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HIGHLY SIMILAR AVERAGE COLLATERAL  
EFFECT OF SYNONYMOUS MUTATIONS 
ACROSS ALTERNATIVE READING FRAMES:  
A POTENTIAL ROLE IN EVOLVABILITY

Introduction

Protein coding in alternative reading frames of known genes 
is receiving increased attention. This is a return to a topic that 
was the subject of significant interest early in the development 
of modern molecular genetics. Overlapping genes (OLGs) 
were first found in bacteriophages (2), and among biologists 
they are often assumed to be restricted to viruses. There are 
many prominent examples in viruses beyond bacteriophages 
including in the pandemic viruses HIV-1 and SARS-CoV-2 
(3–7), but they have also recently been discovered in diverse 
cellular organisms, including bacteria (8–13), archaea (14), 
and mammals, including humans (15–19). Research on 
OLGs within five years of their initial discovery investigated 
diverse topics, including triple overlaps (20), information 
theory (21–23), discussion of their evolution (24, 25), and the 
proposal that they may be widespread throughout life (26). 
A recent review has collated the evidence for overlapping 
genes, with discussion of their biological roles and potential 
biosynthetic applications (27). In addition to the phenomenon 
of overlapping genes, alternative frame sequences can be 
incorporated into proteins and thus contribute to protein 
sequence novelty in other ways, which we will briefly discuss.
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Is there a functional reason for the maintenance of overlapping 
genes in genomes or the evolutionary incorporation of 
sections of alternative frame sequences into proteins? 
It is often thought that a need for genome compression 
provides a selective pressure for overlapping genes. A study 
directly addressing this question, however, suggests that 
evolutionary pressure for smaller genomes does not explain 
OLG distribution in viruses; instead, their role in the evolution 
of functional novelty may be more important (28). Connected 
to this, there has been a revolution in our understanding 
of protein evolution, and now many instances of genuinely  
“de novo” origin are known (29). Alternative frame sequences 
have been proposed as a source of evolutionarily novel genes, 
originating through a process called “overprinting” (30). 
They were mentioned in a foundational text for the standard 
hypothesis that most genes arise through duplication and 
divergence from ancestral genes (31). This overprinting 
hypothesis has gained recent attention with respect to the 
origins of genetic novelty (32). Aside from overprinting, two 
related and previously unknown mechanisms for protein 
novelty from alternative reading frames—gene remodeling 
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and pairs of compensatory frameshift mutations—have 
recently been elucidated (33, 34); these are discussed later 
in this study.

An overlapping gene pair consists of a reference frame 
sequence and a sequence encoded in one of the five 
overlapping alternative reading frames (Figure 1A). 
Elsewhere, these have been referred to as the (pre-existing) 
“mother gene” and (younger, overprinted) “daughter gene” 
by analogy to mother and daughter cells in reproduction 
(8). The phenomenon studied here, however, is broader, in 
that it also includes alternative frame sequences that are 
not functional genes. Thus, we refer simply to reference and 
alternative reading frames. Some properties of the sequences 
in alternative reading frames are dictated by the structure of 
the standard genetic code. For a novel protein sequence 
encoded in an alternative frame of an existing protein-coding 
gene, some properties are determined by its position in 
relation to the existing reference frame sequence. The details 
will depend on the genetic code table mapping codons to 
amino acids. For instance, with the standard genetic code the 
two alternative reading frames on the same strand as a given 
“reference frame” sequence tend to encode amino acids which 

preserve the hydrophobicity profile of the reference frame’s 
protein sequence (35). This finding has been argued to be 
an artefact of selection on the code for robustness to point 
mutations (36), so we have not listed it here as an “optimality” 
of the code, but it may deserve further attention. We have 
previously shown that both purported optimalities and a lack 
of optimality are sensitive to code sets, threshold choices, and 
the combination of properties used (1).

