted in descending order.
With the exponential trend lines fitting to all thread limit cases with at least
r2 of 0.97 and power trend lines between 0.84 and 0.88.

Parallelising semantic checking in an IDE 253

NR5GC_IRAT

IMS_EUTRA IMS_NR5GC IMS_WLAN NR5GC

UTRAN IMS_IRAT IMS_UTRAN ENDC

SSNITZ LTE LTE_A_IRAT LTE_IRAT

1 2 3 4 816u

1 2 3 4 816u 1 2 3 4 816u 1 2 3 4 816u

0

10

20

30

0

2

4

6

0
1
2
3
4

0
5

10
15
20

0

2

4

6

0.0

0.1

0.2

0.3

0
5

10
15
20

0.0
2.5
5.0
7.5

10.0

0.0

0.5

1.0

1.5

0

2

4

6

0

3

6

9

12

0.0

0.5

1.0

1.5

0

1

2

3

Thread limit

T
im

e
se

c

Figure 4: The overall duration, for each thread limit (u meaning unlimited)
and each measured standardised test suite.

Without thread limits (Figure 7(b)), the maximum number of active threads18

is 23. Indicating that at most 23 threads can work in parallel, additional hard-
ware capacity can not be utilised.

With thread limits set (Figure 7(a)) the number of active threads below the
actual thread limit is 0 for 1, 2 for 2, 7 for 3, 14 for 4, 121 for 8 and 270 for
16 thread limit. At small thread limits, parallel processing operates at or near

18In our measurements we call active threads, the software threads that are actively run-
ning at the time of measurement. Where the measuring is done in the “Runnable” object’s
“run()” function is called, right before it starts to analyse its module.

254 K. Szabados

0

100

200

300
0 5 10 15 20 25

Time sec

In
de

x

Type

start

end

(a) 1 thread limit

0

100

200

300
0.0 2.5 5.0 7.5 10.0

Time sec

In
de

x

Type

start

end

(b) Unlimited thread count

Figure 5: Execution trace for the LTE IRAT modules, when the analysis is
limited to 1 threaded processing 5(a) and when there is no thread limit (5(b)).

0

2

4

6

0 100 200 300
Index

T
im

e
se

c

(a) 1 thread limit

0

2

4

6

8

0 100 200 300
Index

T
im

e
se

c

(b) Unlimited thread count

Figure 6: The time it takes to analyse a given module, in descending order,
when there is a 1 thread limit (6(a)) and when the number of threads is not
limited (6(b)), while checking LTE IRAT.

maximum capacity. At high thread limits (8 and 16 measured), the structure
of the dependency graph and the runtime processing is the stronger restriction.

The system was underutilised in 41.9% of the 8 thread limit and in 93%
of the 16 thread limit measurement points. The increase in the thread count
limit comes with a smoother spread for the number of active threads (Figure
8(a)).

Parallelising semantic checking in an IDE 255

0

2

4

6

8

0 100 200 300
Index

A

ct
iv

e
th

re
ad

s

(a) 8 thread limit

0

5

10

15

20

0 100 200 300
Index

A

ct
iv

e
th

re
ad

s
(b) Unlimited thread count

Figure 7: The number of active threads at the time of measurement, when there
is an 8 thread limit (7(a)) and when the number of threads is not limited (7(b))
while checking LTE IRAT.

u

16

8

4

3

2

1

0 5 10 15 20
Active count

T
hr

ea
d

lim
it

(a) Active thread count

u

16

8

4

3

2

1

0 10 20 30 40
Modules being checked

T
hr

ea
d

lim
it

(b) Available for checking

Figure 8: The histograms for the active thread count (8(a)) and the number
of modules available for checking (8(b)) numbers measured, for each thread
limit, while checking LTE IRAT.

We also measured the number of modules being checked or available for
checking (Figure 9). The maximum values are 36 for 1, 35 for 2, 29 for 3, 26
for 4, 25 for 8 and 23 for 16 thread limit and 23 when there is no thread limit.

256 K. Szabados

0

5

10

15

20

25

0 100 200 300
Index

M

od
ul

es
 b

ei
ng

 c
he

ck
ed

(a) 8 thread limit

0

5

10

15

20

0 100 200 300
Index

M

od
ul

es
 b

ei
ng

 c
he

ck
ed

(b) Unlimited thread count

Figure 9: The number of modules available for checking at the time of mea-
surement, when there is an 8 thread limit (9(a)) and when the number of
threads is not limited (9(b)) while checking LTE IRAT.

A higher thread count limit means more modules processable in parallel and
a shorter spread of modules available for processing at any time (Figure 8(b)).

6.2 Impact on existing features

6.2.1 Impact on Titan’s existing tests

The Eclipse Plug-ins of Titan we extended have tests for approx. 20.000 syn-
tactic and semantic markers (warnings and errors together). We frequently
executed these tests to ensure that existing detections were not changed. The
tests found the exact same issues at the expected locations, texts and severities.

6.2.2 Impact on incremental parsing

We repeated the measurement described in [62] to prove that the incremental
syntax checking is not affected negatively, inserting 203 spaces at the end of
a line in a file of the Ideal project and using the last 50 measurements.

