
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de

Universitatea Tehnică „Gheorghe Asachi” din Iaşi
Volumul 67 (71), Numărul 4, 2021

Secţia
ELECTROTEHNICĂ. ENERGETICĂ. ELECTRONICĂ

DOI:10.2478/bipie-2021-0020

APPLICATION OF ASSOCIATION RULE MINING IN
PREVENTING CYBERATTACKS

BY

CĂTĂLIN MIRONEANU∗, ALEXANDRU ARCHIP and

GEORGIANA ATOMEI

“Gheorghe Asachi” Technical University of Iași,
Faculty of Automatic Control and Computer Science

Received: December 11, 2021
Accepted for publication: December 29, 2021

Abstract. Designing a security solution should rely on having a good

knowledge of the protected assets and better develop active responses rather than
focus on reactive ones. We argue and prove that malicious activities such as
vulnerabilities exploitation and (D)DoS on Web applications can be detected
during their respective initial phases. While they may seem distinct, both attack
scenarios are observable through abnormal access patterns. Following on this
remark, we first analyze Web access logs using association rule mining
techniques and identify these malicious traces. This new description of the
historical data is then correlated with Web site structure information and mapped
over trie data structures. The resulted trie is then used for every new incoming
request and we thus identify whether the access pattern is legitimate or not. The
results we obtained using this proactive approach show that the potential attacker
is denied the required information for orchestrating successful assaults.

Keywords: cybersecurity; data mining; association rule mining; proactive
security; IDPS.

∗Corresponding author; e-mail: catalin.mironeanu@academic.tuiasi.ro
© 2021 Cătălin Mironeanu et al.
This is an open access article licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

26 Cătălin Mironeanu et al.

1. Introduction

Today's cyber-attacks are increasingly complex and run in several
phases. There are two complementary defensive approaches: monitoring and
analyzing hosts activity, usually solved by HIDS (Host-based Intrusion
Detection Systems), and network activity, which is the duty of NIDS (Network-
based Intrusion Detection Systems). Both solutions are commonly known as
IDS. Main goal of IDS is detecting abnormal activities or known malware
occurrences for issuing alerts. Modern solutions include an active response
component for blocking or even tangling sources of attacks. These defense
approaches also include an offensive module which offers a reaction to known
threats and are known as IDPS (Intrusion Detection and Prevention Systems).
All earlier mentioned solutions are usually integrated into SIEMs (Security
Information and Event Management) for further analysis and near real-time
automated responses.

It is known that ensuring computer systems security is a goal that is
never fully achieved, but it must be done in a proper way that blocks almost all
cyberattacks. Common defense techniques are known by experienced attackers
that make misconfigured IDS/IDPS become obsolete on their own. It is a quite
common situation in which IDS/IDPS does not detect attacks or are bypassed
by attackers' evasion techniques. Thus, defenders must continuously analyze
their systems and be aware of all attacker’s methods and techniques. From this
perspective, Bruce Schneier’s statement from the early 2000s that “security is a
process, not a product” (Schneier, 2000) is still relevant. To strengthen this idea,
according to the National Institute of Standards and Technology, the NIST
Cybersecurity framework was crafted in a recursive manner on its core
components – Identify, Protect, Detect, Respond, and Recover. The main
purpose of this framework is to reduce the cyber risk and to improve the
security to critical infrastructure (Barrett, 2018).

The first idea spawned from the “security is a process” concept, was
carried out by the Lockheed Martin Corporation in 2011 in the development of
Cyber Kill Chain Framework (CKC) – an IT reworking of the military Find Fix
Track Target Engage Assess (F2T2EA) term (Hutchins et al., 2011). CKC
described 7 stages: Reconnaissance, Weaponization, Delivery, Exploitation,
Installation, Command & Control, and Actions on Objectives. Each stage
describes the potential actions that an attacker might engage to conduct a
potentially malicious attempt. Each stage is observable on the so-called victim
of the attack apart from the Weaponization phase which is usually hidden. It has
been noticed that even modern security solutions are rather reactive: defensive
measures are noticeable during and after the Delivery stage. Paul Pols extends
the CKC into the Unified Kill Chain (UKC) in (Pols, 2017). Pols proposes a 17
phases description of attacks divided into 3 major groups: Initial Foothold,
Network Propagation and Action on Objectives. UKC is focused more on

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 4, 2021 27

modelling advanced persistent threats and includes indirect attack patterns that
target not only the computing systems, but also the human users of those
systems. Both UKC and CKC frameworks begin with the same three phases
(Hutchins et al., 2011; Pols, 2017). This makes perfect sense since orchestrating
a successful attack relies on analyzing the target to identify potential
weaknesses, on establishing a course of action and then on delivering malicious
payloads. While the actions included in the Reconnaissance phase may not be
incriminating, we argue that they provide valuable data. A thorough analysis of
these data could prove to be a valuable asset in preventing cyberattacks
(Mironeanu et al., 2021; Mironeanu, 2021). The solution we present in this
paper is one such example of proactive prevention.

