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Abstract. This work aims to compare two distinct approaches for solving a 

Travelling Salesman Problem with time window constraints. Given an 

environment with a fixed number of cities (points of interest), a robot must 

determine a route such that each city is visited in an imposed time interval. Both 

of the examined techniques have the objective of identifying the path with the 

lowest cost in terms of the distance traveled.  

The initial approach employs an exact method by defining the requirements 

as a mixed integer linear programming (MILP) optimization problem. 

The second method involves a meta-heuristic approach, using an ant colony 

procedure to solve the optimization problem. 

Besides qualitative information, the performed quantitative comparison 

relies on multiple numerical simulations performed in a MATLAB environment. 

We thus highlight the advantages and disadvantages of both methods, by taking 

into consideration criteria as the simulation time and the relative difference 

between the obtained costs versus the number of cities. 
 

Keywords: Travelling Salesman, optimization, ant colony, graph, time 

windows. 
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1. Introduction 

 

The Travelling Salesman Problem (TSP) is a well-known problem that is 

classified as NP-hard. It has been extensively studied in operations research and 

computer science. The TSP has practical applications in various industries, 

including logistics and transportation, manufacturing and production planning, 

network design and optimization, as well as robotics and automation, (Larni-

Fooeik et al., 2024; Chandra and Natalia, 2023). 

In the context of logistics and transportation, organizations aim to 

optimize their delivery routes to minimize expenses. For example, a delivery 

company seeks to discover the most efficient route that visits all of its clients 

while consuming the least amount of gasoline or taking the shortest delivery time. 

In the manufacturing industry, it is common for plants to seek the most efficient 

path to visit all the machines requiring maintenance in order to reduce operational 

interruptions and optimize efficiency. When it comes to network design and 

optimization, users must choose the most efficient way to connect their network 

nodes in order to decrease signal loss and enhance network performance. 

In the classical Travelling Salesman Problem (TSP), a salesman is 

required to visit each city in a given set exactly once and then return to the 

beginning city, while minimizing the total distance travelled. Applying the 

Travelling Salesman Problem (TSP) to real-world applications is not always 

feasible due to various constraints. Additionally, there may be a need for distinct 

variants of TSP in these real-life circumstances. As a result, other versions of the 

Travelling Salesman Problem (TSP) have been suggested to address various 

limitations in different applications, including Profit-based (Khanra et al., 2015), 

Time Windows-based (Dumas et al.,1995; Fontaine et al., 2023), Maximal Based 

(Aguayo et al., 2018), and Selective Travelling Salesman Problem (Laporte and 

Martello, 1990). The goal of profit-based variations of the Travelling Salesman 

Problem (TSP) is to find the most efficient route that maximizes profit while 

minimizing travel costs. It is not necessary to visit every vertex, and each vertex 

has a predetermined profit value. The purpose of the Selective Travelling 

Salesman Problem is to discover a trip that maximizes the profit collected while 

ensuring that the travel cost does not exceed a certain value. 

Several techniques for addressing this type of problem and its variations 

have been popular due to their ability to quickly observe the computation results. 

However, classical algorithms are primarily well-suited for global path planning 

in deterministic environments. They can also be utilized in uncertain areas when 

combined with optimization approaches, although their effectiveness may vary. 

It is important to realize that the research indicates the possibility of encountering 

high computational costs and low computational efficiency. Some of these 

techniques are presented in Chapter 2. 
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2. Related work 

 

When solving the Traveling Salesman Problem with time windows 

variant, the literature has identified the following main categories: precise 

procedures and heuristic methods, (Cheikhrouhou, 2021). 

In (Dantzig et al., 1954), the author proposed an early deterministic 

solution to TSPTW by using linear programming (LP) relaxation. This approach 

involves solving the integer formulation and continuously adding a well-selected 

linear inequality to the list of constraints. The TSPTW problem can be solved 

exactly using a dynamic programming formulation proposed in (Held and Karp, 

1962). However, this approach is highly challenging. The algorithm, which 

utilizes the branch and bound technique as outlined in (Little et al., 1963), 

partitions the set of all potential tours after calculating the minimum possible 

length for each subset. Ultimately, it discovers a solitary excursion within a subset 

where all the distances are either less than or equal to a specified minimum value. 