Every measured execution time of the syntax analysis (figure 10(a)) was
below 1.47 ∗ 10−3 seconds, going as low as approx. 5 ∗ 10−4 seconds. These
values, for all thread counts, are similar to the published values indicating that
the performance of incremental syntax checking has not regressed.

Parallelising semantic checking in an IDE 257

0.0000

0.0005

0.0010

0.0015

0.0020

1 2 3 4 8 16 u
Thread limit

T
im

e
se

c

(a) Incremental parsing comparisons

0.12

0.14

0.16

0.18

Default Youtube
Category

T
im

e
se

c
(b) YouTube test comparisons

Figure 10: Comparisons of incremental syntax checking duration, for different
thread limits (10(a)) and the overall duration in Default mode, unlimited
threads, with and without YouTube running in the background (10(b)).

6.2.3 YouTube test

IDEs have an upper limit on the hardware capacity they are allowed to use.
For a good user experience, IDEs must not overload the developer’s machine
to the point where background music playback is negatively affected.

To prove that the new version still respects this upper boundary, we have
re-run the measurements on the Ideal project, without thread limits, with-
out blocking external interfaces (WiFi) and playing a video19 in 1080p60HD
quality via the Internet in the background.

During the measurement memory usage was approx. 95%, GPU utilisation
approx. 30%. During the analysis phases the CPU was utilised at 100%20,
increasing speed to 3.50 - 3.88 GHz (falling back to approx. 2.15 GHz in-
between these phases).

Playing a video in the background created (Figure 10(b)) a difference of
0.0068s in the means. Subjectively, we have not noticed any difference in the
music during measurements.

While the analysis shows a statistically meaningful difference, in practical
terms, we did not see a significant, real-world performance difference.

19https://www.youtube.com/watch?v=A-aSaw7JfB8, last accessed: 2023.05.15
20The built-in “Task Manager” application

https://www.youtube.com/watch?v=A-aSaw7JfB8

258 K. Szabados

6.3 Additional research directions covered

In this section, we present additional research directions we have covered.
“Maximum priority”: We maximised the priority of our application at the

cost of other applications. The analysis threads executed at maximum priority
(10) “Thread.yield()” was not called after checking each Assignment/Defini-
tion.

“Without markers”: We removed the crucial functionality of reporting errors
to eliminate a potential lock contention, where the Eclipse platform stores
markers in an internal database. Here we have commented out the body of the
“Location.reportProblem” and all functions in the “ParserMarkerSupport”
class with “createOnTheFly” in their name.

“Performance”: We overclocked the hardware at the cost of higher noise and
power consumption. We have set the laptop in “Performance Mode”21.

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 u
Thread limit

T
im

e
se

c

Type

Default

Maximum priority

Without markers

Performance

(a) Overall duration

0.00

0.05

0.10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 u
Thread limit

T
im

e
se

c

Type

Default

Maximum priority

Without markers

Performance

(b) Single module duration

Figure 11: The overall duration (11(a)) and the single module duration (11(b))
for each experiment, for each thread limit (u meaning unlimited).

Our analysis shows (Table 4):

1. “Maximum priority” is mostly faster with a small margin.

2. “Without markers” is clearly faster, but would lose core functionality.

3. “Performance” is the fastest, but to handle the increased heat, the laptop
became too loud for office usage.

21Description from manufacturer: “Boost your computer performance with higher fan
speed and power consumption”.

Parallelising semantic checking in an IDE 259

Threads Max. Priority Without Markers Performance

1 0.01577 0.01373 0.03663
2 0.00686 0.02121 0.02332
3 -0.003821 -0.00304 0.018593
4 -0.00654 -0.002403 0.01335
5 -0.00817 0.02175 0.00702
6 0.00300 0.011101 0.009106
7 0.00237 0.000804 0.01143
8 -0.00286 0.00909 0.00364
9 -0.00121 0.00206 0.00413

10 -0.00776 -0.00702 -0.002307
11 0.00317 0.00312 0.00614
12 -0.000437 0.004698 0.005903
13 0.00452 0.005544 0.01673
14 0.002477 0.00746 0.006955
15 0.00262 0.004450 0.006402
16 0.00361 0.00149 0.00664
u 0.000897 0.000424 0.00646

(a) muDiff

Threads Max.Priority Without Markers Performance

1 100 100 100
2 93.8 100 100
3 7.67 15.3 100
4 4.09 23.2 100
5 3.667 100 100
6 95.93 100 100
7 99.7 78.3 100
8 1.151 100 99.94
9 31.19 96.0 100

10 0 0.002 0.188
11 99.9 100 100
12 46.08 100 100
13 100 100 100
14 98.1 100 100
15 99.9 100 100
16 98.5 76.5 100
u 67.0 57.5 100

(b) $>compval

Table 4: Results of comparing the default measurements to a direction, show-
ing the difference in the means (4(a)) and the percentage of the posterior
probability mass above the comparison value 0 (4(b)).

While the analysis showed statistically meaningful improvements, no exper-
iment offered practical real-world performance improvements (Figure 11). We
consider these research directions closed.

7 Threats to validity

This study might suffer from the usual threats to external validity. There
might be limits to generalising our results beyond our settings (the program-
ming language used and possible industry-specific effects). We can only claim
the validity of our results for programming languages and code bases which
demonstrate the properties discussed in Section 2. Further research could in-
vestigate these properties for other languages and validate if our claim also
holds for them.