The second fundamental concept that spawned from the “Security is a
process” idea is to focus on understanding the huge amount of gathered log data
by using DM (Data-Mining), big data and AI/ML (Artificial
Intelligence/Machine Learning) techniques (Kabanda, 2020). The increasing
number of cyber-attacks and related security events whose material traces are
founded in logs, and the increasing variety of attack patterns are met with
renewed research efforts in developing new, better, and more robust preventing
solutions.

Gathering massive amounts of network traffic data and then analyzing it
through DM techniques to determine valuable information related to
Reconnaissance and Delivery phases is nowadays accessible. The evolution of
hardware distributed resources and better algorithms that can be implemented in
modern solutions support blocking attack sources and hindering attackers’
efforts to gain knowledge on the defended systems and thus could prove
invaluable in undermining a full weaponization phase. Because some attacker
actions are mixed in Reconnaissance and Delivery phases, we will consider both
as consistent sources of data.

2. Related Work and Similar Approaches

Data Mining (DM) and Machine Learning (ML) have some common
features, but others that are fundamentally different. The common core is data.
Both processes are used for solving complex problems. Another common
feature is that both processes use the same algorithms for discovering patterns in
data. The main difference between DM and ML is the target of the results.
While DM techniques offer results useful for human users, ML focuses on
automating data analysis and decision systems. ML is thus a next stage over
DM. It is a well-known fact (Han et al., 2012), especially for data mining
techniques, that these methods of data analysis are classified into descriptive
and predictive techniques. This grouping is generated by the type of results that
are supplied. Thus, descriptive techniques are used to obtain new features and

28 Cătălin Mironeanu et al.

perspectives on the data already accumulated, while predictive techniques are
aimed at characterizing new elements.

The idea of using DM/ML techniques in strengthening security
solutions is not new. In a series of 11 articles, Wenke Lee starting with (Lee and
Stolfo, 1998) and ending with (Lee et al., 2002; Lee, 2002) emphases the idea
that most analytical approaches are based on classic DM tools and on using
these results for improving IDS/IDPS solutions. In (Lee and Stolfo, 1998) the
focus is on audit data, such as access logs, protocol-specific data (i.e., FTP and
SMTP), or dedicated monitoring commands (such as tcpdump) to build
classifiers or to mine association rules. The purpose of these tasks is to
contribute to building a set of decision rules for a potentially automated agent-
based IDS. Further research (Lee et al., 2002) shows how modified association
rule mining and frequent episodes can be improved and therefore strengthen the
aforementioned IDS. The achieved results are the base building-blocks in
determining features of intrusion patterns, features that are then used for
intrusion detection models. Wenke Lee summarizes both the progress and the
issues that also arise from using DM and incipient forms of ML in IDS/IDPS:
efficiency and credibility. DM/ML are mostly statistical instruments that could
yield false-positives and false-negatives (Lee, 2002).

Both descriptive and predictive DM techniques are employed in
security analysis (Jin et al., 2019). In a comprehensive comparison between 12
approaches that identify the strengths and drawbacks related to different types
of attacks, the survey concluded with two important remarks. The first is that
one must pay a great deal of attention to the actual preprocessing stages of data
selection and data modelling when dealing with DM tools and algorithms.
These stages definitely impact on the quality of the results and on the success of
the solution. The second remark is that a single analysis technique is usually
insufficient in providing trustworthy information. Both descriptive and
predictive solutions must be considered and mixed before reaching a security
decision. A rather recent and comprehensive review on the usage of these
techniques is included in (Dasgupta et al., 2020). The authors presented the most
commonly used ML algorithms in cybersecurity by considering the basics of the
algorithms, the underlying DM techniques, and the applications in an extensive
analysis of the classification techniques used in the field of cyber security.