The widespread assumption that frameshifts have no biological 
use is also called into question by some of the studies discussed 
here and by our results. Aside from the tendency for preservation 
of hydrophobicity in same strand alternative reading frames, 
the structure of the standard genetic code also creates a strong 
tendency for amino acids of opposite hydrophobicities to be 
encoded by the codons directly in antisense to each other 
(37). This property may perhaps assist in creating a template 
of structural elements in antisense open reading frames (38). 
Other aspects of evolution in this directly antisense frame 
“a3” and corresponding protein properties have also been 
explored (39, 40). Importantly, not all properties of overlapping 
genes are simply a result of code structure, as genuinely 
translated overlapping genes are just a small and presumably  
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Figure 1.  (A) The five alternative reading frames, named according to a shortened form of the schema used in Wei and Zhang (42). In this 
schema s = sense, a = antisense, and the number represents the codon position of the alternative frame that corresponds to position 1 in the 
reference frame; the relevant codon position numbers are underlined here. (B) Example of “collateral effects” in alternative frames following 
synonymous mutations in the reference frame. Variants at the nucleotide level and changes in amino acids encoded by alternative reading 
frames are shown in red and light yellow; the original amino acids encoded in the alternative frames are shown in blue.
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non-random subset of the sequences found in alternative 
reading frames. For instance, it has been shown that the 
higher intrinsic disorder of overlapping versus nonoverlapping 
proteins is not due simply to code structure (41).

The arrangement of the standard genetic code could 
very plausibly be different, resulting in different properties 
in alternative reading frames. There are variant genetic 
codes across diverse taxonomic groups, although these 
minor variants extant today appear all to be derivative of 
the standard code (43, 44). A triplet code encoding the 20 
canonical amino acids or a subset of these can be arranged 
in more than 1080 different ways. The actual arrangement 
has been shown to be somewhat “optimal” in comparison 
with alternative possible codes, across various biologically 
useful features, including robustness to point mutations 
(45), termination after a frameshift, and the incorporation 
of additional noncoding information within protein-coding 
sequences (46). We summarized some of this literature and 
analyzed a few properties in a previous study (1). The choice 
of the 20 amino acids is also near optimal in its coverage of 
physico-chemical space (47-49).

Intriguingly, the structure of the code is not just beneficial 
for biological functions such as minimizing the effect of 
mistranslation, but it also facilitates evolution. Minimizing 
mutation effect size promotes adaptation, as seen, e.g., in 
Fisher’s Geometric Model of adaptation (50, 51). Beyond 
this, study of an empirical fitness landscape showed that 
the code helps ensure that mutations are both depleted 
in deleterious variants and enriched for adaptive variants 
(52). This optimizes the exploration of functional variants at 
intermediate time scales, as shown by a later study using a 
larger experimentally derived fitness landscape (53). While 
investigating the potential multidimensional optimality of 
the code suggested by some of the studies cited here, we 
discovered that synonymous mutations in a reference reading 
frame have remarkably similar average collateral mutation 
effects across at least four out of five alternative reading frames 
(1). In this study we redo this calculation for all five alternative 
reading frames and investigate potential ramifications of this 
finding by means of a very simple evolutionary model.

Evolution by natural selection can be visualized as a process 
of climbing peaks in a fitness landscape. The topology of 
real fitness landscapes is still being investigated (54–57), 
but it has been shown they are often “rugged,” meaning 
that there are distinct local fitness peaks in addition to the 
global peak. Such ruggedness can limit adaptive evolution, 
depending on the height of the local peaks and their proximity 
to a global peak. Considerations of fitness landscapes in 
the context of individual genes generally concern situations 
where a functional sequence (e.g., a protein-coding gene) is 

undergoing adaptation. Here we are interested in processes 
of sequence exploration more generally, particularly the origin 
of new functional sequences. This requires not just minor 
adaptation, but also a wider exploration of sequence space—
thus, we consider two different types of evolutionary events. 
The first are small-effect “conservative” mutations, which are 
more likely to shift a sequence toward a fitness peak, in line 
with standard Darwinian processes as seen for instance in 
Fisher’s Geometric Model (58, 59). The second are large 
effect explorative mutations, which can assist with moving 
between fitness peaks (local maxima). These are required to 
sample disparate regions of sequence space and to prevent 
populations from getting stuck in small local maxima.

