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1 Introduction

Ostrowski (1967, [18]) was among the first authors to use a recurrent in-
equality for proving the T-stability of the Picard iteration of a contraction
mapping in the framework of a general metric space. More precisely, Os-
trowski’s Lemma states that if the numerical sequence {an} satisfies the
recurrent inequality an+1 ≤ γan + δn where 0 < γ < 1 and δn ≤ p, then
liman ≤ p/(1 −m). As a corollary, he also obtains the convergence to zero
of {an} provided that δn → 0 as n→∞.
There exists a significant interest in developing such type of lemmas due to
their applications in studying the strong convergence of various iteration pro-
cesses for approximating fixed points (Picard, Mann, Halpern and Ishikawa
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iterations and numerous variations). In [5] collected most of these well known
lemmas, while in [6, 7], detailed proofs of them are presented. Essentially,
the technique of proof for such results is based on Cauchy’s lemma, see for
example [6], [7] and references therein. Often, the recurrent numerical in-
equalities are important by themselves, see for example in [2], where several
generalizations of an Alber lemma [1] are given.

Below are presented three such lemmas. The choice to consider them here was
rather casually but they are often used in studying the convergence properties
of fixed point iterative schemes, while a third one refers to a recurrence
inequality considered here.

Alber lemma (1979) [1].

Let {λk} and {γk} be sequences of nonnegative numbers and {αk} be a se-
quence of positive numbers satisfying the conditions

∑∞
1 αn =∞,

limn→∞ γn/αn → 0.

Let the recursive inequality

λn+1 ≤ λn − αnψ(λn) + γn, n = 1, 2, ...,

hold, where ψ(λ) is a contiuous and nondecreasing function from R+ to R+

such that it is positive on R+\{0}, ψ(0) = 0, limt→∞ ψ(t) > 0. Then λn → 0
as n→∞.

Tan-Xu lemma (1993) [22].

Suppose {an} and {bn} are two sequences of nonnegative numbers such that
an+1 ≤ an + bn for all n ≥ 1. If

∑
n bn converges, then limn an exists.

A Lemma from [6] (2009).

Let {an}, {bn} be sequences of nonnegative numbers and 0 ≤ q < 1, so that

an+1 ≤ qan + bn, for all n ≥ 0. (1.1)

(1) If limn→∞ bn = 0, then limn→∞ an = 0;

(2) If
∑∞

n=0 bn <∞, then
∑∞

n=0 an <∞.

Note that (1.1) is the recurrent inequality considered by Ostrowski and that
this Lemma completes the result of [18].

In this paper upper bounds of the sequence verifying the recurrence inequality
(1.1) are done. Based on these bounds the convergence to zero of the gen-
erated sequence is proved. Some applications to Picard and Mann iterations
are given for demicontractive mappings.
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2 The upper bound in recurrence inequalities

Lemma 2.1. Let {dn} be a nonnegative sequence satisfying

dn+1 ≤ adn +Kεn, n = 0, 1, ..., (2.1)

where 0 < a < 1, K > 0 and {εn} is a nonnegative sequence that satisfies
the condition

εn+1

εn
≥ µ > a, n = 0, 1, ... . (2.2)

Then

dn+1 ≤
(
ad0
ε0

(
a

µ

)n
+

µK

µ− a

)
εn ≈

µK

µ− a
εn, n = 0, 1, ... (2.3)

Proof. Using the inequality (2.1), we obtain

dn+1 ≤ d0a
n+1 +K

n∑
i=0

εia
n−i.

Then it is simple to prove by induction on n that

n∑
i=0

εia
n−i ≤ µ

µ− a
εn. (2.4)

Taking into account that µnε0 ≤ εn, we have

dn+1 ≤ d0a
n+1 +

µK

µ− a
εn ≤

ad0
ε0

(
a

µ

)n
εn +

µK

µ− a
εn

≤
(
ad0
ε0

(
a

µ

)n
+

µK

µ− a

)
εn ≈

µK

µ− a
εn. �

Remark 2.1. If εn → 0, then condition (2.2) ensures a slow speed of con-
vergence; however, it is, in some extent, reasonable because such a case often
appears in the study of fixed point iterative schemes.

Lemma 2.2. Let {dn} be a numerical sequence satisfying the inequality (2.1)
where 0 < a < 1, K > 0. Suppose the sequence {εn} satisfies the conditions
0 ≤ εn ≤ 1, ∀n and

εn+1

εn
≥ e−

1
2 ≈ 0.607.

