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Abstract

In this paper, we collect the basic theory and the most important applications of a novel technique that has shown

to be suitable for scattered data interpolation, quadrature, bio-imaging reconstruction. The method relies on polynomial

mapped bases allowing, for instance, to incorporate data or function discontinuities in a suitable mapping function. The new

technique substantially mitigates the Runge’s and Gibbs effects.
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1. Introduction

The reconstruction of functions from data is a historical and common task in many applications, as
well detailed in the fundamental books [12,13,31].

It is well known that the Runge’s effect may arise in the approximation of particular functions with
certain nodes distributions [29]. Moreover, when discontinuities or jumps occur, the reconstruction task is
even more interesting and challenging due to the well-known Gibbs phenomenon, which appears especially
near the discontinuities [24].

For example, both phenomena are of interest in the context of medical image analysis (such as in
Computerized Tomography (CT), in Magnetic Resonance (MR), and their variants (SPECT, fMRI), in
Magnetic Particle Imaging (MPI)), where the images often need to be geometrically aligned, registered
or simply reconstructed by a proper (re)sampling. In bio-imaging the Gibbs effects are often referred to
as ringing artifacts. General approaches to bypass unavoidable reconstruction instabilities are as follows:

1. by a clever choice of interpolation points (cf. e.g. [14]),
2. by using rational approximation (cf. e.g. [3,30]),
3. by filtering techniques (cf. e.g. [18]).

In the last years, we developed a new simple technique that we called fake nodes approach, which is a
polynomial mapped bases method [16,19]. This paper collects the most important results that the CAA
Research Group [9] and their collaborators achieved about this approach. In Section 2, we outline the
theoretical background behind the mapped bases approach. In Section 3 we describe the application to
numerical quadrature, and in Section 4 we provide a list of some open problems on which we are still
working. Finally, we conclude in Section 5.

2. Mapped bases approach

Let XN = {xi, i = 1, . . . , N} ⊂ Ω, Ω ⊆ Rd be a set of distinct nodes and let FN = {f(xi), i =
1, . . . , N} be the function values at XN , which are sampled from a function f : Ω −→ R. Letting BN
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be a given finite dimensional function space, the multivariate interpolation problem consists in finding a
function Pf ∈ BN such that

Pf (xi) = f(xi), i = 1, . . . , N.

We assume Pf ∈ BN := span{B1, . . . , BN}, where Bi : Ω −→ R, i = 1, . . . , N , are the basis functions.
In approximation practice, when samples are given, resampling is often necessary. This can be done by

choosing good interpolation points (for instance Chebyshev points). Moreover, depending on applications
we can extract mock-Chebyshev points from equispaced samples, Approximate Fekete points, Discrete
Leja Sequences [7] or (P, f , β)-greedy points [32] when the data are scattered. When the underlying
function presents a steep gradient in one or more locations, in order to achieve a faster convergence, the
nodes could be mapped via a conformal map which allows to cluster them in a precise location, as in [4].
Recently in [1], the authors investigated a weighted least-squares approximation via mapped polynomial
bases of the interval [−1, 1], by using the so-called Kosloff Tal-Ezer map [25],

Tα(x) =
sin(cαx)

sin(cα)
, x ∈ [−1, 1], α ∈ (0, 1], cα = α

π

2
.

This gives rise to the α-polynomial space Pα
n = {p ◦ Tα, p ∈ Pn} which corresponds to the space of

trigonometric polynomials when α = 1.
In our mapped bases approach, we consider an injective map S : Ω ⊂ Rd −→ Rd and the mapped

basis {BS
i , i = 1, 2, . . . , N} with BS

i = Bi ◦ S. Then, we construct the interpolant Rf ∈ BS
N :=

span{BS
1 , . . . , B

S
N} of the function f as

Rf (x) =

N∑
i=1

αS
i B

S
i (x) =

N∑
i=1

αS
i Bi(S(x)) = Pg(S(x)), ∀x ∈ Ω .

The function g has the no-resampling property that is g|S(XN ) = f|XN
(cf. [16]). Thus, having the mapped

basis BS
N , the construction of the interpolant Rf is then equivalent to build the classical interpolant

Pg ∈ BN at the mapped nodes S(XN ), which we called fake nodes. The term fake has been introduced,
because the new points are employed only in the final reconstruction step.

Here we summarize the most important properties of the aforementioned approach, while we refer
to [16,19] for a detailed presentation.

• Generality. The mapped bases approach can be applied to any basis spanning the approximation
space.

• Equivalence of the Lebesgue constants. The Lebesgue constant [8] of the points mapped via RS
f is

equivalent to that of the image Ω through S. Indeed, the Lebesgue constant ΛS(Ω) associated to
the mapped nodes satisfies the equation

ΛS(Ω) = Λ(S(Ω)).

• Stability of the mapped interpolant. Let f be the associated vector of function values and f̃ be
the vector of perturbed values. Let RS

f and RS
f̃
be the interpolants of the function values f and

f̃ respectively. Then,

||RS
f −RS

f̃
||∞,Ω ≤ ΛS(Ω) ∥f − f̃∥∞,XN

.