There are two further precise solutions to the problem from the same category 

that are worth noting: branch-and-bound (Applegate, 2006) and branch-and-cut 

(Padberg and Rinaldi, 1991; Clímaco et al., 2021). However, in recent years, 

heuristics have gained significant attention in research circles due to their 

increasing intricacy. In (Carlton and Barnes, 1996), the authors expanded the 

objective function by incorporating a fixed penalty for exceeding time constraints 

in certain locations, aiming to tackle the problem of impossibility. In (López-

Ibáñez et al., 2013) the authors proposed a constructive heuristic approach. This 

approach begins by solving an ad hoc assignment problem and then utilizes an 

insertion strategy to generate a full solution. Finally, the answer is further 

improved through the use of local search. The Lin-Kernighan heuristic, 

introduced in (Lin and Kernighan, 1973) is widely regarded as one of the most 

efficient techniques for producing optimal or near-optimal solutions for the 

symmetric Travelling salesman problem. The closest neighbour algorithm, 

utilized in (Mladenović, 2016), is another widely recognized approach. The tour 

commences by visiting a city selected at random initially, and concludes by 

visiting the nearest unknown city. The algorithm terminates once all cities have 

been visited on the tour. Furthermore, it is noteworthy to mention the insertion 

algorithms presented in (Gendreau et al., 1998). These algorithms begin with a 

tour that contains a small number of randomly selected places and then select a 

new location at each step that has not previously been included in the tour. The 

most minimal insertion cost is attained by integrating this location into the pre-

existing itinerary that links two consecutive cities. In addition to these, nature-

inspired heuristic optimization algorithms have been widely utilized as a means 

of addressing the Travelling salesman problem and its variations: (Cacchiani et 

al., 2023) uses a modified genetic algorithm to solve a TSP variation with three 

optimization objectives: fuel consumption, the energy required by speed 

variations and the energy used to curry the curb weight and the load on the vehicle 
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(Zhang et al., 2023; Hamza et al., 2023) uses a local search approach inspired by 

bees heuristic approach (Zhong et al., 2023) uses a collaborative neurodynamic 

optimization with neural networks. 

Among these, ant colony optimization has garnered interest (Glabowski 

et al., 2012; Skinderowicz, 2022; Wu et al., 2023; Comert and Yazgan, 2023; 

Tong et al., 2023). 

The Ant Colony Algorithm, which is based on the behaviour of ant 

colonies, is a highly popular heuristic algorithm due to its versatility in solving 

various sorts of problems, while maintaining a straightforward functionality. This 

approach has served as a source of inspiration for a wide range of strategies and 

methodologies employed in various sorts of minimization problems. These 

techniques, collectively referred to as Ant Colony Optimization (ACO), have 

been derived from the principles of ant colonies. 

ACO is derived from the examination of certain ant species that employ 

pheromone emissions to mark the routes taken by individuals in their quest for 

sources of sustenance. The other individuals receive these quantities of 

pheromone, and eventually, the quickest route to the food source is established. 

In (Grassé, 1946), the author elucidates how he observed the response of certain 

ant species to particular stimuli. He observed that the responses of these ants to 

stimuli alter the behaviour of both the receiving ant and the ant producing the 

stimulus.  

The propagation of information is determined by the quantity of 

pheromone released by individuals, as well as the overall amount emitted by the 

group as a whole. The information regarding the quantities of pheromones is 

discovered along the paths taken between the food supply and the den of the 

colony. This information helps to optimize the route and travel time, while also 

resulting in an increase in the number of individuals involved in food 

transportation. A different and intriguing method is suggested in (Pamosoaji and 

Raflesia, 2020) to address the Collision-Free Multiple Traveling Salesman 

Problem. In order to accomplish this task, a collective of mobile robots is required 

to traverse every node in the graph, commencing from distinct initial positions, 

while ensuring there are no collisions between them. This problem is resolved 

using an innovative method, in which every vehicle is represented by a distinct 

species of ants. It is considered that the collision-free condition occurs when the 

arrival time in the same node is at or above the minimum permissible value. 