Modern security solutions, that follow the “security is a process” idea,
must be designed having two main concepts in mind, as we have previously
shown. The first one is to understand the entity that needs to be protected
against unwanted/malicious access. A thorough knowledge on the hardware and
software technologies that form the protected target is indeed required. It may
allow a much better understanding of the strengths and of the weaknesses/
vulnerabilities that could be exploited. The second main concept is to think
proactively and focus on prevention rather than detection. One should focus on
understanding how a potential attacker might think and on identifying any

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 4, 2021 29

potential malicious activity as early as possible. The following two sections of
the paper describe our proposed prototype for actively identifying threats on
Web applications and the preliminary results we have achieved. The reason for
focusing our attention on this type of application is that the Web has become an
ever-important tool in our day-to-day lives. This “openness” is also an Achiles’
heel: Web applications are the most exposed entities to potential attackers
(Widup et al., 2021).

3. A Theoretical Perspective of Our Approach

The CKC and its derivatives clearly show that attack patterns may be

observed during phases 1 (“Reconnaissance”) and 3 (“Delivery”) respectively.
While the second phase (“Weaponization”) is hidden from the victim, any
attacker must first identify its target vulnerabilities and then deliver the so-
called payload of the attack. Let us consider the case of a Web server hosting a
PHP (Hypertext Preprocessor) application and two common attack patterns:
vulnerability exploitation and (Distributed) Denial of Service ((D)DoS).

To exploit some known application weakness, the potentially malicious
actor must first find that the target vulnerability is present within the Web
application. (Shustin, 2019) and (Johannes, 2021) present such examples for the
Web application included in some IPTV sets and list both .php and .js files.
(Jost, 2021) also lists a vulnerable WordPress plugin which is, again, developed
using PHP. All three authors target SQL injection and Remote Code Execution
(RCE) attack patterns. A successful malicious attempt must first identify that
the vulnerable files or the vulnerable software version is present on the target
device. This implies that the hosting server would yield log entries having either
HTTP GET or POST requests that directly target the known susceptible
application files. This is a key observation since it allows us to find the traces of
such attempts through using frequent access patterns in log entries.

(D)DoS attacks are presumably well known and considered to be
mostly “Command and Control” and/or “Actions on Objectives” phases with
respect to CKC (Sfakianakis et al., 2018). Complex attacks could use (D)DoS
as a “Reconnaissance” tool to test the target’s response and defense capabilities.
(D)DoS might also be employed to conceal the delivery of more destructive
payloads (Mironeanu, 2021; Sfakianakis et al., 2018). HTTP based (D)DoS is
usually performed through GET and POST verbs – the same predicates that are
commonly used for vulnerability exploitation. HTTP GET Floods – a (D)DoS
type of attack – are of particular interest. Such assaults are usually performed
through many requests per second that target the victim Web server. The
interesting part of HTTP GET Flood is the actual vulnerability that is exploited.
Attackers are not usually concerned with the actual Web resource they target,
but rather with missing resources and slow/poorly configured support databases.
The reason supporting this claim is that the Web server would be constrained to

30 Cătălin Mironeanu et al.

process faulty requests more often than legitimate ones. Consider, for instance,
the case of an SQL database with no indexing: targeting a non-existent record
would incur a slow response from the DB server, which would, in turn, keep at
least one of the Web server’s processing threads in a running state until a 404
Not Found response may be formulated back to the calling client. These flood
attacks are, again, noticeable through frequent access patterns.

Let us now consider the case of how PHP works in delivering a
response to the calling client. PHP allows developers a high degree of
modularity. A PHP script could include other PHP modules that implement the
required functions. The result is usually presented as an HTML page that, in
turn, includes various links to .js, .css and media files. We call this first HTML
page an aggregated resource (or aggregator), and all the included links
components. A client’s browser (or user agent) would then analyze the
aggregator’s code and would then formulate further HTTP requests to the target
Web server to acquire its respective components. Considering this behavior, the
following key remarks are the reason for our approach:

1. the client’s browser would include the aggregator as the referrer for
each component it would require; this value is passed to the server in
the HTTP Referer request header and it is noticeable in the server log
files (Fielding and Reschke, 2014);

2. media components (such as images and/or movies) may be acquired
independently from the aggregator;

3. the PHP modules that contribute to the aggregator are not requested by
the client’s browser and should therefore never be noticeable in the
server log files.
Furthermore, a legitimate client request would either target the URI of

the aggregator or an URI of a media component. In such cases, a legitimate
request may not include an HTTP Referer request header. An attacker
attempting to exploit a known vulnerability would most likely try to determine
if the vulnerable module(s) or component(s) are present on the victim server –
the “Reconnaissance” phase previously described. The malicious actor would
most likely use automated site scrapper which would target known modules
and/or components without the required HTTP Referer header. A (D)DoS attack
based on HTTP GET would most likely target invalid URIs to either
aggregators, either components/modules as we have shown.