One specific threat to generalization might come from our measurement
performed only on a single laptop. To address this threat, we point out that
this laptop was already outdated during the measurements and never meant
for professional development work. In the paper, we showed how this laptop
is already fast enough for daily work and how the structure of the problem
would not benefit from more parallel resources, demonstrating how companies
could already save on hardware costs.

260 K. Szabados

8 Summary

IDE performance was a pain point for developers for a long time 22. In this
paper, we present our work on improving this situation by parallelizing the
semantic checking phase of an industrial IDE.

We have presented earlier works on the structure of software systems, which
serve as general requirements and prove the general applicability of our cho-
sen method. We also presented works on the evolution tendencies of software
systems to show that our chosen method permanently solves the problem.

We have shown that the new version improves performance on real-life
projects, utilising contemporary hardware better without performance regres-
sion in other parts of the system. We showed that the structure of the problem
limits better utilising all parallel hardware resources. We can not expect ad-
ditional benefits even from infinitely scaling Cloud resources.

Our measurements showed that even outdated laptop hardware, not aimed
at professional development work, is now strong enough to support working on
large open-source test systems. From the perspective of performance only, our
results make it hard to justify investing in Cloud resources or remote servers to
provide developers with a performing IDE. Companies should optimise their
development costs and sustainability efforts [52] by utilising weaker/cheaper
machines that still offer enough performance.

Our results could also inspire simplification in future IDEs, making pre-built
indices obsolete and user interfaces simpler.

The functionality we developed is available in open source [81] as part of
the Titan toolset.

9 Further work

Further research in improving performance could target: finer-grain locking,
keeping the work on “warm cores” [32], running our Java code directly on bare
metal [56, 57], and further optimisation of a Java Just-In-Time compiler [60].

Other research could target determining the most cost-efficient hardware
configuration for a given project, recommend code management and coding
styles that reduce processing times [47].

22https://blog.jetbrains.com/kotlin/2021/06/kotlin-ide-performance/

#Reworkedplatform,plugin,andcompilerAPIforcodehighlighting

https://blog.jetbrains.com/kotlin/2021/06/kotlin-ide-performance/#Reworkedplatform,plugin,andcompilerAPIforcodehighlighting
https://blog.jetbrains.com/kotlin/2021/06/kotlin-ide-performance/#Reworkedplatform,plugin,andcompilerAPIforcodehighlighting

Parallelising semantic checking in an IDE 261

10 Acknowledgements

The authors would like to thank the DUCN Software Technology unit of Er-
icsson AB, Sweden for the financial support of this research and the Test
Competence Center of Ericsson Hungary for providing access to their in-house
tools. We would also like to thank Izabella Ingrid Farkas for her help invaluable
to our measurements, and Peter Verhas for his feedback on this article.

References

[1] N. Bartha, Scalability on it projects, Master’s thesis, Eötvös Loránd University,
2016. ⇒240, 242

[2] K. Beck, Why does Kent Beck refer to the ”rediscovery” of test-driven
development? what’s the history of test-driven development before Kent
Beck’s rediscovery?, https://www.quora.com/Why-does-Kent-Beck-refer-to-
the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-
development-before-Kent-Becks-rediscovery, Last acc.: 2023.05.15. ⇒242

[3] K. Beck, Test Driven Development. By Example (Addison-Wesley Signature),
Addison-Wesley Longman, Amsterdam, 2002. ⇒241

[4] R. Bohn, Stop fighting fires, HBR, 78:83–91, 07 2000. ⇒241
[5] M. Choudaray and M. Cheng, Export Control. In Open Source Law, Policy and

Practice, Oxford University Press, 10 2022. ⇒241
[6] L. J. Colfer and C. Y. Baldwin, The mirroring hypothesis: Theory, evidence and

exceptions, IRPN: Innovation & Organizational Behavior (Topic), 2016. ⇒241
[7] M. E. Conway, How do committees invent, Datamation, 1967. ⇒241
[8] W. E. Deming, Out of the Crisis, volume 1 of MIT Press Books. The MIT Press,

12.2000. ⇒241
[9] J. Dietrich, C. McCartin, E. Tempero, and S. M. A. Shah, Barriers to modularity

- an empirical study to assess the potential for modularisation of Java programs.
In Research into Practice – Reality and Gaps, pages 135–150, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg. ⇒243

[10] M. Dorner, M. Capraro, O. Treidler, T.-E. Kunz, D. Šmite, E. Zabardast, D.
Mendez, and K. Wnuk, Taxing collaborative software engineering, 2023. ⇒241

[11] I. I. Farkas, K. Szabados, and A. Kovács, Improving productivity in large scale
testing at the compiler level by changing the intermediate language from C++
to Java, Acta Univ. Sapientiae Informatica, 13, 1 (2021) 134–179. ⇒240

[12] I. I. Farkas, K. Szabados, and A. Kovács, Regression test data,
http://compalg.inf.elte.hu/ attila/materials/RegressionTestSmall 20190724.zip,
2019. ⇒248

