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Óbuda University, Budapest, Hungary

University Research, Innovation and Service Center
email: kovacs@uni-obuda.hu
ORCID:0000-0002-3188-0800
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some adverse effects present in the behavior of the fuzzy c-means (FCM)
and the possibilistic c-means (PCM) algorithms. A great advantage of
FPCM was the low number of its parameters, as it eliminated the possi-
bilistic penalty terms used by PCM. Unfortunately, FPCM in its original
formulation also has a weak point: the strength of the possibilistic term
is in inverse proportion with the number of clustered data items, which
makes FPCM act like FCM when clustering large sets of data. This pa-
per proposes a modification of the FPCM algorithm by introducing an
extra coefficient into the possibilistic term that allows us to control the
strength of the possibilistic effect within the mixture model. The mod-
ified clustering model will be referred to as generalized FPCM, since a
certain value of the extra parameter reduces it to the original FPCM, or
in other words, FPCM is a special case of the proposed algorithm. The
proposed method is evaluated using noise-free and noisy data as well.

1 Introduction

Data clustering represents one of the first applications of Zadeh’s fuzzy logic
[24]. The first fuzzy partitioning was defined by Ruspini [15] in 1969, while the
first c-means clustering adopting fuzzy partitions is the ISODATA algorithm
of Dunn introduced in 1974 [6], which was later generalized by Bezdek [3]
and called fuzzy c-means (FCM) algorithm. FCM has been a very popular
algorithm over the past decades in a wide range of sciences, in spite of its high
sensitivity to noisy data, caused by the probabilistic constraint used by all
c-means clustering models defined up to this point.
The necessity to relax the probabilistic constraint led to a series of c-means

clustering approaches (e.g. [5, 9]), in which the fuzzy membership functions
represented typicality values or the compatibility of data vectors with the
clusters. These approaches were able to handle noisy data, to ignore them
in establishing the clusters that represent the real, meaningful data vectors.
However, they still had limitations: the first one was unable to handle clusters
of different sizes (diameter), the second one frequently merged several clusters
together.
To avoid this limitation, several mixed partition models of c-means cluster-

ing were proposed. In 1997, Pal et al. [11] introduced the fuzzy-possibilistic
c-means (FPCM) algorithm, which proposed a mixture partition with a re-
duced number of parameters. This approach had the limitation of having a
behavior strongly influenced by the size of the input dataset. The probabilis-
tic and possibilistic components of the mixed partition were used as a linear
combination. This scheme was then reused by the possibilistic-fuzzy c-means
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(PFCM) algorithm proposed by Pal et al. [12], while Szilágyi [16]) later pre-
sented a different approach that combined the two partition components via
multiplication. The most recent mixed partition models proved to be robust
as they provide fine partitions both in case of absence and presence of outlier
data.
This paper proposes to enhance the services provided by the FPCM algo-

rithm by introducing a generalized formulation. We attempt to eliminate the
limitations of PFCM by adding an extra coefficient to the possibilistic term.
This parameter denoted by β defines the strength of the possibilistic term
in the mixture partition. This modification represents a generalization of the
FPCM algorithm because FPCM acts as a special case (β = 1) of the novel
approach, while β can have any positive real value, each leading to a different
algorithm.
The proposed clustering model is evaluated using standard datasets taken

from the literature, in their original noise-free version, but with some added
outliers as well. The evaluation process helps us in formulating recommenda-
tions regarding the parameters of the algorithm.
The rest of this paper is structured as follows: Section 2 presents the basic

c-means clustering algorithms this work relies on. Section 3 exhibits the details
of the proposed clustering model. Section 4 relates on the numerical evaluation
of the proposed clustering model in comparison to other c-means clustering
algorithms. Section 5 discusses the role of the main parameters and formu-
lates recommendations regarding the use of the proposed method. Section 6
concludes the study.

2 Background works

All c-means clustering algorithms aim at grouping a set of object data X =
{x1, x2, . . . xn} into a fixed number of clusters. Clusters are denoted by Ωi

(i = 1, . . . , c), where c is the number of clusters. As precondition, it is sup-
posed that c < n. In real-life problems, usually the number of input data
vectors exceeds the number of clusters by orders of magnitude. Each cluster
Ωi (∀i = 1, . . . , c) is represented by the cluster prototype vi, which is a vector
of same type as the input data.
All c-means clustering models use a partition matrix. The partition matrix

generally describes to what extent data vectors belong to each of the classes. In
this study we only investigate clustering algorithms that use fuzzy partitions,
meaning that all elements of the partition matrix represent fuzzy membership
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functions. We use two different notations for the partition matrix: U = [uik] ∈
Mc×n and T = [tik] ∈ Mc×n. The difference between these two matrices is
that uik values satisfy the probabilistic constraint, meaning that all columns
of matrix U sum up to 1, while the columns of T contain typicality values, tik
(i = 1, . . . , c; k = 1, . . . , n) expressing how much vector xk is compatible with
cluster Ωi.