To summarize, our theoretical model is built on the following access
patterns:

1. legitimate clients:
a. target aggregator URI with/without a valid referrer;
b. target component URIs with a valid referrer;
c. never target module URIs;

2. potential attackers:
a. target non-existent aggregator URIs;

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 4, 2021 31

b. target component URI without valid referrers;
c. target modules.

We therefore deduce that a legitimate access would use a valid HTTP
method, that would either target an aggregator (or valid or external) resource,
either employ a valid referrer for components (or internal resources). Given the
fact that a legitimate client would most likely browse a site using the
hypermedia links included in pages (and assuming that those pages do not have
misspelled links), then there is an extremely low probability that a legitimate
client would repeatedly request invalid public or external resources. Any
potential perpetrator attempting a vulnerability scan or an HTTP GET (D)DoS
would either target modules directly or components (or internal resources)
without valid referrer URIs, either have a considerably higher rate of requesting
invalid public or external resources. We require only three items to model these
access patterns: HTTP_METHOD, REFERRER_TYPE and TARGET_TYPE.
Their corresponding values are presented in Table 1.

Table 1

Item labels, Values and Reasoning

Label Values
Target
Access
Pattern

Reasoning

HTTP_METHOD Admissible
HTTP method
names or
INVALID

all A valid HTTP method is present in all
scenarios.
An INVALID method indicates an attack
or otherwise bad request.

REFERRER_TYPE VALID 1.a÷c A legitimate client request includes the
corresponding referrer for components.

INVALID |
NULL

1.a;
2.a÷c

A legitimate client may target an
aggregator or a media component
without a referrer.
An attacker would have NULL or
INVALID referrals for modules and non-
media components.

TARGET_TYPE VALID |
EXTERNAL

all Both legitimate clients and attackers
could target existing aggregators.

INTERNAL 2.b÷c Attackers attempt and identify
vulnerabilities by directly requesting
components.

INVALID 2.a;
2.c

An attacker could use module identifiers
as targets.

32 Cătălin Mironeanu et al.

We would like to explain a bit further the idea of a VALID referrer
URL. Let us consider two pages, denoted A and B. Page B includes a link to a
file named “sample.js”, while page A does not include the same JavaScript file.
In such a case, B is a valid referrer for component “sample.js” and, at the same
time, A is not a valid referrer for the same component. This strengthens the
reasoning of our approach, hinting on the context of an aggregated resource:
modules and components are used for designated aggregators. It would
therefore make no sense to have referrer information outside the scope of an
aggregator for such a scenario.

We first validated this model by analyzing Apache logs using the
association rule mining descriptive DM technique. This analysis had been
performed using a custom implementation of the Apriori algorithm (Agrawal &
Srikant, 1994) which we have derived from (Li et al., 2012; Mao and Guo,
2013). This implementation had been run on an Apache Hadoop (*

*
*, 2021;

Dean and Ghemawat, 2008). We analyzed itemsets made up of 3 items (see
Table 1), having the from:

{HTTP_METHOD, REFERRER_TYPE, TARGET_TYPE}.

We have also set up a fixed form for the association rules:
antecedent

{HTTP_METHOD, REFERRER_TYPE}
consequent

{TARGET_TYPE}.

We noticed that for the two studied attacks (vulnerability scanning and
(D)DoS) the consequent of the rule had the INVALID value for most cases
describing a malicious attempt. This supports the claims of the proposed model
since it clearly distinguishes between legitimate and illegitimate access. More
on these results will be discussed in the following Section 4.

The next step we addressed was to transform the descriptive association
rules into pro-active instruments that would allow a prompt detection and a
corresponding response for such attacks. Our target is to perform near-real time
detection on client network traffic. To reach our target, we make use of trie data
structures (La Rocca, 2021):

• each level in the trie represents a possible transition between the items
in an interesting itemset;

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 4, 2021 33

• each edge between a parent and a child of the trie is labeled with the
admissible values of the corresponding item – see Table 1:

o trie root to 1st level children: admissible values for the
HTTP_METHOD item (in antecedent);

o 1st level children to 2nd level children: admissible values for the
REFERRER_TYPE item (in antecedent);

o 2nd level children to 3rd level children: admissible values for the
TARGET_TYPE item (in consequent);

• each of the trie’s data pointers holds the confidence of the
corresponding rule and a label showing whether the rule describes an
attack or a legitimate access.
Fig. 1 describes the necessary steps to map an association rule into a trie

path. The transform function (Fig. 1, line 1) is a basic split-like function that
isolates the items in the antecedent and the consequent of the rule. Fig. 2
includes the algorithm we have devised to perform an automated labeling of the
data pointers.