Methods

The methods for the calculation of alternative frame average 
mutation effect size in a given genetic code are reported in 
our previous study (1). According to the standard approach in 
the genetic code optimality literature (60, 61), “mutation effect 
size” is measured as the square of the difference in polar 
requirement between two amino acids. The value of interest 
here is the average effect size in alternative reading frames of 
mutations that are synonymous in a reference reading frame, 
i.e., the average effect size (square of the difference in polar 
requirement) for the amino acids encoded in alternative frame 
codons following synonymous mutations in reference reading 
frame codons (Figure 1B). In the previous study the directly 
antisense frame “a3” (Figure 1A) had effect sizes that were 
approximately 20 times larger, since it overlaps a single codon 
in the reference frame while other alternative frames overlap 
dicodons. This discrepancy between frames was due to the 
incorporation of weights for both (i) how frequently each amino 
acid is used in a genome and (ii) the number of conservative 
mutations that are possible for each amino acid in the reference 
frame. Removing one of the two weights makes the “a3” frame 
comparable with the other reading frames. Here the weighting 
for the number of possible conservative mutations is removed. 
The average mutation effect size in the alternative reading 
frames was calculated in a large set of 107 possible genetic 
code tables sharing the block structure of the standard genetic 
code, including the standard genetic code itself.

The model in this study investigates whether an average 
mutation effect size (i.e., an average step size in our model) can 
be chosen so as to maximize the number of sequences ending 
up in a large fitness peak. We represent sequence space as a 
2D surface with periodic boundary conditions (i.e., the space 
in the model loops back on itself so there is no “edge” to the 
map). Particles represent sequences, which shift in sequence 
space over the course of generations, due to the effects of 
mutations (Figure 2A). Sequences are altered (particles move 
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around the map) in one of two ways: in steps that are either 
“conservative” or "explorative" (Figure  2B; Table  1). The 
“conservative” mutations have a small step size sc and have 
an inbuilt higher chance of moving the sequence to higher 
fitness. That is, if the sequence is within a fitness peak region, 
these mutations are biased toward moving toward the center 
of the peak, modeling the influence of the filter of natural 
selection (positive selection) on such mutations. The direction 
of the larger explorative mutations on the other hand is not 
influenced by fitness, and thus for these mutational vectors all 
angles are equiprobable regardless of the particle’s location 
in the map. These represent mutations with a large effect that 
happen to evade purging by natural selection.

The direction of movement of the steps of either step size, sc 
or se, is stochastic. For conservative mutations the probability 
of moving in each possible direction depends on the relative 
fitness in this direction compared with that of others. In detail, 
the possible directions for mutational steps are discretized into N 
equiangular directions, with N = 100 used throughout this study. 
The fitness fi value after each possible step move is calculated, 
and from this the minimum fitness after a movement, fmin, is 
determined. The probability of a shift in any given direction, pi, 
is calculated using this as in Equation 1. The addition of +1 to 

Figure 2.  (A) In this 2D representation of the model, sequence space is represented with circles corresponding to fitness peaks, and an initial 
distribution of sequences is represented as colored points. Each fitness peak is a symmetric cone with radius 0.2 in a normalized sequence 
space of size 1 x 1. The top right peak’s fitness value (height, H) is 160 and the lower left peak has H = 40. (B) Illustration of conservative and 
explorative mutations in the model—the most likely direction of conservative mutations is affected by whether the sequence (the point particle) 
is situated within a peak, while explorative mutations are not, and the magnitude of the conservative mutation step size is smaller than the 
magnitude of explorative mutation step size (i.e., se > sc).

the numerator ensures that pi > 0, and the denominator is a 
normalization so that ∑pi = 1. Thus, the equation entails that the 
probability of a move in any direction is effectively determined 
by the difference between the fitness value after moving in that 
direction with step size sc (i.e., fi)  and the minimum fitness 
value possible across all mutations with step size of sc (i.e., fmin). 
A probability value pi > 0 for each position is required in order to 
properly simulate the boundary areas of a fitness peak. Without 
the addition of a constant to the numerator, points with the 
lowest fitness value cannot be moved to, so a particle close to 
a fitness peak would get absorbed by it with a rate independent 
of its fitness value, as the entire area outside the peak has the 
lowest fitness value of zero.