2.1 The fuzzy c-means algorithm

The fuzzy c-means clustering algorithm minimizes the following objective func-
tion:

JFCM =

c∑
i=1

n∑
k=1

um
ik||xk − vi||

2
A =

c∑
i=1

n∑
k=1

um
ikd

2
ik , (1)

being subject to the probabilistic constraint

c∑
i=1

uik = 1 ∀k = 1, . . . , n , (2)

where dik = ||xk − vi|| represents the distance between input vector xk and
cluster prototype vi, for any i = 1, . . . , c, and k = 1, . . . , n. Parameter m > 1

is the fuzzy exponent than controls the fuzziness of the algorithm. It is known,
that the limit case m → 1 reduces FCM to the k-means algorithm that uses
binary logic to describe the partition. On the other side, if m → +∞, cluster
prototypes merge together at the grand mean of the input data vectors. Raising
the value of m makes the algorithm more fuzzy.
The optimization formulas of FCM are obtained from the zero gradient

conditions of its objective function extended with special terms containing
Lagrange multipliers that enforce the probabilistic constraint. The optimiza-
tion formulas are obtained as:

uik =
d

−2
m−1

ik
c∑

j=1

d
−2

m−1

jk

∀i = 1, . . . , c

∀k = 1, . . . , n
, (3)

vi =

n∑
k=1

um
ikxk

n∑
k=1

um
ik

∀i = 1, . . . , c . (4)
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The algorithm needs to be initialized with cluster prototypes differing from
each other. The optimization is performed by alternately applying the formulas
given in Eqs. (3) and (4) until convergence is reached. Convergence is reached
when cluster prototypes stabilize. If we need to defuzzify the final partition, we
may assign each data vector to the cluster whose prototype is closest, or the
one with respect to which the fuzzy membership function has highest value.
These two criteria are equivalent:

xk → Ωi ⇔ i = argmin
j
{djk, j = 1, . . . , c} = argmax

j
{ujk, j = 1, . . . , c} (5)

Besides being a very popular algorithm in all sciences involving numerical
data, a major disadvantage of FCM is its sensitivity to outlier data. A single
distant outlier can attract cluster prototypes out of the range of the elements
that it represents, or in extreme case the outlier may “steal” one of the cluster
prototypes, causing poor partitioning of the real meaningful data.

2.2 The possibilistic c-means algorithm

The noise sensitivity of FCM was attributed to the probabilistic constraints of
the partition, and thus several solutions emerged that relaxed this too strong
limitation. The algorithm called FCM with extra noise class and also referred
to as fuzzy (c + 1)-means defined an extra cluster Ω0 which has no cluster
prototype and is situated at an equal constant distance d0 from all input
vectors xk (k = 1, . . . , n). The probabilistic constraint in this case looks like

c∑
i=0

uik = 1 ∀k = 1, . . . , n , (6)

but now any noisy data vector xk receives a high membership towards the
noise class and this way it will hardly influence the cluster prototypes. The
algorithm needs careful initialization, meaning that initial cluster prototypes
should not be set to the noisy data vector. A limitation of this algorithm
stands in the fact that similarly to FCM, it cannot handle clusters of different
widths (radii).
Theoretically all c-means clustering models that use fuzzy partitions with-

out constraining the fuzzy memberships with probabilistic condition could be
called possibilistic c-means. However, the so-called possibilistic c-means algo-
rithm is the one introduced by Krishnapuram and Keller [9]. PCM minimizes
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the following objective function:

JPCM =

c∑
i=1

n∑
k=1

t
p
ikd

2
ik + (1− tik)

pηi , (7)

subject to the possibilistic constraint

0 <

c∑
i=1

tik < c ∀k = 1, . . . , n , (8)

which means that all data vectors must belong to at least one cluster to a
nonzero extent, and none of the data vectors can be fully compatible with all
clusters. Further on, ηi represents the possibilistic penalty term of cluster i

(i = 1, . . . , c) which is meant to control the width of the cluster, and p > 1

represents the so-called possibilistic exponent.
Similarly to the FCM algorithm, the optimization formulas are extracted

from the zero gradient conditions of the objective function, but here there is
no need to use Lagrange multipliers. The optimization formulas are obtained
as:

tik =

1+ (d2
ik

ηi

) 1
p−1

−1

∀i = 1, . . . , c

∀k = 1, . . . , n
, (9)

and

vi =

n∑
k=1

t
p
ikxk

n∑
k=1

t
p
ik

∀i = 1, . . . , c , (10)

which are alternately applied until cluster prototypes stabilize. PCM can pro-
duce fine partitions even in the presence of outlier data, but unfortunately it
frequently merges several or all clusters together. If we need to defuzzify the
final partition, each input data vector is assigned to the cluster with which it
shows the highest compatibility:

xk → Ωi ⇔ i = argmax
j

{tjk, j = 1, . . . , c} (11)

2.3 Algorithms using mixed partitions

Since none of the two basic approaches of fuzzy logic based c-means clustering
proved perfect, several attempts were made to merge the two partition matrices
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into a mixed partition, and expected them to relax or attenuate each other’s
limitations. A linear combination of the classical FCM and PCM partitions
was proposed by Pal et al. [12], referred to as possibilistic fuzzy c-means algo-
rithm. The other approach called fuzzy possibilistic product partition c-means
algorithm was proposed by Szilágyi [16] and later generalized for clusters with
special shapes [17, 19]. However, this paper intends to generalize the method
called fuzzy-possibilistic c-means (FPCM) algorithm introduced by Pal et al.
[11], which uses an alternative definition for the possibilistic partition that is
involved into a linear combination with the FCM partition matrix.
FPCM minimizes the following objective function:

JFPCM =

c∑
i=1

n∑
k=1

(
um
ik + t

p
ik

)
d2
ik , (12)

constrained by
c∑

i=1

uik = 1 ∀k = 1, . . . , n , (13)

and
n∑

k=1

tik = 1 ∀i = 1, . . . , c , (14)

wherem > 1 and p > 1 represent the fuzzy and possibilistic exponents, respec-
tively. Both constraints presented in Eqs. (13) and (14) may seem probabilistic
at first sight. However, the elements of partition matrix U sum up to 1 in each
column, while in T they sum up to 1 in each row.
The optimization formulas of FPCM are obtained from the zero gradient

conditions of the objective functions, extended with terms that enforce the
constraints by the use of Lagrange multipliers. The alternately applied opti-
mization formulas are obtained as:

uik =
d

−2
m−1

ik
c∑

j=1

d
−2

m−1

jk

and tik =
d

−2
p−1

ik
n∑
l=1

d
−2
p−1

il

∀i = 1, . . . , c

∀k = 1, . . . , n
, (15)

and

vi =

n∑
k=1

(
um
ik + t

p
ik

)
xk

n∑
k=1

(
um
ik + t

p
ik

) ∀i = 1, . . . , c , (16)
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which are applied until cluster prototypes stabilize. The defuzzified partition
is defined by the maximum value of the combined partition matrix, according
to the formula:

xk → Ωi ⇔ i = argmax
j

{um
jk + t

p
jk, j = 1, . . . , c} . (17)

3 Methods

The problem formulation of the original FPCM does not offer equal chances
to the probabilistic and possibilistic components to have their effect upon the
final partition. This can be explained with the fact that the total sum of fuzzy
membership functions in matrix U is n, which is the number of data vectors
being fed to clustering, while in matrix T the total sum is c, the number
of clusters. In the very frequent case, when n >> c, the possibilistic term
hardly can influence the clustering process. This is why we need to introduce
a compensating parameter denoted by β, which appears as a multiplying factor
to the possibilistic term in the objective function.
The proposed clustering model, which in the following will be referred to

as generalized fuzzy-possibilistic c-means algorithm (GFPCM), optimizes the
following objective function:

JGFPCM =

c∑
i=1

n∑
k=1

(
um
ik + βt

p
ik

)
||xk − vi||

2 =

c∑
i=1

n∑
k=1

(
um
ik + βt

p
ik

)
d2
ik , (18)

subject to the same constraints as FPCM, presented in Eqs (13) and (14).
All notations are the same as in PFCM, with the exception of β, which is
a positive valued parameter. The proposed clustering model generalizes the
original FPCM because FPCM is a special case of the proposed algorithm,
namely the one that uses β = 1. For any other positive value of β we obtain a
different algorithm. Another special case is the one defined by β = 0, setting
that reduces GFPCM to FCM regardless to the value of p. At first sight it
would seem logical to set β = n/c so that the two components of the partition
get the same strength. However, in this study we investigate the behavior of
the algorithm in a wide range of β values, up to even the order of 106.
The optimization formulas of the GFPCM algorithm are obtained from the

zero gradient conditions of the following functional:

LGFPCM = JGFPCM +

n∑
k=1

λk

(
1−

c∑
i=1

uik

)
+

c∑
i=1

τi

(
1−

n∑
k=1

tik

)
, (19)
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where λk (k = 1, . . . , n) and τi (i = 1, . . . , c) represent Lagrange multipliers
needed to enforce the constraints during optimization. From the partial deriva-
tive with respect to uik (∀i = 1, . . . , c,∀k = 1, . . . , n) we obtain:

∂LGFPCM

∂uik
= 0 =⇒ mum−1

ik d2
ik − λk = 0, , (20)

which implies

uik =

(
λkd

−2
ik

m

) 1
m−1

=

(
λk
m

) 1
m−1

d
−2

m−1

ik . (21)

We know from Eq. (13), that for any k = 1, . . . , n

c∑
j=1

ujk = 1 =⇒ 1 =

(
λk
m

) 1
m−1

c∑
j=1

d
−2

m−1

jk . (22)

Dividing Eqs. (21) and (22) term by term, we obtain

uik =
uik

1
=

d
−2

m−1

ik
c∑

j=1

d
−2

m−1

jk

, (23)

which is exactly the partition update formula known from FCM. Similarly,
from the partial derivatives with respect to tik (∀i = 1, . . . , c,∀k = 1, . . . , n),
we obtain:

∂LGFPCM

∂tik
= 0 =⇒ βpt

p−1
ik d2

ik − τi = 0 , (24)

which implies

tik =

(
τid

−2
ik

βp

) 1
p−1

=

(
τi
βp

) 1
p−1

d
−2
p−1

ik . (25)

We know from Eq. (14), that for any i = 1, . . . , c

n∑
l=1

til = 1 =⇒ 1 =

(
τi
βp

) 1
p−1

n∑
l=1

d
−2
p−1

il . (26)

Dividing Eqs. (25) and (26), we obtain

tik =
tik
1

=
d

−2
p−1

ik
n∑
l=1

d
−2
p−1

il

, (27)
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which is exactly the possibilistic component update formula of FPCM.
The partition update formula is obtained from the partial derivatives with

respect to cluster prototype vectors vi (i = 1, . . . , c):

∂LGFPCM

∂vi
= 0 =⇒ n∑

k=1

(
um
ik + βt

p
ik

)
(−2)(xk − vi) = 0 , (28)

which implies

vi

n∑
k=1

(
um
ik + βt

p
ik

)
=

n∑
k=1

(
um
ik + βt

p
ik

)
xk , (29)

and consequently we obtain the cluster prototype updated as

vi =

n∑
k=1

(
um
ik + βt

p
ik

)
xk

n∑
k=1

(
um
ik + βt

p
ik

) ∀i = 1, . . . , c . (30)