[13] J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens, What does it take to
develop a million lines of open source code?, In Open Source Ecosystems: Diverse
Communities Interacting, volume 299, pages 170–184, 06 2009. ⇒243, 244

https://www.kentbeck.com/
https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery
https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery
https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery
https://www.kentbeck.com/
https://www.researchgate.net/profile/Roger-Bohn
https://academic.oup.com/search-results?f_Authors=Mishi+Choudaray
https://academic.oup.com/search-results?f_Authors=Michael+Cheng
https://www.researchgate.net/profile/Lyra-Colfer
https://www.researchgate.net/profile/Carliss-Baldwin
https://www.melconway.com/Home/Home.html
https://deming.org/learn/about-dr-deming/
https://www.researchgate.net/profile/Jens-Dietrich-2
https://www.researchgate.net/profile/Catherine-Mccartin
https://www.researchgate.net/scientific-contributions/Ewan-D-Tempero-2204196569
https://www.researchgate.net/profile/Syed-Shah
https://www.researchgate.net/profile/Michael-Dorner-2
https://www.researchgate.net/profile/Maximilian-Capraro
https://www.researchgate.net/profile/Oliver-Treidler
https://www.researchgate.net/profile/Tom-Eric-Kunz
https://www.researchgate.net/profile/Darja-Smite
https://www.researchgate.net/profile/Ehsan-Zabardast
https://www.researchgate.net/profile/Daniel-Mendez-Fernandez
https://www.researchgate.net/profile/Krzysztof-Wnuk
https://www.researchgate.net/profile/Ingrid-Farkas-2
https://www.researchgate.net/profile/Kristof-Szabados-2
http://compalg.inf.elte.hu/~attila/
https://www.researchgate.net/profile/Ingrid-Farkas-2
https://www.researchgate.net/profile/Kristof-Szabados-2
http://compalg.inf.elte.hu/~attila/
http://compalg.inf.elte.hu/~attila/materials/RegressionTestSmall_20190724.zip
https://www.researchgate.net/profile/Juan-Fernandez-Ramil
https://www.researchgate.net/profile/Daniel-Izquierdo-Cortazar
https://www.researchgate.net/profile/Tom-Mens

262 K. Szabados

[14] A. Georges, D. Buytaert, L. Eeckhout, Statistically Rigorous Java Performance
Evaluation, In Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, OOPSLA ’07, pages
57–76, New York, NY, USA, 2007. ACM. ⇒249

[15] L. Hatton, Conservation of information: Software’s hidden clockwork?, IEEE
Trans. Softw. Eng., 40, 5 (2014) 450–460. ⇒243

[16] L. Hatton and G. Warr, Strong evidence of an information-theoretical conserva-
tion principle linking all discrete systems,R. Soc. O. Sci., 6, 10 (2019) 191101⇒243

[17] R. Hayes, Why Japanese factories work, HBR, 59, 1 (1981) 56–66. ⇒241
[18] I. Herraiz, D. Germán, and A. E. Hassan, On the distribution of source code file

sizes, In International Conference on Software and Data Technologies, v. 2, p.
5–14, 01 2011. ⇒243

[19] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles, Towards a theoretical
model for software growth, In Fourth International Workshop on Mining Soft-
ware Repositories (MSR’07:ICSE Workshops 2007), p. 21–21, 2007. ⇒242, 243

[20] D. Hyland-Wood, D. Carrington, and S. Kaplan, Scale-free nature of java soft-
ware package, class and method collaboration graphs, In Proceedings of the 5th
International Symposium on Empirical Software Engineering, 2006. ⇒242

[21] P. M. Institute, A guide to the Project Management Body of Knowledge (PM-
BOK guide), PMI, Newton Square, PA, 6th edition, 2017. ⇒240, 241

[22] P. M. Institute, A guide to the Project Management Body of Knowledge (PM-
BOK guide), PMI, Newton Square, PA, 7th edition, 2021. ⇒241

[23] A. Israeli and D. Feitelson, The Linux kernel as a case study in software evolution,
J. Syst. Softw., 83:485–501, 03 2010. ⇒243, 244

[24] C. Izurieta and J. Bieman, The evolution of FreeBSD and Linux, In Proceed-
ings of the 2006 ACM/IEEE International Symposium on Empirical Software
Engineering, ISESE ’06, p. 204–211, NY, USA, 2006. ACM. ⇒243, 244

[25] K. Johari and A. Kaur, Effect of Software Evolution on Software Metrics: An
Open Source Case Study, SIGSOFT Softw. Eng. N., 36(5):1–8, 09.2011. ⇒243,
244

[26] T. Joosse, December 1945: The ENIAC Computer Runs its First, Top-Secret Pro-
gram, https://www.aps.org/publications/apsnews/202212/history.cfm, 2022.
Last accessed: 2023.05.15. ⇒242

[27] C. Kemerer and S. Slaughter, An empirical approach to studying software evo-
lution, IEEE Trans. Softw. Eng., 25(4):493–509, 1999. ⇒243, 244

[28] G. Kohring, Complex dependencies in large software systems, Advances in Com-
plex Systems, 12, 11 2011. ⇒242

[29] A. Kovács and K. Szabados, Advanced TTCN-3 Test Suite validation with Titan,
In 9th International Conference on Applied Informatics, p. 273–281, 2015. ⇒
241