This study focuses on the topic of the Travelling Salesmen Problem with 

time windows (TSPTW) considering a robot that must reach a set of points of 

interest in a given time frame for each point. The issue involves the comparison 

of two solving methods: an exact method based on solving the TSPTW using 

mixed integer linear programming, and a heuristic way using Ant Colony 

Optimization (ACO). 
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3. Problem formulation 

 

Given a 2D environment, a set of points of interest, an omnidirectional 

mobile robot (agent) must find a route such that each point is visited in an 

imposed time interval. The robot can move with a constant speed 𝑣 ∈ ℝ+ or it 

can pause its motion. 

The points of interest are denoted by 𝑃 = {𝑝1, 𝑝2, … 𝑝|𝑃|}   and they 

represent the location that the robot must visit (cities that the Travelling salesman 

visits, e.g. Fig. 1). The robot must reach each 𝑝𝑖 in a time interval (𝑒𝑖, 𝑙𝑖) where 𝑒𝑖 ∈ ℝ+  represents the minimum entry time and 𝑙𝑖 ∈ ℝ+ the maximum departing 

time from the current point of interest. Fig. 1 also shows the time windows (TW), 

meaning the time interval (𝑒𝑖, 𝑙𝑖)  for each point. The robot starts at time 0 from 

the depot (the point of interest noted with s that does not have a time window) 

and after visiting all points it returns to the depot. It is assumed that the tasks in 

the points of interest are served instantaneously and the robot leaves each point 

as soon as reaching it. The robot can also wait in a certain point if its time window 

it is not yet opened upon arrival.  

The environment with the points of interest is modelled as a graph which 

has the nodes 𝑃 = {𝑠, 𝑝1, 𝑝2, … 𝑝|𝑃|} and the arcs are weighted with the Travelling 

distance between two points. 

The first method used to find a solution involves solving a mixed linear 

programming problem using problem-based optimization solver in MATLAB. 

The optimization toolbox in MATLAB has two approaches to solving 

optimization problems: problem-based and solver-based, however, as mentioned 

here problem-based is used. 
 

  

Fig. 1 – TSP. Cities time-windows. 
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4. Mixed linear integer programming approach 

 

The TSPTW formulation is described and solved in this chapter. The 

problem is described using the format in Eq. (1) and later solved using 

Optimization Toolbox in MATLAB.  

 

min𝑥 𝑓𝑡 𝑥  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 { 𝑥 ∈ ℤ+𝐴𝑥 ≤ 𝑏𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏                                (1) 

 

The TSPTW is modelled as a graph G = (N, A), with the following 

meaning: 

• 𝑁 = {𝑛0, 𝑛1, … 𝑛|𝑃| }-nodes refer to the starting city(depot) and points of 

interest(cities). 𝑛0 corresponds to starting point 𝑠 and 𝑛𝑖 corresponds to the rest 

of the cities ci, i = 1, |P|. An example for this can be seen in Fig.1 where there is 

a configuration of 4 cities and a depot 

• A= {(𝑛𝑖, 𝑛𝑗)|( 𝑛𝑖, 𝑛𝑗)} ∈ N× N, with ni ≠ nj}, meaning any nodes of G are 

connected, i.e., G is a complete graph. 