Just like in case of any other c-means clustering algorithm, the cluster
prototypes are obtained as the weighted average of input data vectors xk
(k = 1, . . . , n), where the weights are obtained in the final partition matri-
ces. The defuzzification rule can be formulated as follows:

xk → Ωi ⇔ i = argmax
j

{um
jk + βt

p
jk, j = 1, . . . , c} . (31)

When initializing cluster prototypes, it is recommendable to choose random
vectors that are distant from any of the input data vectors xk (k = 1, . . . , n),
just as recently suggested in [14]. Let us suppose the contrary, and initialize
for example va = xb with some valid values of a and b. In this case in the
first iteration tab = 1 and tak = 0 for any k ̸= b. Especially if we use a high
value of parameter β, the algorithm will hardly be able to move the cluster
prototype va away from xb.
The GFPCM algorithm can be summarized as follows:

1. Set parameters m, p, and β.

2. Initialize cluster prototypes outside the range of input data vectors.

3. Update the probabilistic term of the partition using Eq. (23).

4. Update the possibilistic term of the partition using Eq. (27).
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5. Update the cluster prototypes using Eq. (30).

6. Repeat steps 3-5 until cluster prototypes stabilize.

7. Defuzzify the obtained partition if necessary using Eq. (31).

4 Evaluation

The proposed generalized FPCM method underwent a thorough evaluation
process, which aimed to establish the behavior of the algorithm in comparison
with its predecessors, mainly the FCM and the original FPCM. We did not
expect to find the best clustering model that uses mixed partition. This is
why we did not compare the performance of GFPCM with more sophisticated
clustering models like PFCM or FPPPCM. So the main goal was to establish
under what circumstances GFPCM provides fine partitions and to what extent
it can eliminate the sensitivity to outlier data. Details of the evaluation are
presented in the following.

4.1 Datasets

Three public datasets are involved in the evaluation process: the IRIS [8],
WINE [1], and BreastCancer (Wisconsin) data [21]. The goal was to evaluate
the proposed method in clustering problems with more and less dimensions as
well. Details of the datasets are given in Table 1. These datasets are involved
in clustering in their original format with values normalized in each dimension,
and separately with an added outlier. In all cases the added outlier vector is
represented as (δ, δ, . . . , δ)T in the normalized space, where δ > 1 is a param-
eter that controls the position of the outlier. By varying the value of δ we can
establish to what extent the clustering models can handle an outlier vector in
the input data.

4.2 Evaluation criteria

We have chosen the following indicators used in the literature to evaluate
the final partitions obtained by the algorithm: purity (abbreviated as PUR)
[7], adjusted Rand index (abbreviated as ARI) [13], and normalized mutual
information (abbreviated as NMI) [10].
In the context of cluster partition evaluation, purity can be defined as a

measure of how well-defined and homogeneous the clusters are. It is a measure
of the extent to which each cluster contains instances of only a single class.
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Property IRIS data WINE data BreastCancer data

Items (vectors) 150 178 569

Dimensions 4 13 30

Clusters 3 3 2

Cluster sizes 50, 50, 50 59, 71, 48 357, 212

Source [2, 8] [1] [21]

Table 1: Datasets involved in the evaluation process, and their main properties.

The purity of a cluster partition is always in the unit range [0, 1]. A purity of 1
indicates that all clusters are well-defined and homogeneous, whereas a purity
of 0 indicates that the clusters are completely mixed. Given some clusters M
and some set of classes Y, purity is calculated using the following formula:

PUR =
1

n

∑
m∈M

max
y∈Y

|m ∩ y| . (32)

In simpler terms, for each cluster, the majority class of the cluster must be
found and the number of data points belonging to that majority class must be
summed. Finally, the total sum must be divided by the total number of data
points (n).
However, this criterion has certain limitations. It does not perform well if

the dataset is not balanced, i.e. the number of points belonging to the classes
are different. In this case, the purity criterion favors the larger clusters, and
as such, some data points from the smaller classes will also be assigned to the
larger clusters. Because of this, in unbalanced datasets, a higher purity does
not necessarily indicate that the clustering was successful. Therefore, purity
may not reflect the true structure of the data in all cases. To alleviate the side
effects of solely calculating purity on the cluster partitions of a potentially
imbalanced dataset, other criteria must be used, such as the adjusted Rand
index (ARI).
The adjusted Rand index is another widely used clustering evaluation crite-

rion. It assesses the similarity of clustering outcomes. ARI is a suitable evalu-
ation criterion for datasets with imbalanced cluster sizes. It takes unexpected
cluster assignments into consideration, producing a result that is robust when
faced with clusters with significantly different sizes.
The ARI value of a cluster partition is always in the range [−1, 1]. However,