[30] A. Kovács and K. Szabados, Internal quality evolution of a large test system–an
industrial study, Acta Univ. Sapientiae, 8(2):216–240, 2016. ⇒243, 244

https://www.researchgate.net/profile/Andy-Georges
https://www.researchgate.net/scientific-contributions/Dries-Buytaert-61683781
https://www.researchgate.net/profile/Lieven-Eeckhout
https://ieeexplore.ieee.org/author/37297313800
https://ieeexplore.ieee.org/author/37297313800
https://www.researchgate.net/profile/Gregory-Warr
https://hbr.org/search?term=robert%20h.%20hayes
https://www.researchgate.net/profile/Israel-Herraiz
https://www.researchgate.net/scientific-contributions/Daniel-M-German-69962917
https://www.researchgate.net/profile/Ahmed-E-Hassan-2
https://www.researchgate.net/profile/Israel-Herraiz
https://www.researchgate.net/profile/Jesus-Gonzalez-Barahona
https://www.researchgate.net/profile/Gregorio-Robles
https://www.researchgate.net/profile/David-Hyland-Wood
https://www.researchgate.net/scientific-contributions/David-Carrington-3213140
https://www.researchgate.net/scientific-contributions/Simon-Kaplan-81750938
https://scholar.google.com/citations?user=IwCU_PAAAAAJ&hl=en
https://dl.acm.org/profile/81100468805
https://www.cs.montana.edu/izurieta/
https://dl.acm.org/profile/81100392208
https://dl.acm.org/profile/81472646340
https://dl.acm.org/profile/81100294422
https://www.tessjoosse.com/
https://www.aps.org/publications/apsnews/202212/history.cfm
https://ieeexplore.ieee.org/author/37349393100
https://ieeexplore.ieee.org/author/37344260800
https://www.researchgate.net/profile/Greg-Kohring
http://compalg.inf.elte.hu/~attila/
https://www.researchgate.net/profile/Kristof-Szabados-2
http://compalg.inf.elte.hu/~attila/
https://www.researchgate.net/profile/Kristof-Szabados-2

Parallelising semantic checking in an IDE 263

[31] N. LaBelle and E. Wallingford, Inter-package dependency networks in open-
source software, CoRR, cs.SE/0411096, 2004. ⇒242

[32] J. Lawall, H. Chhaya-Shailesh, J.-P. Lozi, B. Lepers, W. Zwaenepoel, and G.
Muller, Os scheduling with nest: Keeping tasks close together on warm cores,
In Proceedings of the Seventeenth European Conference on Computer Systems,
EuroSys ’22, page 368–383, New York, NY, USA, 2022. ACM. ⇒260

[33] M. J. Lawrence, An examination of evolution dynamics, In Proceedings of the
6th International Conference on Software Engineering, ICSE ’82, page 188–196,
Washington, DC, USA, 1982. IEEE CS Press. ⇒243

[34] M. Lehman and J. Fernandez-Ramil, Rules and tools for software evolution plan-
ning and management, ASE, 11:15–44, 01 2001. ⇒243

[35] M. Lehman, D. Perry, and J. Ramil, On evidence supporting the feast hypothesis
and the laws of software evolution, In Proc Fifth Int. Software Metrics Sympo-
sium. Metrics (Cat. No.98TB100262), pages 84–88, 1998. ⇒243, 244

[36] M. Lehman and J. Ramil, Towards a theory of software evolution - and its
practical impact, In Proc. Int. Symposium on Principles of Software Evolution,
pages 2–11, 2000. ⇒243

[37] M. M. Lehman and J. F. Ramil, Evolution in software and related areas, In Pro-
ceedings of the 4th International Workshop on Principles of Software Evolution,
IWPSE ’01, page 1–16, New York, NY, USA, 2001. ACM. ⇒243

[38] E. Leo, Breaking mirror for the customers: The demand-side contingencies of
the mirroring hypothesis, Cont. Man. Res., 18:35–65, Mar. 2022. ⇒241

[39] A. MacCormack, C. Baldwin, and J. Rusnak, Exploring the duality between
product and organizational architectures: A test of the “mirroring” hypothesis,
Research Policy, 41(8):1309–1324, 2012. ⇒241

[40] M. A. Mamun, C. Berger, and J. Hansson, Effects of measurements on correla-
tions of software code metrics, Empir. Softw. Eng., 24, 08 2019. ⇒242

[41] J. McCalpin, Memory bandwidth and machine balance in high performance com-
puters, IEEE Technical Committee on Computer Architecture Newsletter, pages
19–25, 12 1995. ⇒247

[42] H. Melton and E. Tempero, An empirical study of cycles among classes in Java,
Empir. Softw. Eng., 12(4):389–415, Aug. 2007. ⇒243

[43] S. Moradi, K. Kähkönen, and K. Aaltonen, From past to present- the develop-
ment of project success research, J. Mod. Proj., 8(1), Apr. 2022. ⇒241

[44] A. Moura, Y. Lai, and A. Motter, Signatures of small-world and scale-free prop-
erties in large computer programs, Phys. Rev. E, 68(2), 2003. ⇒242

[45] C. R. Myers, Software systems as complex networks: Structure, function, and
evolvability of software collaboration graphs, Phys. Rev. E, 68(4), 2003. ⇒242