=

+ −
=

+ −∑
0

1

(1 )

i min
i N

j min

j

f fp
f f

Equation 1:
Probability, for conservative mutations, of the mutational step 
being in any given direction. Explorative mutations have no 
directional bias.
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Results

First, following up on the previously reported results (1) 
whereby the standard genetic code appears to minimize 
differences in the average alternative-frame effect size for 
synonymous mutations, we confirmed that this property is 
very rare among alternative genetic codes. Among 107 codes 
sharing the block structure of the standard genetic code, only 
0.77% of codes had an equivalent or greater similarity in 
average collateral effect size across frames compared to the 
standard genetic code (Figure 3, Supplementary Figure  1). 
The measure used to determine similarity is the standard 
deviation σD between mutation effect values Dc in different 
reading frames. We find that the standard deviation of the 
mutation effect values between the different reading frames 
in the standard genetic code is very low. That is, compared 
with other possible codes, the standard code ensures that 
average mutation effect sizes are remarkably similar across 
the alternative frames.

For the main part of this study, we consider a simplification 
of the effects of large and small mutations in a rugged fitness 
landscape. Both conservative mutation and larger scale 
evolutionary exploration of sequence space are potentially 
advantageous for the evolution of novel genes. Larger 
mutations allow exploring sequence space in order to find 
functional regions or improve fitness. Conservation allows 
functional sequences to be maintained in a population without 
being immediately degraded (i.e., reduced in fitness) by new 
mutations, and conservative mutations also facilitate small-
scale adaptation within a fitness peak, as discussed above 
regarding Fisher’s Geometric Model.

We hypothesize that for a given rugged fitness landscape, there 
is an optimal trade-off between evolvability (or exploration) and 
robustness in mutation effects that will maximize the fitness of 
a population of novel sequences, i.e., facilitate finding high 
fitness peaks. Whether the standard genetic code has actually 
achieved an optimal value is not addressed here—this study 
is groundwork for further investigation of this issue. In support 
of the hypothesis, we present results from a simple model 
with two kinds of evolutionary processes, namely “explorative” 
and “conservative,” with sequences evolving on a fitness 

Figure 3.  The standard deviation σD of mutation effect values (Dc) 
across all alternative frames calculated for 107 alternative codes. The 
position of the standard genetic code among the alternative code set 
is shown with the vertical red line (only 0.77% of other “block” codes 
have equivalent consistency across frames). This style of figure is 
standard in the code optimality literature.

landscape with two broad fitness peaks of different heights, 
as described in more detail above in Methods.

The model illustrates the expected dynamics, where sequences 
accumulate in the larger fitness peak over time, leaving 
the smaller peak (Figure 4A). Stochastic fluctuations in the 
proportion of sequences in the smaller fitness peak are larger 
than for the higher peak, reflecting the smaller peak’s lower 
capacity to retain sequences. If the probability of mutations 
being conservative, pc, is decreased, then stochastic fluctuations 
in the distribution of sequences across peaks are larger, fewer 
sequences are found in the high peak at most time points, 
and the average fitness value of sequences is lower, as many 
sequences are not in the high peak (Figure 4B). Population 
fitness over the medium to long term can thus be optimized 
by fine-tuning the degree of stochasticity (due to large-effect 
mutations) to a point at which as many sequences as possible 
reach the high peak and are retained in it.

The model described so far uses two different step sizes and 
calculates a ratio of how often each occurs. In order to use this 
model to test whether an average step size can be chosen so 
as to optimize sequence average fitness, the model is run to 
obtain the population’s average fitness values over a range of 
the parameters for step size and probability of each kind of 
mutation, as shown in Figure 5. Within the parameter space, 

Table 1. Summarized properties of the two types of evolutionary 
“step” within the model. 

Mutation type Step 
size

Biased toward 
higher fitness?