Fig. 1 – Rule insertion algorithm.

Fig. 2 – Data pointer labeling algorithm.

Fig. 3 and Fig. 4 show symbolic examples of the desired output.

34 Cătălin Mironeanu et al.

Fig. 3 – Trie output for the “Reconnaissance” stage of vulnerability scanning attack.

Fig. 4 – Trie output for (D)DoS attacks.

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 4, 2021 35

Due to the many similarities between the two attack patterns, we were
also able to merge the two tries into one – Fig. 5. This is indeed a desirable
outcome since it allows us to identify both types of malicious actions in a single
stage rather than being forced to perform two distinct searches on two distinct
data structures.

Fig. 5 – Combined trie output for both studied attacks.

One could easily check incoming requests using well-known tools such
as tcpdump, tshark and so on. Having access to such a request, the HTTP
method and the target resource are directly accessible in the HTTP request line
and the HTTP Referer header is, yet again, directly accessible within that same
request data. We then select and label these values to form an access pattern
that closely resembles the format of the itemsets. Subsequently, we use the
access pattern to search the trie as presented in the algorithm in Fig. 6.

Fig. 6 – Trie search algorithm.

36 Cătălin Mironeanu et al.

If the search path yields a data pointer labeled “NORMAL ACCESS”,
then the calling IP is allowed to follow through with its respective request. If,
on the other hand, we find an “ATTACK” label, then the calling IP is blocked
and any later request is not allowed any further.

4. Preliminary Results

The test scenario included the following components. The so-called
victim (or target) of the attacks was a server hosted on CentOS Linux running
Apache 2.4.6 with PHP 7.4.21. The Apache log format was configured to use
the well-known custom format for the access logs. The actual website was
delivered using the popular WordPress CMS version 5.7. The web server also
hosted the ECAD monitoring agents (Mironeanu et al., 2021; Mironeanu, 2021)
responsible for real-time network traffic capture and for implementing the
decisions issued by the underlying layers. Normal access patterns have been
both simulated using httrack on three different workstations and human client
interaction. The attacks were simulated using the following tools:

• OpenVas (Greenbone OS 6.0.10) - vulnerability scanning and semantic
DoS;

• Nikto – vulnerability scanning and DoS (“-Tuning 6” argument set);
• GoBuster – vulnerability scanning and DoS (by brute forcing with

“raft-medium-words-lowercase” wordlist string argument set).
All these tools had been run using three different workstations. During

the first testing phase, the ECAD agents were turned off. We have obtained an
access log file that stored a total of 485,798 entries. Over 400,000 entries
corresponded to vulnerability scanning (“Reconnaissance” stage) or DoS attacks
(“Reconnaissance” / “Delivery” stages). All these entries have been remodeled
as presented in Section 3 and then processed using the MapReduce Apriori
solution we have mentioned earlier. We obtained a total of 16 relevant
association rules with a minimum confidence threshold of 0.7 – Table 2.

The labels in the last column have been set up using the algorithm
presented in Fig. 2. The correctness of our approach is proven by considering
the following remarks:

1. rules no. 1 and 7 through 16 are obtained from log entries that do not
include an admissible HTTP method for the request;

2. rules no. 2 and 4 are obtained from log entries that include requests that
target specific PHP modules (which should not be present in valid
requests) or internal components without a valid HTTP Referer header;

3. rules no. 3, 5 and 6 are obtained from log entries that include valid,
external web pages (or aggregator resources) that may be accessed by
all legitimate clients.

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 4, 2021 37

Table 2
Identified association rules

No. Antecedent Consequent Confidence Label

1 0_- 1_null 2_invalid 1.0 ATTACK
2 0_GET 1_null 2_invalid 1.0 ATTACK
3 0_GET 1_valid 2_external 0.82 NORMAL
4 0_POST 1_null 2_invalid 1.0 ATTACK
5 0_POST 1_valid 2_external 1.0 NORMAL
6 0_TRACE 1_valid 2_external 1.0 NORMAL
7 0_VTTEST 1_valid 2_external 1.0 ATTACK
8 0_\x16\x03 1_null 2_invalid 1.0 ATTACK
9 0_\x16\x03\x01 1_null 2_invalid 1.0 ATTACK