Then

dn+1 ≤ d0a
n+1 +

2Kε1−an

1− a
.
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Proof. As in the proof of Lemma 2.1 we have

dn+1 ≤ d0a
n+1 +K

n∑
i=0

εia
n−i.

We will prove by induction that

n∑
i=0

εia
n−i ≤ 2ε1−an

1− a
. (2.5)

The assertion is true for n = 0 because (2.5) becomes ε0 <
(

2
1−a

) 1
a and the

function in the right hand side has the minimum value 14.561... Suppose
(2.5) is true for n ≥ 0. Using the value n + 1 in (2.5) and the inductive
hypothesis, we have

n+1∑
i=0

εia
n+1−i = a

n∑
i=0

εia
n−i + εn+1 ≤

2aε1−an

1− a
+ εn+1.

So we have to prove that

2aε1−an + (1− a)εn+1 ≤ 2ε1−an+1,

which can be proved in two stages:

(I) 2aε1−an ≤ (1 + a)ε1−an+1, (II) (1− a)εn+1 ≤ (1− a)ε1−an+1.

The first inequality is equivalent to

εn+1

εn
≥
(

2a

1 + a

) 1
1−a

.

Let now f : (0, 1)→ R be the function defined by f(a) = ( 2a
1+a

)
1

1−a . The first
derivative of f is positive, so the maximum value of this function is reached
for a = 1, but lima→1 f(a) = e−1/2. Therefore the first inequality (I) is true
for n ≥ 0.
The second inequality (II) is also true because it is equivalent to εn+1 ≤ 1.
�

The key of the proofs of these lemmas are the inequalities (2.4) and (2.5)
which give upper bounds for the sums appearing in their left hand side.
Following the same procedures, we can obtain several (different) formulas for
upper bound. For example, two improved estimators are

n∑
i=0

εia
n−i ≤ 2aεn−1 + εn, (2.4′)
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and
n∑
i=0

εia
n−i ≤ 2aε1−an

1− a
. (2.5′)

The accuracy of the bounds given by (2.4’) is indeed remarkable, as it can
be seen in Figure 1.
In this figure are drawn the functions f(n) :=

∑n
i=0 εia

n−1 and their upper
bounds given by (2.4’) for two cases of sequences {εn} given by the functions
e(x) = 0.8x2/(1 +x3) and e(x) = sin2x/(1 +x), respectively. The graph of f
is drawn with bars, while the upper bounds are drawn with continuous lines.

Figure 1: The accuracy given by the formula (2.4’)

Remark 2.2. It must be pointed out that the upper bounds given by Lemma
2.2 have lower accuracy than those given by Lemma 2.1. But the fact that the
inferior bound of εn+1/εn does not depend of a can be a possible advantage
of Lemma 2.2.

3 Applications to Picard and Mann iterations for demi-
contreactive mappings

Recall that the concept of demicontractive mappings were defined in [13,16,
17], as follows.

Definition 3.1. Let C be a closed convex subset of a real Hilbert space H

and let T be a mapping from C into itself. Suppose that the set of fixed points
Fix(T ) of T is nonempty. The mapping T is said to be demicontractive if

‖Tx− p‖2 ≤ ‖x− p‖2 + L‖x− Tx‖2, ∀x ∈ C, p ∈ Fix(T ), (3.1)
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where L > 0.

The demicontractivity and some smoothness conditions (for instance, the
demi-closedness at zero) ensure the weak convergence of the Mann iteration,
xn+1 = (1 − tn)xn + tnTxn, where {tn} is the control sequence [13, 17]. In
[12] an example is given of a contraction (a contraction is more restrictive
than a demicontractive mapping) defined on a bounded closed convex subset
of a Hilbert space for which the Krasnoselski iteration (a particular case of
the Mann iteration) does not converge. To get strong convergence, some
additional conditions are needed.

The problem of additional conditions for strong convergence was discussed
in several papers, including the old papers in which the concept of demi-
contractivity was introduced [13, 17]. For example in [13] it is required, in
addition, that I − T maps closed bounded subsets of C into closed subsets
of C (in particular, this is satisfied if T is demicompact). In [17] the ex-
istence of a nonzero solution h ∈ H, h 6= 0, of the variational inequality
〈x − Tx, h〉 ≤ 0, ∀x ∈ C is required. It is obvious that the existence of a
nonzero solution of this variational inequality occurs only in very particular
cases; an example for linear equations is given in [17].