Probability of 
this mutation

conservative sc Yes, if within a peak pc

explorative se No 1-pc
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we observe three qualitatively different regions, labeled as 
I, II, and III. In region I, conservative steps predominate, 
and sequences remain in whichever fitness peak they are 
in, whether the high or low peak. In region III, the opposite 
tendency is observed and neither of the two peaks can retain 
sequences over the long term, i.e., stochastic fluctuations 
dominate. In the small high fitness area between I and III, 
i.e., region II, sequences are conserved in the higher but 
not the lower peak, as was observed in Figure 4A. The 
average mutation step size s is calculated with the equation 
s = pc × sc  +  (1 − pc)se. Fitting this equation (black line) to 
region II shows that s can be chosen so as to give a close 
approximation to the function which optimizes fitness. In 
other words, we observe a non-trivial similarity between 
the fitness-optimizing set of parameters and the result of a 
constant average mutation step size.

It may not be immediately clear how this model relates to 
the biological reality of alternative frames. Different reading 
frames are expected to have very different distributions of 
effect sizes for conservative mutations. For example, the 
“a2” (Figure 1A) frame is mostly a very conservative reading 
frame (62) —we would not expect it to have a similar average 
collateral mutation effect size to the other frames. In order to 
have a similar average mutation effect size as other frames, 
among the possible collateral mutation effects there must 
be rare variants with large effect sizes. Its mutation effect 
size distribution is expected to vary substantially from the 
other reading frames, with the other frames having a more 
even distribution of effect sizes. After calculating the effects 
for each alternative frame, we indeed observe that the a2 
frame has more possible variants of large effect, balancing 
out the generally “conservative” nature of variant effects 
(Supplementary Figure 2). Thus, every reading frame 
occupies a different point on the black line (where there is 
a constant average mutation effect) illustrated in Figure 5. 
In summary, if the right average mutation size is instantiated 
each frame could optimize the average fitness in its own 
way. The optimal region II is also very thin, so the average 
mutation step size must be very similar across reading frames 
as observed in the SGC. The details of this and its impacts on 
the biological and evolutionary use of each alternative frame 
deserve further attention.

Discussion

We present a simple evolutionary model examining the 
previously discovered (1) property of a remarkably consistent 
collateral effect size of synonymous mutations across 
alternative reading frames. We have also updated the 
calculation of mutation effect sizes across alternative frames 

for sets of alternative codes. Our simple model shows that 
for a given simple fitness landscape the average mutation 
step size is able to be fine-tuned so as to optimize population 
fitness. This is only a toy model, presented as a proof of 
concept, laying the groundwork for further investigation. 
Multiple aspects of the model can be called into question for 

Figure 4.  The proportion P of all sequences in one of the two peaks 
or outside any peak across 8 × 105 mutation steps. The data was 
created from 100 sequences, sc = 0.001 and se = 0.01. A: With an 
approximately optimal value of pc = 0.9 most sequences eventually 
end up in the higher peak (H=160) with some stochastic fluctuations. 
B: When fewer mutations are conservative (pc = 0.78), sequences 
accumulate in the higher peak faster, but with larger stochastic fluc-
tuations, and the population as a whole does not reach high fitness. 
The effect of other parameter values is shown in Figure 5.
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biological realism. However, the key finding that the function 
for average step size so closely approximates the function 
for optimizing average sequence fitness appears to give real 
insight into evolutionary dynamics. After discussing ways in 
which this work can be developed or explored further, we will 
unpack some implications of the work and comment on the 
broader field of study of alternative reading frames.

First, we note that the initial observation of similar collateral 
effects across alternative frames adds another potential 
optimality to the growing list of interesting properties of the 
standard genetic code. Whether this is an artifact of some 
other property of the code or the method used for calculation 
and how to interpret the finding if it does hold up both 
require further attention. It is important to note that some 
other putatively optimal properties have been shown not to 
be independently optimal and thus are perhaps artefacts 
of already-known facets of code structure. In addition to 
the putative frameshift optimality addressed above (36), a 
prominent study in Science claimed that the code is near 
optimal for resource conservation (63), but this claim has 
been subjected to rigorous critique in two response papers 

(64, 65). The idea that the structure of the code may be a 
result of selection in general remains controversial (1, 66–
68), but optimality is a distinct question from that of historical 
process.