• c: N × N→ R+ associates the cost c( 𝑛𝑖, 𝑛𝑗) equal with the time for following 

trajectory. It will be referred as 𝑐𝑖𝑗  throughout the paper 

To obtain the solution, the following optimization problem is used: 

 ∑ 𝑐𝑖𝑗(𝑖,𝑗)∈𝐴 𝑥𝑖𝑗                                          (2) ∑ 𝑥𝑖𝑗 𝑗∈𝐴 = 1                                          (3) ∑ 𝑥𝑖𝑗 𝑗∈𝐴 − ∑ 𝑥𝑗𝑖 𝑗∈𝐴 = 0                                         (4) 𝑥𝑖𝑗 = 1 => 𝐷𝑖 + 𝑡𝑖𝑗 ≤ 𝐷𝑗                                      (5a) 𝐷𝑖 + 𝑡𝑖𝑗 − 𝐷𝑗 ≤ (1 − 𝑥𝑖𝑗)𝑀                                     (5b) 𝑒𝑖 ≤ 𝐷𝑗 ≤ 𝑙𝑖                                       (6) 𝑥𝑖𝑗 ∈ {0,1}                                       (7) 𝐷𝑖 − 𝐷𝑗 + |𝑃| ∙ 𝑥𝑖𝑗 ≤ |𝑃| − 1                                       (8) 
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The above formulation has the following meaning: 

• The objective function Eq. (2) represents the total distance traveled by 

the robot. The variable 𝑥𝑖𝑗 takes the value 1 if there is a route between 

nodes 𝑛𝑖 and 𝑛𝑗 in the graph and 0 otherwise. 

• Constraints Eq. (3) and Eq. (4) impose that each graph node is left once 

and entered once, respectively. 

• Constraints Eq. (5a) and Eq. (5b) ensure that the robot respects the time 

windows defined in Section 2, for points of interest. Variable 𝑡𝑖𝑗  

represents the time needed to travel between nodes 𝑛𝑖  and 𝑛𝑗  and 𝐷𝑖   

represents the departing time from the node 𝑛𝑗. Because Eq. (5a) is a 

deviation from the standard MILP this is transformed into linear 

inequalities by using the big-M method in Eq.(5b). 

• A solution of the above MILP is easily transformed into a robot motion 

plan and the calculated route can be seen in Fig. 2. The robot departs 

from the depot and then visits 𝑝1 , 𝑝2 , 𝑝4 , 𝑝3  respecting thus, all time 

intervals. 

The departure times from each point of interest show if the robot has to 

pause its movement in some positions.  

• Eq. (8) assures the so-called subtour elimination, a necessary restriction 

in all TSP-derived problems. 

 

 
 

Fig. 2 – Solution given by MILP for example in Fig. 1. 
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The solution is determined using problem-based optimization with an 

intlinprog solver. In problem-based optimization, the user creates optimization 

variables, that represent the objective and constraints or that represent equations, 

and solves the problem using the solve function. 

The optimization problem object is created by using the optimproblem 

function. A problem object is a container that defines an objective expression and 

constraints. The optimization problem object defines the problem and any bounds 

that exist in the problem. The variables are created with optimvar. An 

optimization variable is a symbolic variable that used to describe the problem 

objective and constraints. The default solver is changed to intlinprog. 

 

5. Ant colony optimisation approach 

 

In the literature, the schemes for solving the TSPTW usually define two 

distinct objectives. The first objective is to minimize the total travel time along 

the path, without considering the waiting time at customer sites. The second 

objective is to minimize the arrival time at the depot after completing the tour, 

which is also known as the overall tour time (Gendreau et al., 1998). For example, 

in (Cheng and Mao, 2007) the latter is adopted. Although this paper follows the 

algorithm from (Cheng and Mao, 2007) the objective is the former, so the method 

suffers some alteration. 

Typically, all ACO algorithms for the TSPTW adhere to a same 

algorithmic framework. 

• At the start, artificial ants, referred to as agents, are positioned at specific 

nodes within the network and the pheromone trails and parameters are 

initialized. Within the primary iteration, the ants initially create viable 

routes, which are subsequently enhanced through the implementation of 

local search techniques. This is also the step where all the necessary 

parameters are defined. 𝑚  - represents the number of ants that will be used at each 

iteration 𝛼 - parameter that determines the influence of pheromone 

quantities in choosing the road 𝛽 - the parameter that describes the influence of the cost between 

2 nodes in the choice of the road. 𝑤 - the amount of pheromone on the arc 𝜌 - pheromone evaporation rate, universal rate within the graph 𝑤0- the initial amount of pheromone on the arcs 𝑝𝑖𝑗- probability of choosing an arc 𝑐𝑖𝑗- the cost attached to an arc (which is the same as the one 

defined in Chapter 3) 𝑄 - heuristic coefficient of the environment 
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• Each agent executes a sequence of random movements between adjacent 

nodes, following a predetermined transition probability (Eq. (9)) or rule. 