[46] N. Nagappan, B. Murphy, V. Basili, and N. Nagappan, The influence of organi-
zational structure on software quality: An empirical case study, Technical Report
MSR-TR-2008-11, Microsoft Research, January 2008. ⇒241

[47] G. Nagy and Z. Porkoláb, Performance issues with implicit resolution in scala, In
Proceedings of the 10th International Conference on Applied Informatics, pages
211–223, 01 2018. ⇒260

https://www.researchgate.net/scientific-contributions/Nathan-LaBelle-31708155
https://www.researchgate.net/profile/Eugene-Wallingford
https://www.researchgate.net/profile/Julia-Lawall
https://www.researchgate.net/profile/Himadri-Chhaya-Shailesh
https://www.researchgate.net/scientific-contributions/Jean-Pierre-Lozi-2048013164
https://www.researchgate.net/profile/Baptiste-Lepers
https://www.researchgate.net/profile/Willy-Zwaenepoel
https://www.researchgate.net/profile/Gilles-Muller-2
https://dl.acm.org/profile/81546843156
https://www.computer.org/profiles/meir-lehman
https://ieeexplore.ieee.org/author/37271187100
https://www.computer.org/profiles/meir-lehman
https://www.researchgate.net/profile/Dewayne-Perry
https://ieeexplore.ieee.org/author/37271187100
https://www.computer.org/profiles/meir-lehman
https://ieeexplore.ieee.org/author/37271187100
https://www.computer.org/profiles/meir-lehman
https://ieeexplore.ieee.org/author/37271187100
https://ieeexplore.ieee.org/author/37089289071
https://www.hbs.edu/faculty/Pages/profile.aspx?facId=6503
https://www.hbs.edu/faculty/Pages/profile.aspx?facId=6417
https://www.scopus.com/authid/detail.uri?authorId=14029099600
https://www.researchgate.net/profile/Md-Abdullah-Mamun-2
https://www.researchgate.net/scientific-contributions/Christian-Berger-69713961
https://www.researchgate.net/profile/Joergen-Hansson
https://www.cs.virginia.edu/~mccalpin/
https://www.researchgate.net/profile/Hayden-Melton
https://www.researchgate.net/scientific-contributions/Ewan-D-Tempero-2204196569
https://www.researchgate.net/profile/Sina-Moradi-6
https://www.researchgate.net/profile/Kalle-Kaehkoenen
https://www.researchgate.net/profile/Kirsi-Aaltonen
https://www.researchgate.net/profile/Alessandro-Moura
https://www.researchgate.net/profile/Ying-Cheng-Lai
https://www.researchgate.net/profile/Adilson-Motter
https://physics.cornell.edu/christopher-myers
https://dl.acm.org/profile/81100257124
https://www.microsoft.com/en-us/research/people/bmurphy/
https://www.researchgate.net/scientific-contributions/Victor-R-Basili-3232146
https://www.researchgate.net/scientific-contributions/Gergely-Nagy-2148359209
http://gsd.web.elte.hu/

264 K. Szabados

[48] P. Olah, Szemantikus elemzés gyorśıtása TTCN-3 környezetben, Master’s thesis,
Eötvös Loránd University, 2016. ⇒244, 245

[49] T. D. Oyetoyan, R. Conradi, and D. S. Cruzes, Criticality of defects in cyclic
dependent components, In 2013 IEEE 13th International Working Conference
on Source Code Analysis and Manipulation (SCAM), pages 21–30, 2013. ⇒243

[50] A. Pannier, Software power: The economic and geopolitical implications of open
source software, 2022. ⇒241

[51] D. L. Parnas, Structured programming: A minor part of software engineering,
Information Processing Letters, 88(1):53–58, 2003. ⇒242

[52] Z. Porkoláb, Save the Earth, Program in C++!, In 2022 IEEE 16th Int. Scientific
Conf. on Informatics (Informatics), p. 11–12. IEEE, 2022. ⇒260

[53] A. Potanin, J. Noble, M. Frean, and R. Biddle, Scale-free geometry in OO pro-
grams, Commun. ACM, 48(5):99–103, May 2005. ⇒242

[54] R. Potvin and J. Levenberg, Why Google stores billions of lines of code in a
single repository, Commun. ACM, 59(7):78–87, Jun 2016. ⇒243

[55] S. Pretorius, H. Steyn, and T. Bond-Barnard, The relationship between project
management maturity and project success,J. Mod. Proj.,10:219–231, 2023. ⇒
241

[56] W. Puffitsch and M. Schoeberl, PicoJava-II in an FPGA, In Proceedings of the
5th International Workshop on Java Technologies for Real-Time and Embedded
Systems, JTRES ’07, page 213–221, New York, NY, USA, 2007. ACM. ⇒260

[57] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White, Java� on the bare
metal of wireless sensor devices: the squawk Java virtual machine, In Proceed-
ings of the 2nd international conference on Virtual execution environments, pp.
78–88, 2006. ⇒260

[58] C. P. Smith, A software science analysis of programming size, In Proceedings of
the ACM 1980 Annual Conference, page 179–185, 1980. ACM. ⇒243

[59] S. Spear and H. Bowen, Decoding the DNA of the Toyota Production System,
HBR, 77, 09 1999. ⇒241