Future research on this topic could include methodological 
improvements, more realistic modeling, investigation of OLG 
evolution in real biological data, and further investigation of 
the origins of the remarkable structure of the standard genetic 
code. In terms of improving biological realism in the model, 
a number of steps can be taken. If the observed results hold 
across both more realistic models of evolving populations 
and diverse fitness landscapes this will support our claim; 
in principle, we believe that they should. Other methods of 
calculating effect sizes across frames could be investigated. 
Our results should also be integrated with previous research 
on fitness landscapes—it seems likely that the phenomenon 
we report where an average mutation size can optimize fitness 
has been reported in a different context, but if so, we have not 
found it. Finally, regarding further developments, investigating 
sequence data from evolving OLGs is a potential new research 
field of its own. Until recently, a large-scale analysis was not 
possible, but improved methods for detecting overlapping 
genes’ protein expression such as ribosome profiling (69, 70) 
or detecting sequence features associated with OLGs (71–74) 
will allow studies across taxa.

The model can be seen as illustrating the process of finding 
function amidst the vast hyperastronomical (75) ocean of 
possible protein sequence space, the large majority of which 
is not functional even by relatively optimistic estimates (76). 
Interpreted in this way, the model suggests that the right 
mutation effect size will help to maximize a population’s ability 
to find and retain new functions. Alternatively, instead of 
functionless regions of sequence space, the regions outside 
the peaks in the model can be conceived of as illustrating 
neutral networks across sequence space (i.e., networks of 
similar sequences with the same function), with perhaps a low 
level of functionality. In either case, a particle moving into a 
peak represents finding functional novelty in sequence space.

Whether evolvability or robustness is more important in 
real life depends on various parameters of the evolutionary 
processes in which alternative frame coding is involved. The 
idea of a trade-off between robustness and evolvability in the 
genetic code’s structure, facilitating the search for functional 
sequences, has been proposed before in the context of 
normal adaptive evolution (53). Our results can be seen 
as an extension of this. It is also possible however that the 
apparent trade-off between robustness and evolvability in 
mutation effect size is better conceived of in another way than 
in terms of directly optimizing fitness. For instance, as new 

Figure 5.  The average fitness value of 100 sequences after 8 × 105 
mutations for different values of conservative mutation probability pc 
and explorative mutation step size se. The conservative mutation step 
size is fixed to sc = 0. 001. Fitness expectation values fall into three re-
gions. In (I), sequences are retained in both peaks, in (II), sequences 
are restricted to the higher peak, and in (III), sequences are not re-
tained in either peak. If we keep the average mutation effect size at a 
constant value (black line) we find almost the same functional relation 
between pc and se as that describing region (II) which optimizes the 
expected fitness.
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sequences are sampled by evolution, small mutations allow 
a new sequence to be sampled relatively unchanged, while 
large mutations cause a jump to new regions of sequence 
space, and both may be needed to optimally sample the total 
space and find new functions. Thus, a more relevant trade-off 
may involve optimizing the time taken for sequence search 
rather than long-term population fitness, but we have not 
explored this here.

How does the potential origin of protein sequence novelty from 
alternative reading frames concretely impact biological reality? 
Recent findings on the role of alternative reading frames in 
protein origins is beginning to shed light on this. Alternative 
reading frames can potentially be used for protein novelty 
in at least three different ways: overprinting, remodeling, 
and frameshift mutations. The first to be discovered and 
investigated was the process of “overprinting,” where an 
out-of-frame open reading frame becomes translated and is 
retained due to some functional advantage. Conceivably, the 
resulting overlapping gene pair could then be copied, and the 
homologue of the original gene then pseudogenized (30). After 
some time, this would leave essentially no trace of the original 
gene, and may explain the origin of some “orphan genes” —
but to our knowledge no specific examples of this have yet 
been demonstrated. In eukaryotes, a related mechanism 
termed “mosaic translation” has been hypothesized but to our 
knowledge not demonstrated (77) —this is where different 
parts of a spliced RNA transcript are read in different reading 
frames, producing “mosaic” proteins. The second process 
termed remodeling has recently been demonstrated to play 
a nontrivial role in the origin of genes in E. coli. This is where 
gene fusion occurs between either part of a gene-read in-
frame and a frameshifted sequence or multiple frameshifted 
sequences (33). A third process has also very recently been 
demonstrated, namely, “mutually compensating frameshift 
mutations,” where two sequential frameshift mutations result in 
a partial frameshift that is tolerated in a protein sequence and 
opens up new sequence region for evolutionary exploration 
(34). More generally, if partially frameshifted sequences 
are tolerated, they constitute new protein sequences. All of 
these mechanisms bear some similarity to another process 
highlighted recently, where stochastic stop-codon read-
through allows some noncoding sequences after stop codons 
to contribute to protein novelty (78).