ARI values are mostly expected to be in the [0, 1] range. An ARI value of 1
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indicates a perfect match between the two measured cluster partitions. Oth-
erwise, an ARI value of 0 indicates the baseline with respect to randomness.
Negative ARI values represent a result that is worse than random clustering.
As such, ARI by itself can also be used to compare two distinctly parameter-
ized clustering results, making sure that any improvements in the clustering
similarity are due to the better selection of parameters, rather than random
fluctuations.
ARI can be computed with the help of a contingency table that encodes

the pairwise relationship between two partitions. Let M and Y denote the
two partitions such as M = {M1,M2, . . . ,Mr} and Y = {Y1, Y2, . . . , Ys}. The
contingency table, more precisely, the r × s table counts the pairs that are
assigned to the same or different clusters in M and Y, i.e. each cell (nij)
represents the number of data points that belong to both clustering partitions
(for the intersection of Mi and Yj would yield nij = |Mi ∩ Yj|). Naturally,
the elements on the diagonal represent the number of data points that are
assigned to the same cluster in both partitions. The other elements represent
the remaining ones that are assigned to different clusters. Then the table is
extended by one row and column that sum all the values in their respective
row or column. Precomputing these sums enables easier computation.
Taking everything into consideration, the contingency table has the follow-

ing structure:

Y1 Y2 · · · Ys
∑

M1 n11 n12 · · · n1s a1

M2 n21 n22 · · · n2s a2
...

...
...

. . .
...

...
Mr nr1 nr2 · · · nrs ar∑

b1 b2 · · · bs

Then ARI is calculated as follows:

ARI =

∑
ij

(nij

2

)
−

∑
i (

ai
2 )

∑
j (

bj
2
)

(n2)

1
2

[∑
i

(
ai

2

)
+
∑

j

(bj
2

)]
−

∑
i (

ai
2 )

∑
j (

bj
2
)

(n2)

, (33)

where nij, ai, bj are values taken from the contingency table.
Normalized mutual information is an evaluation criterion deeply rooted in

information theory. It assumes that the more information is mutual between
the two clustering outcomes the more valid the overall result is. It is commonly
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used because of its capability to assess partitions even in scenarios where the
number of clusters varies. The values range from 0 to 1, where a higher NMI
value indicates better agreement between the clustering assignments and the
true class labels. A value of 0 indicates no mutual information, whereas a value
of 1 indicates a perfect correlation. Altering the order or values of the class or
cluster labels through permutation does not impact the NMI value. Let M and
Y denote the clustering assignments, then NMI can be calculated as follows:

NMI(Y,M) =
2 · I(Y;M)

H(Y) +H(M)
, (34)

where I(Y;M) is the mutual information between Y andM, H(Y) is the entropy
of Y and similarly, H(M) is the entropy of M.
There is another common formulation of the normalized mutual information

which is more computational heavy than the aforementioned one:

NMI(Y,M) =
I(Y;M)√

H(Y) ·H(M)
. (35)

Both formulations compute the same results and are valid representations
of NMI. Furthermore, NMI is symmetric in the sense that Y and M is inter-
changeable, i.e. yielding the same result when switched.
These measures can assess the similarity between two clustering partitions,

according an overall overview of the efficiency of clustering methods.

4.3 Tests using the IRIS dataset

Clustering algorithms are reported to work fine enough on IRIS data if the
number of correct decisions reaches 133 out of 150, which corresponds to
PUR=0.8867. When using the IRIS dataset without the addition of noise,
we are interested in establishing those cases where GFPCM produces this
outcome or better than that. It is also known about IRIS data, that the FCM
algorithm produces clusters of better and better purity if the fuzzy exponent
m rises, culminating at PUR=0.9333 (140 correct decisions out of 150), even
though this pure partition is of low validity according to any cluster validity
index (CVI) from the literature [23, 18].
Figure 1 exhibits the benchmarks of the GFPCM algorithm achieved on the

IRIS dataset in case of no added outliers. The evolution of the benchmarks are
all plotted against the fuzzy exponent m, and the behavior of the algorithm is
investigated within a wide range of m. FPCM produces a high-purity partition
on IRIS, which is influenced even by a very weak possibilistic term (β = 1). The



418 M.B. Naghi et al.

2 3 4 5 6 7 8
m

0.86

0.88

0.9

0.92

0.94
P

U
R

IRIS data, no added noise, p=2
=1
=10
=100
=300
=1000
=3000

2 3 4 5 6 7 8
m

0.87

0.89

0.91

0.93

0.95

P
U

R

IRIS data, no added noise, =1000
p=1.8
p=2.0
p=2.2
p=2.5
p=3.0

2 3 4 5 6 7 8
m

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

N
M

I

IRIS data, no added noise, p=2

=1
=10
=100
=300
=1000
=3000

2 3 4 5 6 7 8
m

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86
N

M
I

IRIS data, no added noise, =1000
p=1.8
p=2.0
p=2.2
p=2.5
p=3.0

2 3 4 5 6 7 8
m

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

A
R

I

IRIS data, no added noise, p=2
=1
=10
=100
=300
=1000
=3000

2 3 4 5 6 7 8
m

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

A
R

I

IRIS data, no added noise, =1000
p=1.8
p=2.0
p=2.2
p=2.5
p=3.0

Figure 1: GFPCM benchmarks obtained on the IRIS dataset in case of no
added noise. Graph representations in the left column show PUR, NMI and
ARI values, respectively, all plotted against fuzzy exponent m, obtained with
various values of trade-off parameter β, while possibilistic exponent was fixed
at p = 2. Graphs in the right column represent PUR, NMI and ARI values
plotted against m, obtained at fixed trade-off β = 1000, and selected values
of exponent p.
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Figure 2: GFPCM benchmarks obtained on the IRIS dataset in case of an
outlier added at (δ, δ, δ, δ)T . A comparison of the cases with trade-of parameter
β = 100 and β = 1000 is presented, where the former works quite the same as
FCM (β = 0) and FPCM (β = 1).
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higher the value of β, the more restricted becomes the domain of acceptable
partitions. However, let us clarify that this phenomenon is not a problem,
because the recommended range of the exponent m hardly exceeds the value
of 3 [20]. What we can see from the results is that it is not recommendable to
use a very strong possibilistic component. This criterion restricts us to set the
possibilistic parameters p ≥ 2, and β < 1000. On the other hand, it is also
visible that a high value of p (e.g. p = 3 is already high) weakens the effect of
the possibilistic term within GFPCM.
Another thing that deserves to be remarked here: so far we did not see any