[60] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani, Design
and Evaluation of Dynamic Optimizations for a Java Just-in-Time Compiler,
ACM Trans. Program. Lang. Syst., 27(4):732–785, Jul 2005. ⇒260

[61] K. Szabados, Structural Analysis of Large TTCN-3 Projects, In Proceedings
of the 21st IFIP WG 6.1 International Conference on Testing of Software and
Communication Systems and 9th International FATES Workshop, TESTCOM
’09/FATES ’09, page 241–246, Berlin, Heidelberg, 2009. Springer-Verlag. ⇒242

[62] K. Szabados, Creating an efficient and incremental IDE for TTCN-3, In 10th
Joint Conference on Mathematics and Computer Science, Cluj-Napoca, In Studia
Universitatis Babes-Bolyai, Informatica, volume 60, pages 5–18, 2015. ⇒ 244,
256

[63] K. Szabados, Quality Aspects of TTCN-3 Based Test Systems, PhD thesis,
Eötvös Loránd University, 11 2017. ⇒240, 242

https://www.researchgate.net/profile/Tosin-Daniel-Oyetoyan
https://www.researchgate.net/scientific-contributions/Reidar-Conradi-6269607
https://www.researchgate.net/profile/Daniela-Cruzes
https://www.ifri.org/en/about/team/alice-pannier
https://www.computer.org/profiles/david-parnas
http://gsd.web.elte.hu/
https://dl.acm.org/profile/81100005943
https://dl.acm.org/profile/81100588708
https://www.researchgate.net/profile/Marcus-Frean
https://www.researchgate.net/profile/Robert-Biddle
https://www.researchgate.net/scientific-contributions/Rachel-Potvin-2111672897
https://research.google/people/JoshLevenberg/
https://www.researchgate.net/profile/S-Pretorius-2
https://www.researchgate.net/profile/H-Steyn
https://www.researchgate.net/profile/Taryn-Bond-Barnard
https://www.researchgate.net/profile/Wolfgang-Puffitsch
https://www.researchgate.net/profile/Martin-Schoeberl
https://www.researchgate.net/profile/Doug-Simon
https://www.researchgate.net/profile/Cristina-Cifuentes
https://www.researchgate.net/scientific-contributions/Dave-Cleal-70036189
https://www.researchgate.net/scientific-contributions/John-Daniels-70569845
https://www.researchgate.net/scientific-contributions/Derek-White-8323126
https://dl.acm.org/profile/81100076598
https://www.researchgate.net/profile/Steven-Spear
https://hbr.org/search?term=h.%20kent%20bowen
https://dl.acm.org/profile/81100185644
https://dl.acm.org/profile/81100210831
https://dl.acm.org/profile/81100231881
https://dl.acm.org/profile/81100557247
https://dl.acm.org/profile/81100311827
https://www.researchgate.net/profile/Kristof-Szabados-2
https://www.researchgate.net/profile/Kristof-Szabados-2
https://www.researchgate.net/profile/Kristof-Szabados-2

Parallelising semantic checking in an IDE 265

[64] K. Szabados, A. Kovács, G. Jenei, and D. Góbor, Titanium: Visualization of
TTCN-3 system architecture, In 2016 IEEE International Conference on Au-
tomation, Quality and Testing, Robotics (AQTR), pages 1–5, 2016. ⇒243

[65] C. Taube-Schock, R. J. Walker, and I. H. Witten, Can we avoid high coupling?, In
Proceedings of the 25th European Conference on Object-Oriented Programming,
ECOOP’11, page 204–228, Berlin, Heidelberg, 2011. Springer-Verlag. ⇒242

[66] R. Tonelli, G. A. Pierro, M. Ortu, and G. Destefanis, Smart contracts software
metrics: A first study, PLoS ONE, 18, 01 2023. ⇒243

[67] W. Turski, The reference model for smooth growth of software systems revisited,
IEEE Trans. Softw. Eng., 28(8):814–815, 2002. ⇒243

[68] J. Varajão, R. P. Marques, and A. Trigo, Project management processes – impact
on the success of information systems projects, Inf., 33(2):421–436, 2022. ⇒241

[69] L. Šubelj and M. Bajec, Software systems through complex networks science: Re-
view, analysis and applications, In Proceedings of the First International Work-
shop on Software Mining, p. 9–16, NY, USA, 2012. ACM. ⇒242

[70] A. Whiteley, J. Pollack, and P. Matous, The origins of agile and iterative meth-
ods, J. Mod. Proj., pages 20–29, 02 2021. ⇒241

[71] E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of a Dis-
cipline of Computer Program and Systems Design, Yourdon, 1978. ⇒241

[72] H. Zhang, Exploring Regularity in Source Code: Software Science and Zipf’s
Law, In 15th Working Conference on Reverse Engineering, 101–110, 2008. ⇒
243

[73] H. Zhang and H. B. K. Tan, An Empirical Study of Class Sizes for Large Java
Systems, In 14th Asia-Pacific Software Engineering Conference (APSEC’07),
pages 230–237, 2007. ⇒243

[74] H. Zhang, H. B. K. Tan, and M. Marchesi, The Distribution of Program Sizes
and Its Implications: An Eclipse Case Study, CoRR, abs/0905.2288, 2009. ⇒
243