10 0_\x16\x03\x01\x03\xa1\x
01 1_null

2_invalid 1.0 ATTACK

11 0_\x16\x03\x01\x03\xb9\x
01 1_null

2_invalid 1.0 ATTACK

12 0_\x16\x03\x02\x03\xa1\x
01 1_null

2_invalid 1.0 ATTACK

13 0_\x16\x03\x02\x03\xb9\x
01 1_null

2_invalid 1.0 ATTACK

14 0_\x16\x03\x03\x03\xc7\x
01 1_null

2_invalid 1.0 ATTACK

15 0_\x16\x03\x03\x03\xdf\x
01 1_null

2_invalid 1.0 ATTACK

16 0_some 1_null 2_invalid 1.0 ATTACK

Another interesting remark is that all rules labeled “attack” have a

100% confidence score. This implies a strong correlation between the items
included in the antecedent and consequent of the rule, respectively, and further
shows the validity of the proposed access pattern. Furthermore, please notice
rule no. 3 in Table 2. The antecedent of the rule includes a valid, safe HTTP
method (namely GET) and the target of the request in the consequent is a valid
aggregator/external resource. One may be certain that such a request is normal
and would expect a 100% confidence degree. Despite this apparent behavior,
we only achieved a confidence score of only 82%. Indeed, some attack patterns
may be hidden behind seemingly legitimate traffic.

The second set of tests we performed targeted the near-real time
detection of the attack patterns we studied. We have started the ECAD agents
on the monitored Web server and reinitiated the attacks. All incoming requests
were processed in agreement with the desired pattern we have presented in
Section 3. The resulting data was then sent to the ECAD decision agents that
hosted the trie data structure. The results – see the algorithm in Fig. 6 – were

38 Cătălin Mironeanu et al.

sent back to the monitoring agents which, in turn, allowed the traffic to pass
(NORMAL access) or issued a DROP connection like action (if an ATTACK
rule had been matched). Vulnerability scanning workstations were banned after
only 5 successful requests, while DoS ones were dropped after 9 to 15
successful requests.

This is a particularly significant result. We have studied the data
collected by the vulnerability scanning workstations. There had been no
meaningful output related to the WordPress CMS and the monitored Web
server, which means that a potential attacker did not gather any significant
information during the “Reconnaissance” stage. Also, the active ECAD agents
denied the DoS attacks after at most 15 malicious attempts. If we consider the
fact that more than 400,000 entries in the gathered logs were DoS attempts,
stopping such attempts in just under 1% of the total traffic volume is a great
achievement. While HTTP GET based DoS is easily denied by modern IDPS
solutions and while we are aware that these results had been achieved in a
simulated, controlled scenario, it is still a remarkable output for the solution we
have presented.

5. Conclusion and Further Development

The present study is a fork of the research conducted while developing
the ECAD framework – previously published in (Mironeanu et al., 2021). For
this present study, we have focused on the analytical modules included in
ECAD. A new perspective in using descriptive DM techniques (association rule
mining) and a strong knowledge on the monitored Web server’s behavior allow
us to develop an innovative approach for preventing cyberattacks. We
emphasize the fact that knowing the entity one tries to defend is of utmost
importance in implementing Schenier’s “security is a process” concept. We
relied our reasoning on the way a PHP Web application is built and ran on
Apache, on how an aggregator resource uses internal modules to formulate
responses and on identifying the relation between the .js and .css components
and the actual Web pages they belong to. We also consider the adoption of the
trie data structure to map association rules and then use them to predict a
client’s behavior to be a novel approach in applying DM techniques in security
applications. This is a proactive behavior in cybersecurity allowing active
responses to threats. One last remark on the current state of our research is that
we have relied on historical data (i.e., server log files) to achieve our goals.

There are still many future directions to further this study. The ECAD
framework allows a multi-criterial analysis of incoming requests. We have
focused only on application-level data (i.e., Layer 7 data with respect to the OSI
stack), but different attacks may also yield valuable information on other OSI
stack layers. We could also analyze the way the underlying TCP connection is

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 4, 2021 39

established or finished (Layer 3 data). If we correlate this information with the
behavior of the client in receiving the server’s response, we may yet better
distinguish between normal and attack patterns. This would allow us to
correlate HIDS and NIDS solutions and achieve a higher degree of prevention
and protection. Also, one may check the actual behavior of Web clients in
accessing a Web site and determine whether they follow a legitimate pattern or
not. Historical log data processed through descriptive DM techniques is an
invaluable source of information that could be used in strengthening SOC
operations.

Acknowledgements. Cătălin Mironeanu has developed the ECAD framework
architecture and formulated the theoretical and practical models for the attack patterns.
Alexandru Archip has developed the theoretical model for the itemsets and association
rules and defined and implemented the trie data structure. Georgiana Atomei
contributed to the design of the MapReduce Apriori solution and has handled its
practical implementation, testing and results.