reported case where any c-means algorithm provided 142 correct decision on
the IRIS dataset. Figure 1 shows us such an example: the GFPCM algorithm
used at m = 5, p = 3, and trade-off set to β = 1000 produced this outstanding
PUR benchmark. This experience convinced us that a weak possibilistic term
added to the objective function of the FCM algorithm can cause significant
alterations in its behavior, even if it is not visible in every scenario.
Figure 2 presents the benchmarks of GFPCM, obtained on the IRIS dataset,

with an added outlier whose position depends on parameter δ. The goal is to
establish how far the outlier needs to stand to ruin the final partition. Con-
versely, we may ask what settings are needed for the GFPCM to assure a fine
partition even in case of very distant outlier? Figure 2 relates on the examples
of β = 100 (left column) and β = 1000 (right column). We experienced no
intensive change in the behavior of GFPCM while varying the trade-off pa-
rameter between 0 and 100. However, as the possibilistic terms is becoming
stronger while raising β further, the algorithm demonstrates an enhanced ca-
pability to accommodate outliers that are increasingly distant. The limit value
of δ still tolerated by GFPCM in various circumstances is studied in Section
4.6.

4.4 Tests using the WINE dataset

WINE dataset contains vectors in a normalized 13-dimensional space, which
are organized in unequal groups. The FCM algorithm can produce its parti-
tioning with PUR ≈ 0.95 at reasonably low values of the exponent (m ≤ 2),
but this benchmark strongly drops if we increase the exponent. Figure 3 ex-
hibits the behavior of the GFPCM algorithm when applied to the WINE
dataset under various circumstances.
The original FPCM algorithm (β = 1) seems to perform the same as FCM

(β = 0). However, if we increase further the value of β, GFPCM tends to
extend the domain where it can provide acceptable partitions to higher value
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Figure 3: GFPCM benchmarks obtained on the WINE dataset in case of no
added noise. Different curves relate on cases with various trade-off values of
β at fixed p = 2, or at various values of p at fixed β = 500. Curves indicate
up to which value of the fuzzy exponent m we have a stable solution in each
scenario.
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Figure 4: GFPCM benchmarks obtained on the WINE dataset, in case of an
outlier added at (δ, δ, . . . , δ)T . The behavior of the GFPCM algorithm can be
observed for scenarios of various trade-off values β at fixed p = 2 (upper row),
and at various possibilistic exponent values p at fixed trade-off β = 1000. In
all these tests, fuzzy exponent was set to m = 2.

of fuzzy exponentm. However, this effect saturates around β = 100. Above this
value we can see that GFPCM provides finer partition than FCM or FPCM
up to a certain limit of m, beyond which there is an abrupt drop in partition
quality. The limit value of m seems to be in inverse proportion with trade-off
value β. On the other hand, if we fix the trade-off parameter at a reasonably
high value (e.g., in our case, β = 500), we can study the effect of various
possibilistic exponents p upon the behavior of the algorithm. The possibilistic
effect becomes stronger as p approaches 1. Experiments showed that reducing
p far below 2 damages the clustering outcome. The best partitions in this case
were obtained at m ∈ [2.0, 2.5] and p = 1.8.
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Figure 5: Purity benchmarks obtained on the BreastCancer dataset, with no
added outliers. PUR is plotted against fuzzy exponent m, at fixed p = 2

and various trade-off values β (upper panel), and at fixed trade-off parameter
β = 10000 and various possibilistic exponents p.

Figure 4 exhibits the behavior of the proposed clustering model in various
scenarios, when applied to the WINE dataset with an added outlier whose
position is controlled by the parameter δ. What we can observe is that there
are settings which can extend the limit value of δ up to which we obtain a fine
partitioning (e.g., p = 1.9 and β = 1000), while there are other settings which
improve the purity of the obtained partition compared to FCM or FPCM if
the outlier is very distant (e.g., PUR > 0.97 at m = p = 2 and β = 3000).
Many of the phenomena are similar to the ones observed in IRIS data tests,
but the best choice of β strongly depends on the data.
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4.5 Tests using the BreastCancer dataset

The BreastCancer dataset presents vector data in a multi-dimensional setting.
Each dimension was normalized before feeding the data to the clustering al-
gorithms. Having only two clusters, we found it unnecessary to report NMI
and ARI benchmarks, PUR contains all relevant information on the obtained
partitions.