[75] T. Zimmermann and N. Nagappan, Predicting Subsystem Failures using Depen-
dency Graph Complexities, In The 18th IEEE Int. Symp. on Soft. Rel. (ISSRE
’07), pages 227–236, 2007. ⇒243

[76] A. Zsiga, Termelékenységi trendek, minták elemzése szoftverfejlesztési projek-
tekben, Master’s thesis, Eötvös Loránd University, 2019. ⇒243, 244

[77] ∗ ∗ ∗, Evolved universal terrestrial radio access (e-utra) and evolved packet
core (epc); user equipment (ue) conformance specification; part 3: Abstract
test suite (ats), ftp://ftp.3gpp.org/Specs/archive/36 series/36.523-3/36523-3-
g90.zip. Last accessed: 2023.05.15. ⇒251

[78] ∗ ∗ ∗, Internet protocol (ip) multimedia call control protocol based on ses-
sion initiation protocol (sip) and session description protocol (sdp); user
equipment (ue) conformance specification; part 3: Abstract test suites (ats),
ftp://ftp.3gpp.org/Specs/archive/34 series/34.229-3/34229-3-g20.zip. Last ac-
cessed: 2023.05.15. ⇒251

https://www.researchgate.net/profile/Kristof-Szabados-2
http://compalg.inf.elte.hu/~attila/
https://www.researchgate.net/profile/Craig-Taube-Schock
https://www.researchgate.net/profile/Robert-Walker-18
https://www.researchgate.net/profile/Ian-Witten
https://pubmed.ncbi.nlm.nih.gov/?term=Tonelli%20R%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Pierro%20GA%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Ortu%20M%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Destefanis%20G%5BAuthor%5D
https://ieeexplore.ieee.org/author/37312153800
https://www.researchgate.net/profile/Joao-Varajao
https://www.researchgate.net/profile/Rui-Pedro-Marques
https://www.researchgate.net/profile/Antonio-Trigo
https://dl.acm.org/profile/81548022788
https://dl.acm.org/profile/81100500587
https://www.researchgate.net/profile/Andrew-Whiteley-3
https://www.researchgate.net/profile/Julien-Pollack
https://www.researchgate.net/scientific-contributions/Petr-Matous-2022292728
https://dl.acm.org/profile/81405596230
https://dl.acm.org/profile/81100375146
https://www.researchgate.net/profile/Hongyu-Zhang-46
https://www.researchgate.net/profile/Hongyu-Zhang-46
https://www.researchgate.net/profile/Hee-Beng-Kuan-Tan
https://www.researchgate.net/profile/Hongyu-Zhang-46
https://www.researchgate.net/profile/Hee-Beng-Kuan-Tan
https://www.researchgate.net/profile/Michele-Marchesi-2
https://www.microsoft.com/en-us/research/people/tzimmer/
https://ieeexplore.ieee.org/author/37267730300
ftp://ftp.3gpp.org/Specs/archive/36_series/36.523-3/36523-3-g90.zip
ftp://ftp.3gpp.org/Specs/archive/36_series/36.523-3/36523-3-g90.zip
ftp://ftp.3gpp.org/Specs/archive/34_series/34.229-3/34229-3-g20.zip

266 K. Szabados

[79] ∗ ∗ ∗, Technical specification group radio access network; 5gs; user
equipment (ue) conformance specification; part 3: Protocol test suites,
fftp://ftp.3gpp.org/Specs/archive/38 series/38.523-3/38523-3-g20.zip. Last ac-
cessed: 2023.05.15. ⇒251

[80] ∗∗∗, User equipment (ue) conformance specification; part 3: Abstract test suites,
ftp://ftp.3gpp.org/Specs/archive/34 series/34.123-3/34123-3-g20.zip. Last ac-
cessed: 2023.05.15. ⇒250

[81] ∗∗∗, Titan, https://projects.eclipse.org/projects/tools.titan, 2020. Last accessed:
January 2020. ⇒244, 260

Received: September 19, 2023 • Revised: October 25, 2023

fftp://ftp.3gpp.org/Specs/archive/38_series/38.523-3/38523-3-g20.zip
ftp://ftp.3gpp.org/Specs/archive/34_series/34.123-3/34123-3-g20.zip
https://projects.eclipse.org/projects/tools.titan

	1 Introduction
	2 Related works
	2.1 Previous work on the impact of organisational factors on software systems
	2.2 Previous work on the impact of project management on software projects
	2.3 Previous work on the dependency networks of software systems
	2.4 Previous work on the size distribution of software systems
	2.5 Previous work on circular dependencies in software systems
	2.6 Previous work on the evolution of software systems

	3 Opportunity description
	3.1 What was already available and what we worked with
	3.2 Constraints on parallel processing

	4 Our method
	5 Measurement methodology
	5.1 The limitations of the hardware
	5.2 The Ideal project
	5.3 The default process
	5.4 Calibration of the measurement process
	5.5 Measurements on the Ideal project

	6 Measurements
	6.1 Standardized test suites
	6.1.1 Measurement: LTE IRAT

	6.2 Impact on existing features
	6.2.1 Impact on Titan's existing tests
	6.2.2 Impact on incremental parsing
	6.2.3 YouTube test

	6.3 Additional research directions covered

	7 Threats to validity
	8 Summary
	9 Further work
	10 Acknowledgements