Typically, the likelihood of transitioning along a specific arc is 

contingent upon the level of pheromone concentration determined with 

Eq. (8) and the length of the arc. Using parameters α and β will set the 
influences of pheromones and arc length. 
 

 𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝑄𝐽                              (9) 

 

 𝑝𝑖𝑗 = 𝑤𝑖𝑗𝛼𝑐𝑖𝑗𝛽   (10) 

 

•  Once an agent has traversed all the nodes in the network, the tour's 

quality is assessed. The levels of pheromones on the paths taken during 

the tour are then adjusted using predetermined rules that depend on the 

tour's quality.  

• Upon completing their tours, agents store the tour with the highest quality 

achieved up to the present time point. The agents then continue to repeat 

the aforementioned operations until the stop conditions are met. 
 

Given the absence of pheromones on the paths, the initial selection of the 

first ant is entirely arbitrary. The ant will cover its chosen route, emitting 

pheromones that will be memorized by the surroundings as it moves. The 

pheromone levels will affect the following ants, and this influence will intensify 

as the number of journeys increases. Furthermore, as ants move continuously, the 

pheromone, which serves as an information signal, also evaporates. This 

evaporation process has a stronger impact when the branch on which it occurs is 

less frequently traveled, resulting in a smaller number of ants that have traversed 

the branch so far. The impact of pheromone deposition is contingent upon the 

length of the road. Following numerous individual movements, the pheromone 

concentrations on the trails will vary, so affecting the ants' selection of routes 

when foraging and returning. In this scenario, when the roads are identical and 

the selection of the road is purely random, over a significant duration, one of the 

two routes will inevitably exhibit a greater level. During each iteration, every ant 

in the given set is required to create a solution by traversing the complete graph, 

moving from one node to another, with the constraint of visiting each node only 

once. The selection of the next node from the present node is determined by a 

stochastic procedure that takes into account the pheromone levels on the related 

arcs. For instance, starting from node 𝑛𝑖 , the subsequent node 𝑛𝑗  is selected 

probabilistically, until the selected node has not been visited, according to the 

probabilities determined by the pheromone level. An ant will not choose a path 

that leads to a node already visited or to an already formed path. Additionally, if 
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an edge is longer, it will receive less preference, since it implies higher travel 

times. Once the full route has been completed, if the optimization criterion of a 

program is met, the pheromone level is updated on the arcs that form the solution. 

Following each generation, the pheromone level is modified in accordance with 

the process of evaporation. Essentially, the technique follows the subsequent 

steps: Set parameters, initialize pheromone trails, Construct Solutions, Update 

Trails. 

 
6. Comparison between the methods  

 
The algorithms are applied to the Solomon Benchmark dataset R101 

taking into consideration only the cities coordinates and time window constraints. 

Regarding the application of the methods for the datasets belonging to the 

example from Chapter 3, the numerical simulation for both of the methods is 

performed in a similar amount of time reaching up to 3 seconds regarding of the 

method used. This time is achieved taking into consideration, for the MILP a 

number of 30 variables and for the ACO 10 ants and 100 iterations. Simulation 

times for other configurations in terms of the number of points of interest can be 

found in Table 1. However, the timings for the R101 change considerably 

between the two methods.  

With 100 cities, the dataset creates over 1000 variables for the MILP, 

however the maximum number of ants used was 15. For this simulation the 

runtime for ACO is around 100 seconds but for the MILP exceeds 500. 

The exact method is advantageous because it gives us the optimum 

solution but in cases with a large number of cities, the run time is very high. 

The heuristic method offers a solution much faster for the cases mentioned above, 

however, it is not assured that the solution found is the optimal one. In the 

example, both algorithms offer the optimum solution. 