0 10 20 30 40 50 60 70 80 90 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

P
U

R

BreastCancer data, added outlier, m=2, p=2

[0,100]
=1000
=3000
=10000
=30000
=50000
=100000

0 5 10 15 20 25 30 35 40 45 50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

P
U

R

BreastCancer data, added outlier, m=2, =10000

p=1.9
p=2.0
p=2.1
p=2.2
p=2.5
p=3.0

Figure 6: Purity benchmarks obtained on the BreastCancer dataset, with out-
lier added at (δ, δ, . . . , δ)T according to parameter δ > 1. Graphs indicate how
the position of the outlier influences the final partition produced by GFPCM,
for various scenarios regarding parameters p and β. In all cases, fuzzy expo-
nent was fixed at m = 2.

Figure 5 exhibits the clustering outcome of GFPCM at various settings,
when applied to the BreastCancer dataset with no added outlier. The result of
FCM obtained at β = 0 presents acceptable quality at any reasonable value of
fuzzy exponent m, while the slightly modified version FPCM (β = 1) already
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sets up a limit value for m above which we do not obtain fine partitioning.
High PUR values are achieved at fuzzy exponents m < 4, especially when
using trade-off parameter value β ∈ [1000, 10000]. If we investigate the effect
of different possibilistic exponents upon the clustering outcome, the most con-
vincing benchmarks are obtained at not much lower and not much higher than
p = 2. Again, we need to mention that the reasonable and most frequented
range of m is using values below 3.
Figure 6 presents how the parameter settings affect the clustering result

in case of an added outlier, for various scenarios and outlier positions. When
both exponents are fixed at m = p = 2, raising the trade-off parameter value
extends the tolerance range of the outlier up to a certain extent. At β < 100

hardly any difference is visible between the behavior of GFPCM and FCM.
Through changing the trade-off value up to β = 50000, GFPCM tends to
tolerate the presence of an outlier at increasingly distant positions. However,
at β = 100000 or higher, the algorithm no more produces fine partitions. If we
fix m = 2 and β = 10000, and vary the possibilistic exponent value, we obtain
similar phenomena to other datasets. GFPCM works best in the proximity of
p = 2 or slightly below that, where it can provide partitions of better purity
than FCM or FPCM. Larger values of p bring the performance of the algorithm
close to FCM, which does not come as a surprise as with these settings we are
weakening the possibilistic term in the objective function.

4.6 The limits of outlier tolerance

In case of all three datasets, we attempted to identify the maximum distance
of the outlier defined by parameter δ, which is tolerated by the GFPCM al-
gorithm without damaging the partition quality. Let us denote the limit value
of δ by δmax, and investigate how this value depends on the chosen dataset
and the settings of the other three parameters m, p, and β. Further on, we
denote by δFCM the maximum value tolerated by the FCM algorithm under
the same circumstances (same m, but β = 0 and p irrelevant) where δmax was
established. The final partition was called acceptable if the PUR benchmark
exceeded 0.88, 0.93, and 0.9 for the IRIS, WINE and BreastCancer datasets,
respectively. These thresholds were established empirically.
A detailed summary of the obtained δmax values is exhibited in Figure 7

and Table 2. Figure 7 shows us how the tolerated limit distance varies with
trade-off parameter β when using various datasets and various settings for
the fuzzy exponent, while the possibilistic exponent is fixed at p = 2. This
is the main result of this study, as FPCM and GFPCM was meant to be an
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extension of FCM to improve the way it handles outliers. A general thing that
we can see in all these graphs is that the behavior of the GFPCM algorithm
hardly changes below β < 100. Consequently, and not at all surprisingly, FCM
(β = 0) and FPCM (β = 1) hardly manifest any visible difference.
However, if we raise the value of the trade-off parameter to a reasonable

level, we may obtain a considerable extension of the tolerated noise range.
When using the algorithm at low value of the fuzzy exponent, (e.g., m = 1.5),
the ratio δmax/δFCM can be as high as 10. For higher values of the fuzzy
exponent, the extension is approximately twofold. As an exception, in case of
WINE dataset we do not achieve any improvement at m > 2.
Further on, we also need to remark that the best performance by GFPCM

on various datasets is achieved at different values of the trade-off parameter β.
This did not come as a surprise either, since β needs to compensate the dise-
quilibrium caused by the difference between

∑
i

∑
k u

m
ik and

∑
i

∑
k t

p
ik within

the objective function given in Eq. (18).
Table 2 presents a matrix of δmax and their corresponding δFCM values,

obtained at various settings of the two exponents m and p, and indicating
the optimal βopt trade-off value with which they were achieved. In this ta-
ble, cases labeled as “not improving” mean that GFPCM does not bring any
favorable change compared to FCM or FPCM, while “unstable” means that
under those circumstances none of the FCM, FPCM or GFPCM can produce
fine clustering outcome. This table suggests that using a possibilistic exponent
in the proximity of p = 2 can significantly extend the tolerated distance of
the outlier, with the condition that the necessary trade-off value is properly
approximated.