REFERENCES

Agrawal R., Srikant R., Fast Algorithms for Mining Association Rules in Large

Databases, In Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB ’94, Morgan Kaufmann Publishers Inc, San Francisco, CA,
USA, 487-499.

Barrett M., Framework for Improving Critical Infrastructure Cybersecurity Version 1.1,
NIST Cybersecurity Framework, 2018 (available online,
https://doi.org/10.6028/NIST.CSWP.04162018, last accessed: October 2021).

Dasgupta D., Akhtar Z., Sen S., Machine Learning in Cybersecurity: A Comprehensive
Survey, The Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology, 19, 1, 57-106 (2020).

Dean J., Ghemawat S., MapReduce: Simplified Data Processing on Large Clusters,
Commun. Association for Computing Machinery, New York, NY, USA, 51, 1,
107-113 (2008).

Fielding R.T., Reschke J., Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content, RFC 7231, ISSN: 2070-1721, June 2014.

Han J., Kamber M., Pei J., Data Mining: Concepts and Techniques, ITPro Collection,
Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann
Publishers, 3rd Edition, 2012.

Hutchins E., Cloppert M., Amin R., Intelligence-Driven Computer Network Defense
Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains,
Proceedings of the 6th International Conference on I-Warfare and Security,
Washington, DC, USA, 17–18 March 2011, 113-125.

Jin Z., Cui Y., Yan Z., Survey of Intrusion Detection Methods Based on Data Mining
Algorithms, In Proceedings of the 2019 International Conference on Big Data
Engineering (BDE 2019). Association for Computing Machinery, New York,
NY, USA, 98-106.

https://doi.org/10.6028/NIST.CSWP.04162018

40 Cătălin Mironeanu et al.

Johannes U., Who Is Hunting for Your IPTV Set-Top Box?, SANS ISC InfoSec Forums,
2021 (available online:
https://isc.sans.edu/forums/diary/Who+Is+Hunting+For+Your+IPTV+SetTop+
Box/27912/, last accessed: October 2021)

Jost R., WordPress Plugin Secure Copy Content Protection and Content Locking 2.8.1 -
SQL-Injection (Unauthenticated) - CVE 2021-24931, Exploit Database, 2021
(available online: https://www.exploit-db.com/exploits/50733, last accessed:
December 2021).

Kabanda G., Performance of Machine Learning and other Artificial Intelligence
Paradigms in Cybersecurity, Oriental Journal of Computer Science and
Technology, 13, 1, 1–21 (2020).

La Rocca M., Advanced Algorithms and Data Structures, Manning Publications, 173-
217, 2021.

Lee W., Stolfo S.J., Data-Mining Approaches for Intrusion Detection. In 7th USENIX
Security Symposium, SSYM’98, USENIX Association, Berkeley, CA, USA,
1998, volume 7, 6–21.

Lee W., Stolfo S.J., Mok K.W, Algorithms for Mining System Audit Data, In data-
mining, Rough Sets and Granular Computing; Physica-Verlag GmbH:
Heidelberg, Germany, 2002, 166-189 (2002).

Lee W., Applying Data-Mining to Intrusion Detection: The Quest for Automation,
Efficiency, and Credibility, SIGKDD Explor. 2002, 4, 35–42.

Li N., Zeng L., He Q., Shi Z., Parallel Implementation of Apriori Algorithm Based on
MapReduce, 2012 13th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, 08-10 August 2012, Kyoto, Japan, 236–241.

Mao W., Guo W., An Improved Association Rules Mining Algorithm Based on Power Set
and Hadoop, 2013 International Conference on Information Science and Cloud
Computing Companion, 07-08 December 2013, Guangzhou, China, 236-241.

Mironeanu C., Archip A., Amarandei C.M., Craus M., Experimental Cyber Attack
Detection Framework, Electronics, 10, 14:1682 (2021).

Mironeanu C., Prevenirea atacurilor cibernetice cu tehnici de data mining, Teza de
doctorat, Universitatea Tehnică “Gheorghe Asachi” din Iaşi, 2021.

Pols P., The Unified Kill Chain - Designing a Unified Kill Chain for Analyzing,
Comparing and Defending Against Cyber Attacks, MSc. Degree Thesis, Delft
University of Technology, 2017.

Schneier B., The Process of Security, 2000 (available online:
https://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html,
last accessed: October 2021).

Sfakianakis A., Douligeris C., Marinos L., Lourenço M., Raghimi O., ENISA Threat
Landscape Report 2018, Report O.1.2.1, European Union Agency for Network
and Information Security, Heraklion, Greece, 47-53.