Another advantage of the heuristic is that it aims to reduce the waiting 

time at nodes in the event that waiting cannot be avoided. 

The Ant Colony Optimization algorithm had a good overall performance 

for the given constraints of this project. While its probabilistic side can bring a 

lot of complexity to the code, the easy implementation and possible 

improvements make it a great tool for estimating complex problems. 

In other extensions for the algorithms, multiple ant colonies can be 

introduced, where each colony is responsible for a part of the problem or operates 

with different parameters. This approach increases diversity and helps in 

exploring a larger solution space. 
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Table 1 

Simulation time comparison for different number of points of interest 

No of points 

of interest |𝑃| No of ants 𝑚 Simulation time 

(MILP) 

Simulation 

time (ACO) 

5 10 1.49 s 1.02 s 

8 10 2.54 s 1.3 s 

15 10 3.48 s 2.07 s 

20 15 30.16 s 16.3 s 

30 15 Over 120 s 22.27 s 

R101 15 500 s 100 s 

 
7. Conclusions 

 
This paper provides a quantitative comparison of two strategies 

employed to solve the Travelling Salesman problem with time windows. 

The first approach uses an exact method by formulating the requirements 

as a mixed integer linear programming (MILP) optimization problem. The MILP 

guarantees the optimality of the solution, but it belongs to the NP-hard 

complexity class. For quantitatively investigating the results, we implement the 

MILP problem in MATLAB by using a problem-based optimization method and 

solve it with the intlinprog solver from the Optimization Toolbox.  

The second solution employs a metaheuristic technique, utilizing an ant 

colony algorithm to address the optimization problem. Each ant begins its journey 

from a randomly chosen city (vertex of the graph) and progresses along the edges 

of the graph, remembering its path at each step of the construction process. In the 

following stages, the ant selects the edges that do not lead to cities that have 

already been visited, based on the levels of pheromone and the heuristic value. 

After the ant has traversed all the vertices in the graph, it has successfully 

constructed a solution. The pheromone on the edges is modified according to the 

quality of the solutions for each individual ant.  

The performed comparison relies on multiple numerical simulations 

performed in a MATLAB environment. We highlight the advantages and 

disadvantages of both studied methods, by taking into consideration criteria as 

the simulation time. We acknowledge that both strategies can be selected to 

address the problem with the exact one offering the optimal solution and the 

heuristic one being a feasible substitute in case the exact methods need a large 

simulation time. 

Future work will consider adding constraints to the problem and also 

other heuristics which have proven feasible with this kind of problems. 
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COMPARAȚIE ÎNTRE O METODĂ EXACTĂ ȘI O METODĂ EURISTICĂ 

 PENTRU REZOLVAREA UNEI PROBLEME DE PLANIFICARE A RUTEI UNUI 

VEHICUL CU CONSTRÂNGERI DE TIMP 

 

(Rezumat) 

 

Această lucrare prezintă o comparație între două metode diferite pentru 
rezolvarea probleme de rutare a unui vehicul de tipul “problema comisului voiajor” cu 
constrângeri de tip “fereastră de timp”. Având în vedere un mediu cu un număr fix de 
orașe, un vehicul trebuie să găsească o rută astfel încât fiecare oraș să fie vizitat într-un 

interval de timp impus. Ambele metode investigate urmăresc să găsească calea costului 
minim în ceea ce privește distanța parcursă. 

Prima abordare folosește o metodă exactă prin formularea cerințelor ca o 
problemă de optimizare de programare liniară cu numere întregi mixte (MILP). 

A doua metodă implică o abordare metaeuristică, folosind procedura de colonie 
de furnici pentru a rezolva problema de optimizare. 

Pe lângă informațiile calitative, comparația efectuată se bazează pe multiple 
simulări numerice efectuate în mediul MATLAB. Evidențiem astfel avantajele și 
dezavantajele ambelor metode, luând în considerare criterii precum timpul de simulare și 
diferența relativă dintre costurile obținute față de numărul de orașe. 

 