5 Discussion

The main goal of this study was to eliminate some limitations of the FPCM
algorithm, the behavior of which in its initial formulation strongly depended
on the difference between the number input data vectors n and the number
of clusters c. Whenever n >> c, the presence of the possibilistic part in the
mixed partition is hardly observable. In our consideration, FPCM deserved an
improvement because of the way it defined the possibilistic part of the mix-
ture. It did not follow the conventional way indicated by the PCM algorithm
[9] using the possibilistic penalty terms ηi (i = 1, . . . , c). Instead of that, the
typicality values represented by fuzzy membership functions tik (i = 1, . . . , c;
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Figure 7: The evolution of the limit distance δmax of the outlier plotted against
the trade-off parameter β represented on a logarithmic scale, in case of various
datasets and parameter settings.
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Params IRIS data WINE data BreastCancer data

m p δFCM δmax βopt δFCM δmax βopt δFCM δmax βopt

1.2 1.8 1.91 16.14 1995 1.02 14.42 1995 8.32 24.10 15849
1.5 1.8 4.41 18.66 1000 2.82 12.85 1585 10.05 38.46 19953
2 1.8 6.50 22.91 501 6.04 9.02 501 14.35 37.76 10000
2.5 1.8 7.94 22.39 200 1.00 4.08 63 17.70 35.73 5012
3 1.8 9.10 16.14 100 unstable 20.51 38.37 3162
4 1.8 10.35 12.16 16 unstable 25.18 45.39 1585

1.2 2 1.91 17.02 6310 1.02 16.14 7943 8.32 35.56 79433
1.5 2 4.41 19.45 3162 2.82 12.68 3981 10.05 48.64 79433
2 2 6.50 15.21 1259 6.04 6.47 1585 14.35 38.02 31623
2.5 2 7.94 13.18 398 1.00 3.85 316 17.70 36.64 15849
3 2 9.10 21.98 251 unstable 20.51 43.55 12589
4 2 10.35 11.12 32 unstable 25.18 50.93 6310

1.2 2.2 1.91 14.03 10000 1.02 12.59 19953 8.32 18.84 100000
1.5 2.2 4.41 20.51 10000 2.82 10.16 12589 10.05 24.27 100000
2 2.2 6.50 17.26 1995 6.04 6.34 3981 14.35 37.07 100000
2.5 2.2 7.94 22.8 1585 1.00 3.48 1585 17.70 40.83 63096
3 2.2 9.10 22.28 794 unstable 20.51 42.46 39811
4 2.2 10.35 19.41 158 unstable 25.18 49.43 19953

1.2 2.5 1.91 7.13 10000 1.02 8.87 100000 8.32 10.00 100000
1.5 2.5 4.41 13.12 10000 2.82 8.83 79433 10.05 12.39 100000
2 2.5 6.50 16.14 10000 6.04 6.30 15849 14.35 18.03 100000
2.5 2.5 7.94 23.17 7943 unstable 17.70 23.17 100000
3 2.5 9.10 22.49 3981 unstable 20.51 28.97 100000
4 2.5 10.35 12.50 631 unstable 25.18 43.25 100000

1.2 3 1.91 2.40 10000 1.02 3.85 100000 8.32 not improving
1.5 3 4.41 4.76 10000 2.82 6.98 100000 10.05 not improving
2 3 6.50 7.06 10000 6.04 6.28 100000 14.35 not improving
2.5 3 7.94 8.75 10000 unstable 17.70 not improving
3 3 9.10 9.82 10000 unstable 20.51 not improving
4 3 10.35 15.92 10000 unstable 25.18 not improving

Table 2: The limit position of the outlier (δmax) in case of various values of
exponents m and p, and the value of trade-off parameter βopt with which it
is achieved.
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k = 1, . . . , n) were constrained probabilistically such a way, that they sum up
to 1 with respect to each cluster.
The proposed modification in the objective function of FPCM, namely the

introduction of trade-off parameter β enabled us to raise the strength of the
possibilistic part of the mixed partition. The proposed clustering model (GF-
PCM) can be considered a generalization of FPCM, since FPCM is equivalent
with the special case defined by β = 1, and FCM is obtained if β = 0 – the
value of p is irrelevant in this case. Any other positive values of the trade-off
parameter β lead to different partition mixtures, and consequently to different
clustering algorithms.
The proposed clustering model uses three parameters, one more than FPCM.

These are the fuzzy exponent m, the possibilistic exponent p, and the trade-
off parameter β. To set the appropriate value of m, we may use the same
criteria as we would use for FCM. For the general case, without knowing the
properties of the input data, it is recommendable to keep m in the proximity
of 1. There are several papers discussing the choice of this parameter, e.g.,
[4, 20, 22]. The experimental part of this study provided us enough evidence
that the possibilistic exponent p should be chosen in the interval p ∈ [1.8, 2.0].
Lower values than that did not lead to convincing results in any of the cir-
cumstances. Higher values make the possibilistic part too weak, making the
compensatory effect of GFPCM negligible.
For the trade-off parameter β, the ideal value seems to be proportional with

(n/c)2, but this remark needs further investigation. From the shape of the
curves exhibited in Figure 7 we can easily realize that a careful prediction is
needed for the choice of β, to place it below βopt, but not very much below it.
To provide a reliable approximation formula, a deeper investigation is needed,
using several more datasets and experiments with multiple outliers as well.
This is going to be the topic of a future study.
One of the relevant limitations of this study is the fact that we only tested

the effect of a single outlier vector. Handling multiple outliers would have
meant a lot more test cases, whose evaluation details hardly fit within the
frame of such a study.

6 Conclusion

In this paper we proposed a generalization of the so-called fuzzy-possibilistic
c-means algorithm, which in its original formulation had a strong limitation
in the strength of the possibilistic part of the mixed partition. With the in-
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troduction of a trade-off parameter we were able to amplify the phenomenon
caused by the possibilistic extension of the fuzzy c-means objective function.
The proposed clustering method was evaluated using three public datasets
that contain real-life data. The proposed clustering model is capable to better
handle datasets containing outlier data than its predecessors, namely the fuzzy
c-means and the fuzzy-possibilistic c-means clustering algorithms.
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