• Error bound inheritance. For any given function norm, we have

||RS
f − f ||Ω = ||Pg − g||S(Ω),

where f = g ◦ S.

Problem 2.1. How can we find a suitable map S for mitigating the Runge’s and Gibbs effects?
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2.1. Polynomial mapped bases

We now describe the polynomial mapped bases approach firstly in the univariate case and secondly
in the multivariate case.

2.1.1. The univariate case

Let K = [a, b] ⊂ R and let M = {1, x, x2, . . . , xn} be the basis of monomials of the space of the
univariate polynomials Pn(R). If N = n+ 1, the univariate polynomial interpolation problem at XN has
unique solution if and only if the Vandermonde determinant

VDM(XN ;M) =
∏
i<j

(xi − xj)

is so that VDM(XN ;M) ̸= 0. We point out that this implies VDM(XN ;S(M)) ̸= 0, i.e., the well-
posedness of the mapped bases scheme.

Two simple algorithms, S-Runge and S-Gibbs, have been designed to provide a constructive solution
to Problem 2.1 (for details see [16, Algorithms 1 & 2]). In the S-Runge, the map S is basically a linear
transformation from the set XN of equispaced or random points to the Chebyshev-Lobatto (CL) ones,
which represents a “natural” choice for a stable interpolation. For S-Gibbs, first we need to identify the
set

Dm :=
{
(ξi, di) | ξi ∈ K \ ∂K, ξi < ξi+1, and di := |f(ξ+i )− f(ξ−i )|, i = 1, . . . ,m

}
of all m discontinuities of f . Then, the map S-Gibbs is constructed to be a linear map depending on
the set of discontinuities Dm and on a shift parameter k, and its role consists in increasing the distance
between the nodes just before and after the discontinuity locations. We experimentally observed that the
tuning of the shift parameter is not critical, since the resulting interpolation process is not sensitive to its
choice, provided that it is sufficiently large, i.e. in such a way that in the mapped space the so-constructed
function g has no steep gradients.

A stable S-Gibbs method, called ”Gibbs-Runge-Avoiding Stable Polynomial Approximation”, shortly
GRASPA, has been recently proposed in [14], where the Lebesgue constant has been related to the
shift parameter k. In GRASPA we consider the partition D = {K1, . . . ,Km+1} of K, in which each
subinterval Ki ⊂ K is separated to the following one by an element of Dm. Precisely, each Ki contains
a discontinuity of the underlying function. In Example 2.1, we show the effectiveness of the GRASPA
scheme by considering a test function with one discontinuity.

In practical applications, we remark that the exact position of the discontinuities is not at disposal,
and can be investigated by using well-known and stable techniques, such as the Canny edge-detection
algorithm described in [11] or, for irregularly samples signals and images, as presented in [2]. When radial
basis functions are used, the analysis of the coefficients of the interpolant can give information on the
location of the discontinuities, as described in [28]. Recently we proposed another approach to extract the
location of the discontinuities through a segmentation method based on a classification algorithm from
machine learning [20].

Example 2.1. Let us consider the function f1 on K1 = [−1, 1]

f1(x) =

−
(

1

10((x+ 0.5)2 + 0.1)

)5

if −1 ≤ x ≤ 0,

e−x if 0 < x ≤ 1,

which is discontinuous at ξ = 0. Therefore, D = {K1,K2} with K1 = [−1, ξ],K2 =]ξ, 1]. In Figg. 1 and
2, we compare the results achieved by different interpolation methods.

As we can notice, the S-Gibbs map resolves the Gibbs phenomenon. However, if the Runge’s phe-
nomenon takes place in some subdomain the interpolating function diverges, but by means of the
GRASPA map we could prevent the appearance of both.
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Figure 1. The function f1 in dashed red and the interpolant with n = 32 equispaced nodes in black. From left to right:
classical, S-Gibbs and GRASPA approach, respectively.

10 20 30 40 50 60
Degree

10 1

101

103

105

107

109

1011

1013

RM
AE

Classical
S-Gibbs
GRASPA

Figure 2. Relative Maximum Absolute Errors (RMAE) related to the three approaches.

2.1.2. The multidimensional case

The definition of a S-Runge-like algorithm in any dimension d > 1 still represents an open problem.
Nevertheless, some results have already been proved.

In the case d = 2 in the square [−1, 1]2, as far as the Runge’s phenomenon is concerned, the optimal
points are explicitly known to be the Padua points Padn [6,10]. In [19], we proposed the use of the map
S : [−1, 1]2 −→ [−1, 1]2

S(x) =

(
− cos

(
π
e⊺1x+ 1

2

)
,− cos

(
π
e⊺2x+ 1

2

))
.

where x = (x1, x2) and ei, i = 1, 2, are the unit vectors of R2. This function maps the set of nodes

(1) XN =

{(
2(i− 1)

n
− 1,

2(j − 1)

n+ 1
− 1

)
,
i = 1, . . . , n+ 1
j = 1, . . . , n+ 2

,
i+ j ≡ 0
(mod 2)

}
,

where N = (n + 1)(n + 2)/2, onto the Padua points. In higher dimensions, where Padua points are not
known, we may proceed analogously by considering the so-called Lissajous points [22].