Whether overprinting, remodeling, or frameshifting 
predominates is unclear, and the distribution is likely to be 
taxon dependent. In general, these processes have received 
little attention, likely, at least, partly due to a perceived 
limitation from evolutionary constraint (25, 62). Evolutionary 
constraint in OLGs has not yet been studied in much detail for 
specific gene pairs, apart from the case of overlapping genes 

in HIV-1. In this virus it has been shown first that constrained 
regions of overlapping genes in a pair are organized so as 
not to overlap (79) and second that even when domains do 
overlap, functionally constrained residues in one protein are 
encoded overlapping more mutable codons in the other protein 
(80). Further, constraint can be conceived either negatively 
or positively. On the negative side, a study of constraints 
across reading frames concluded that the most constrained 
frame (a2 in Figure 1A, often “-2” elsewhere) is likely to be 
very rare in nature given the constraints in codons permitted 
in that frame (62). On the other hand, constraint could bias 
overlapping frames toward functional sequences, acting as 
an approximate template (i.e., ensuring that some semblance 
of protein structure is encoded in many of these sequences).

As described above, evidence for this actually being the case 
includes potential structure-promoting biases in both same-
strand (35) and antisense (38) frames. It has already been 
shown that constraints from the structure of the genetic code 
facilitate Darwinian evolution (52), so it is reasonable to look 
for more cases of this.

In presenting the provocative hypothesis that this aspect 
of the structure of the standard genetic code may be 
“adaptive,” we are not making any specific claim about the 
processes behind the origin of the code’s structure. We have 
discussed some aspects of this in a previous publication (1). 
In this context “adaptive” (present usefulness) should not be 
conflated with “having been adapted” (historical process of 
fitting for a use). Similarly, the fact of being “optimal for X” 
should not be conflated with “having been optimized for X,” 
and does not need to imply that the feature originated through 
a process of natural selection. Many aspects of biology are 
functional, may appear very “apt” for their functions, and 
can even be essential, without being a direct result primarily 
of selection. These include RNA secondary structures (81) 
and various examples of biochemical complexity (82). A 
related concept, although one that has accumulated a lot 
of conceptual baggage, is a “spandrel” (83) The idea that 
the code has really been selected in order to be optimal 
across multiple parameters is perhaps implausible, given 
both the inherent difficulties in evolving any functional code 
(any change to the code will change multiple messages) and 
the limited timespan available for code evolution between 
the origin of life and the last universal common ancestor. 
The optimality of the code could be an example of what 
has been termed evolutionary inherency (84), where 
structures developed early in evolution end up being put to 
different functional use much later (such as seen in various 
components of animal nervous systems). Regardless of 
historical causes, the structure of the code and the uses it 
has in modern organisms are worth investigating.

about:blank


9

Wichmann and Ardern: Highly similar average collateral effect of synonymous mutations across alternative reading frames: a potential role in evolvability

In summary, our key results are found in Figure 3 and 
Figure 5. First, the standard genetic code has the property 
of a remarkably consistent average mutation effect size 
(measured in terms of amino acid polarity) in alternative 
reading frames following synonymous mutations in the 
reference frame. Second, we investigate a way in which this 
apparent optimality could be biologically useful with a simple 
evolutionary model. In our model it is possible to optimize 
fitness across different step sizes of large "explorative" 
mutations, by choosing the proportion of mutations that are 
explorative (versus conservative) so that the overall average 
mutation effect size is maintained at a particular optimal value. 
Analogously, the constant average mutation effect size across 
reading frames, despite other across-frame differences in the 
distributions of mutation effect sizes, may assist in finding 
functional sequences in the alternative frames.

The main point we hope that the reader takes away from this 
study is the exciting potential for further research regarding 
both the contribution of the genetic code to evolvability and 
the origin of protein novelty from alternative reading frames.
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