This subject is still being studied. In a relatively recent paper [8] it is re-
quired (as the main additional condition) that the mapping T to be demi-
compact (Corollary 3.3). Note that this result was proved in [9] for a strictly
pseudocontractive mapping (such mappings are more restrictive than demi-
contractive ones). The same type of additional conditions (T is demicompact
or C is a compact subset of H) appear in [14].

The problem of strong convergence is closely connected with the problem of
error estimation (the estimation of ‖xn − p‖, where {xn} is a sequence ap-
proximating a fixed point p) and there exist several results for Mann iteration
(or variants) and of some contractive type mappings. For example, in [11]
is given the following error estimation of Mann iteration and for a montone,
nonexpansive mapping:

‖xn+1 − p‖ ≤
1√
n+ 1

‖x1 − p‖.

For a Lipschitzian strictly pseudocontractive mapping is given the estimation
[15]:

‖xn+1 − p‖ ≤ ρn‖x1 − p‖,

where ρ = 1−k2/[4(3+3L+l2)], and L, k are the constants from Lipschitzian
and strictly pseudocontractivity definitions.
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In the case of a Zamfirescu mapping [3, 5] the error estimate is given by the
formula:

‖xn+1 − p‖ ≤
n∏
k=1

[1− αk(1− δ)]‖x1 − p‖ (Z),

where {αn} is control sequence and δ is the constant appearing in Zamfirescu
type contraction.
More recent results on error estimation for Mann iteration have been reported
in [4, 10,20].
The problem of error estimation was less approached for demicontractive
mappings (there are no such results, to our best knowledge). The contribu-
tion of this paper is to give such estimates of the Mann iteration for the case
of strong demicontractive mappings. Inequality (3.5), Theorem 3, provides
an a posteriori error estimate. Based on this estimate, a new additional
condition is obtained for strong convergence.
In what follow the demicontractivity will be strengthened in some extent: in
place of (3.1) we consider the following condition

‖Tx− p‖2 ≤ α‖x− p‖2 + L‖x− Tx‖2, ∀(x, p) ∈ X × Fix(T ), (3.2)

where α ∈ (0, 1) and L ≥ 0. We will say that T is strongly demicontractive.
If T is strongly demicontractive then the fixed point is unique. Indeed, if q
is another fixed point of T , then

‖q − p‖2 = ‖Tq − p|2 ≤ α‖q − p‖2 + L‖Tq − q‖2 = α‖q − p‖2,

which implies α ≥ 1, contrary to the hypothesis.

Remark 3.1. The class of strictly demicontractive mappings coincides with
the class of mappings having the (L,m)-property [19]. Taking into account
that a mapping having (L,m)-property and a unique fixed point is actually a
Kannan contraction [21], it results the coincidence between the strictly demi-
contractive mappings with fixed points and Kannan contractions.

Note that (3.2) is equivalent to

〈x− Tx, x− p〉 ≥ 1− α
2
‖x− p‖2 +

1− L
2
‖Tx− x‖2, ∀(x, p) ∈ C × Fix(T ).

(3.3)
But even this stronger demicontractivity condition does not ensure the con-
vergence of Picard iteration. For example, the function f : [−1, 1]→ [−1, 1]
given by f(x) = 0.5(x3− 3x) is strongly demicontractive for any pair (α, L)
such that 0 < α < 1, L > 0 and 0.16α + L > 0.36 (this relation was ob-
tained by numerical search), but the Picard iteration does not converge. The
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Mann iteration also fails to converge if 0.8 < tn < 1 (for the above exam-
ple). In both cases, the convergence of the process requires some additional
specific conditions. It must be noted that in the case of Mann iteration such
conditions may be imposed on the control sequence {tn}.

3.1 Picard iteration

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H and
let T be a mapping from C into itself. Assume that T satisfies the following
conditios:
(1) T is strictly demicontractive on C;

(2) ‖TTx− Tx‖ ≥ e−
1
4‖Tx− x‖ ≈ 0.7788‖Tx− x‖, ∀x ∈ C;

(3) T is asymptotically regular at x0, i.e. ‖T n+1x0 − T nx0‖ → 0, n→∞.
Then the Picard iteration starting at x0 converges to p.

Proof. From strictly demicontractivity we obtain

‖xn+1 − p‖2 ≤ α‖xn − p‖2 + L‖xn+1 − xn‖2, n = 0, 1, ...