Shustin R., We Decide What You See: Remote Code Execution on a Major IPTV
Platform, Check Point Research, 2019 (available online:
https://research.checkpoint.com/2019/we-decide-what-you-see-remote-code-
execution-on-a-major-iptv-platform/, last accessed: October 2021).

Widup S., Pinto A., Hylender C.D., Basset. G., Langlois P., Verizon Data Breach
Investigations Report, Verizon USA, 2021 (available online:

https://isc.sans.edu/forums/diary/Who+Is+Hunting+For+Your+IPTV+SetTop+Box/27912/
https://isc.sans.edu/forums/diary/Who+Is+Hunting+For+Your+IPTV+SetTop+Box/27912/
https://www.exploit-db.com/exploits/50733
https://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html
https://research.checkpoint.com/2019/we-decide-what-you-see-remote-code-execution-on-a-major-iptv-platform/
https://research.checkpoint.com/2019/we-decide-what-you-see-remote-code-execution-on-a-major-iptv-platform/

Bul. Inst. Polit. Iaşi, Vol. 67 (71), Nr. 4, 2021 41

https://www.verizon.com/business/resources/reports/dbir/, last accessed:
October 2021).

*
*
* Apache Hadoop, https://hadoop.apache.org/, last visit on October 2021.

APLICAȚII ALE REGULILOR DE ASOCIERE ÎN PREVENIREA
 ATACURILOR CIBERNETICE

(Rezumat)

Proiectarea unei soluții de securitate ar trebui să se bazeze pe o bună

cunoaștere a elementelor protejate și să fie axată pe răspunsuri active în detrimentul
celor reactive. Susținem și dovedim că activitățile rău intenționate, cum ar fi exploatarea
vulnerabilităților și atacurile de tip (D)DoS asupra aplicațiilor web, pot fi detectate încă
din fazele inițiale corespunzătoare. Deși pot părea distincte, ambele scenarii de atac sunt
observabile prin modele de acces anormale. În baza acestei observații, analizăm în
prima etapă jurnalele de acces Web utilizând tehnici de extragere a regulilor de asociere
și identificăm indiciile unor activități rău intenționate. Această nouă descriere a datelor
istorice este apoi corelată cu informațiile referitoare la structura site-ului Web și
modelate folosind structuri de date trie. Fiecare nouă solicitare primită este prelucrată
prin parcurgea trie-urilor rezultate. Astfel identificăm dacă această nouă cerere este
legitimă sau nu. Rezultatele obținute folosind această abordare proactivă demonstrează
faptul că un potențial atacator nu poate obține informațiile necesare pentru orchestrarea
unor atacuri de succes.

https://www.verizon.com/business/resources/reports/dbir/

	25-41(2_Mironeanu_Application)EEE 4_2021
	Application of Association Rule Mining in Preventing Cyberattacks
	1. Introduction
	2. Related Work and Similar Approaches
	3. A Theoretical Perspective of Our Approach
	4. Preliminary Results
	5. Conclusion and Further Development

	Label
	Confidence
	Consequent
	Antecedent
	No.
	ATTACK
	1.0
	2_invalid
	1
	ATTACK
	1.0
	2_invalid
	0_GET 1_null
	2
	NORMAL
	0.82
	2_external
	0_GET 1_valid
	3
	ATTACK
	1.0
	2_invalid
	0_POST 1_null
	4
	NORMAL
	1.0
	2_external
	0_POST 1_valid
	5
	NORMAL
	1.0
	2_external
	0_TRACE 1_valid
	6
	1.0
	2_external
	0_VTTEST 1_valid
	7
	1.0
	2_invalid
	0_\x16\x03 1_null
	8
	1.0
	2_invalid
	0_\x16\x03\x01 1_null
	9
	1.0
	2_invalid
	0_\x16\x03\x01\x03\xa1\x01 1_null
	10
	1.0
	2_invalid
	0_\x16\x03\x01\x03\xb9\x01 1_null
	11
	1.0
	2_invalid
	0_\x16\x03\x02\x03\xa1\x01 1_null
	12
	1.0
	2_invalid
	0_\x16\x03\x02\x03\xb9\x01 1_null
	13
	1.0
	2_invalid
	0_\x16\x03\x03\x03\xc7\x01 1_null
	14
	1.0
	2_invalid
	0_\x16\x03\x03\x03\xdf\x01 1_null
	15
	1.0
	2_invalid
	0_some 1_null
	16
	REFERENCES

	42