Take dn = ‖xn − p‖2, εn = ‖xn+1 − xn‖2 and so Lemma 2.2 can be applied.
Note that, using condition (3), we can choose n0 sufficiently large so that
‖T n+1x0−T nx0‖ ≤ 1 for n ≥ n0. So εn ≤ 1 and all conditions of Lemma 2.2
are satisfied. �

Remark 3.2. (on condition (2) in Theorem 3.1)
If T is a real function, f : [a, b] → [a, b], differentiable on [a, b], then, using
the Mean Value Theorem, we get

‖f(f(x))− f(x)‖
‖f(x)− x‖

= f ′(ξ),

where ξ = (1 − η)x + ηf(x) ∈ [a, b], η ∈ (0, 1). Thus condition (2) becomes

f ′(x) ≥ e−
1
2 , ∀x ∈ [a, b].

The example below presents a real function which satisfies the conditions of
Theorem 3.1.

Example 3.1. Let C = [−0.5, 0.5] and let f be a function f : [−0.5, 0.5]→
[−0.5, 0.5] defined by

f(x) =

{
−x+ 0.8x3 if x < 0,
−x if x ≥ 0.

This function is strictly demicontractive with α = 0.1, L = 0.32, and it
satisfies |f(f(x))− f(x)|/|f(x)− x| ≥ 0.888..., ∀x ∈ [−0.5, 0.5]. Note that f
has the unique fixed point p = 0 and that it is not a contraction on [−0.5, 0.5].
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3.2 Mann iteration

To simplify the exposition, we consider the Mann iteration with a constant
control sequence, tn = t, n = 0, 1, ... (usually such a Mann iteration is
referred as Krasnoselski iteration, see [5]). The general case together with
the condition 0 < a ≤ tn ≤ b < 1 is quite similar to this particular case.

Theorem 3.2. Let C be a closed convex subset of a Hilbert space H and let
T be a mapping from C into itself. Assume that T is strictly demicontractive
on C with 0 < L < 1. Then the Mann iteration with 0 < t < 1−L converges
to p.

Proof. Using (3.3) it obtains

‖xn+1 − p‖2 ≤ [1− t(1− α)]‖xn − p‖2 − [t(1− L)− t2]‖xn − Txn‖2. (3.4)

Because t < 1 − L we have t(1 − L) − t2 > 0 and because, obviously, 0 <
δ := 1− t(1− α) < 1 we obtain ‖xn+1 − p‖2 ≤ δ‖xn − p‖2. �

Theorem 3.3. Let T be a mapping defined on the Hilbert space H with values
in H and assume that T satisfies the following conditios:

(1) T is strictly demicontractive on H with 0 < α < 1, L > 1;

(2) There exist η >
√
a such that ‖Ty − y‖ ≥ η‖Tx − x‖, ∀x ∈ H and t

satisfying
1−η2

1−α < t ≤ 1
1−α , where a = 1− t(1− α) and y = x+ t(Tx− x);

(3) T is asymptotic regular at x0, i.e. ‖T n+1x0 − T nx0‖ → 0, n→∞.

Then the Mann iteration with constant control sequence, tn = t, starting at
x0 converges to p and a posteriori error is given by

‖xn+1 − p‖ ≤ ‖xn+1 − xn‖

√
a‖x0 − p‖2
‖x1 − x0‖2

(
a

η2

)n
+

η2K

η2 − a
≈

√
η2K

η2 − a
‖xn+1 − xn‖, (3.5)

where K = t−1(t− 1 + L).

Proof. Using the obvious equality Txn − xn = t−1(xn+1 − xn) and (3.4) we
have

‖xn+1 − p‖2 ≤ [1− t(1− α)]‖xn − p‖2 + t−1(t− 1 + L)‖xn+1 − xn‖2.
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We can now apply Lemma 2.1 with dn = ‖xn − p‖2, εn = ‖xn+1 − xn‖2 and
a, K given above. The condition εn+1/εn ≥ µ > a required by this lemma

can be proved from conditon (2)and from 1−η2
1−α < t. Indeed, we have

εn+1
εn

= ‖xn+2−xn+1‖2
‖xn+1−xn‖2

= ‖Txn+1−xn+1‖2
‖Txn−xn‖2

≥ η2 > 1− t(1− α) = a,

that is the condition of Lemma 2.1 is satisfied with µ = η2. Now (3.5) follows
from (2.3).

Remark 3.3. The condition (2) allows t = 1/(1− a), that is a value greater
than 1. Usually the control sequence of Mann iteration belongs to (0, 1),
ensuring thus the preservation of the generated sequence in C. However
there exist some particular iterative schemes of Mann type for which the
control sequence does not belog to (0, 1) and that still the generated sequence
converges to some fixed point (in this case C = H or the belongingness of
the sequence to C is a condition). A typical case is the projection method for
solving convex feasibility problem.

3.3 The linear case in a finite dimensional space

Suppose T : Rm → Rm is a linear mapping, Tx = Ax − b, and p is its fixed
point. The following equalities are obvious:

Tx− x = (A− I)(x− p);
Tx− p = A(x− p);
Ty − y = (A− I)[I + t(A− I)](x− p),

where y = (1− t) + tTx and I is the unitary matrix.
The first two requirements of Theorem 3 are satisfied in this case, provided
that some conditions are fulfilled.

The condition (1).
Suppose that there exists (A − I)−1. If α ∈ R is any number such that
0 < α < 1, we can chose L > 0 such that

‖A‖2 ≤ α + L‖(A− I)−1‖−2. (3.6)

From this we have

‖A‖2‖x− p‖2 ≤ α‖x− p‖2 + L‖(A− I)−1‖−2‖x− p‖2,

and the strongly demicontractivity condition is obvious.

The condition (2).
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Suppose A satisfies the following two conditions:
(a) A− I is invertible;
(b) The function g(t) = ‖[I + t(A − I)]−1(A − I)−1‖ is well defined for
0 < t ≤ 1

1−α and

max
0≤t≤1/(1−α)

g(t) = M <∞.

If we define η as η =
1

M‖A−I‖ we have

‖[(A− I)(I + t(A− I))]−1‖−1 ≥ η‖A− I‖,

and

‖Ty − y‖ = ‖(A− I)[I + t(A− I)](x− p)‖
≥ ‖[(A− I)(I + t(A− I))]−1‖−1‖x− p‖
≥ η‖A− I‖‖x− p‖ ≥ η‖(A− I)(x− p)‖ = η‖Tx− x‖,

i.e. the condition (2) is satisfied.

Remark 3.4. The conditions (a) and (b) seem to be relatively strong; how-
ever there exist matrices with diagonal dominance which satisfy the both con-
ditions. For example, the matrix

A =


0.2 0.1 − 0.4 0.1
0.3 0.2 − 0.1 0.1
0.0 − 0.2 0.5 0.0
0.1 0.2 0.1 0.3


satisfy both (a) and (b). Indeed, a direct computation shows that A − I is
invertible and the linear function Tx = Ax + b, b = (−0.1,−0.6,−1, 0.8)T ,
is strongly demicontractive, the best constants being α = 0.208, L = 3.092.
The function g is increasing on [0, 1/(1−α)], so M = g(1/(1−α). The other
numerical constants are η = 0.064, θ = 2.042×10−3, t ∈ [1.26, 1.263] (in our
experiment t = 1.26), a = 2.08× 106−3.

4 Some examples

The accuracy of the error estimation (3.5) depends in some extent of the
constant L appearing in the condition of strong demicontractivity. The fol-
lowing examples show the accuracy of the proposed estimation in the case of
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a strictly demicontractive real function and of a linear function from R4 to
R4.

The first example is a function f : [0.5, 1.5] → [0.5, 1.5], given by f(x) =
0.05x2 + 0.8x + 0.15. This function has the unique fixed point p = 1 and it
is strictly demicontractive on [0.5, 1.5] with the constants α = 0.35, L = 90.
The condition (2) of Theorem 3 is also satisfied and η = 0.777... The value
of t can be chosen between (1−η2)/(1−α) = 0.61, 1/(1−α) = 1.538 (in our
numerical example t = 1.538). So, the conditions (1) and (2) of Theorem 3.1
are satisfied.

Figure 2: The accuracy given by estimation (3.5) the graphs (a) and (b) and
by (Z) the graph (c).

In the Figure 2 (a) are depicted the true errors of the sequence {xn}, that
is the values |xn − p|, n = 10, ..., 40 (with bars), and the error estimations,
that is the values

√
η2K/(η2 − a)|xn+1−xn|, n = 10, ..., 40 (with continuous

lines).

The second example is a mapping T : R4 → R4 given by Tx = Ax + b,
where A and b are given above (Remark 6). The error estimation accuracy
can be seen in the Figure 2 (b) (true errors with bars and estimation with a
continuous line)

In the Figure 2 (c) are presented the true error and estimation error of Mann
iteration given by formula (Z) with control sequence tn = 1/n for the real
function considered in the first example. Note that the function f from this
example verifies the condition |f(x) − f(y)| ≤ δ|x − y| + 2δ|x − f(x)| for
δ ≥ 0.93, which is a consequence of Zamfirescu’s contraction condition.
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