Concerning the mitigation of the Gibbs phenomenon, a straightforward extension of the S-Gibbs
algorithm to general dimensions d > 1 has been proposed in [19] and applied in [17] to kernel-based
approximation with discontinuous kernels in the framework of the MPI and in [27] in multimodal medical
imaging. In this context, it is a common practice to undersample the anatomically-derived segmentation
images to measure the mean activity of a co-acquired functional image. This avoids the resampling-related
Gibbs effect that would occur in oversampling the functional image. It turns out that the mapped bases
scheme provides a reduction of the Gibbs effect when oversampling the functional image, as proved by a
tight error analysis (we refer to [27] for further details).
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2.2. Barycentric rational mapped bases

As well-known, it is possible to write the unique polynomial Pf of degree at most n interpolating f
at the set XN ⊂ K in the second barycentric form

(2) Pf (x) =

∑N
i=1

λi
x−xi

fi∑N
i=1

λi
x−xi

, x ∈ K,

where λi =
∏
j ̸=i

1

xi − xj
are the so-called weights (see [5]). If the λi, i = 1, . . . , N , are changed to other

nonzero weights, say wi, then the corresponding barycentric rational interpolant is

(3) rf (x) =

∑N
i=1

wi
x−xi

fi∑N
i=1

wi
x−xi

.

An interesting choice of weights has been designed by Floater and Hormann (FH), who introduced
a family of linear barycentric rational interpolants that shows good properties in the approximation of
smooth functions, in particular using equidistant nodes (see [23]). Furthermore, in [26], the Adaptive
Antoulas–Anderson (AAA) greedy algorithm for computing a barycentric rational approximant has been
proposed. This scheme leads to impressively well-conditioned bases, and it has been used in computing
conformal maps, or in rational minimax approximations (cf. see [3] and references therein).

Unfortunately, when the underlying function presents jump discontinuities, both the FH interpolants
and the approximants produced by the AAA algorithm suffer from Gibbs effects, which can be resolved by
applying the S-Gibbs algorithm adapted to this framework. Indeed, the interpolant rf admits a cardinal

basis form rf (x) =
∑N

j=1 fjbj(x), where bj(x) =

wj
x−xj∑N

i=1
wi

x−xi

is the j-th basis function. By composing with

the map S, we get rSf (x) =
∑N

i=1 fib
S
i (x), where

bSj (x) =

wj

S(x)−S(xj)∑N
i=1

wi
S(x)−S(xi)

is the j-th mapped basis function. As proved in [3], by employing the S-Gibbs mapped approach we
obtain a severe reduction of the Gibbs artifacts, as shown in Example 2.2.

Example 2.2. Let K2 = [−5, 5] and

f2(x) =


log(− sin(x/2))), −5 ≤ x ≤ −2.5,

tan(x/2), −2.5 < x ≤ 2,

arctan
(
e−

1
x−5.1

)
2 < x ≤ 5.

We approximate f2 both by the classical FH interpolant and by the mapped FH obtained via the S-
Gibbs. In both interpolants, we used as parameter d = 8; this parameter corresponds to the degree of the
polynomial which can be reproduced exactly by using the interpolant. The results are shown in Figg. 3
and 4, where the advantages provided by the S-Gibbs scheme are evident.

3. Application to numerical quadrature

Quadrature of functions at equispaced points is effective when composite rules are used. However, in
the case of discontinuous functions, such rules turn out to be numerically unstable. In [15], first we showed
that by computing analytically the quadrature weights of the mapped CL nodes, they correspond to the
quadrature weights of the trapezoidal rule. Moreover, we investigated the use of the S-Gibbs algorithm
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Figure 3. Approximation in K2 of f2. Left: the classical FH interpolant. Right: the S-Gibbs FH interpolant.
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Figure 4. RMAE related to the Classical and S-Gibbs FH approaches for the function f2 on K2.

in this setting; it provides a significant improvement in the accuracy of the numerical quadrature when
dealing with discontinuous functions, as shown in the following Example 3.1.

Example 3.1. Letting K3 = [−2, 2] and

f3(x) =

{
sin2(x)− 2, for −2 ≤ x ≤ 0.2,

log(x2 + 2) + cos(x), for 0.2 < x ≤ 2,
.

In Figure 5, we show the RMAE of the integral with the Newton-Cotes formulae at equispaced points,
CL nodes and the quadrature formula derived via the mapped basis with the S-Gibbs scheme. Encoding
the discontinuity directly into the basis via the S-Gibbs map leads to a truly effective method, which
outperforms the other approaches.

4. Some open problems

• In the univariate setting, S-Runge and S-Gibbs have been combined in [14] via the GRASPA
scheme. An extension of GRASPA, at least to two dimensions, is needed.

• GRASPA should be investigated in the framework of numerical quadrature.
• Improved tight Lebesgue constant bounds should be investigated.
• Recently, two dimensional mock-Chebyshev points plus regression have been investigated [21]. Is
this approach a possible alternative to the mapped bases one?

• In multimodal medical imaging we have tested the mapped bases approach showing that indeed
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Figure 5. Approximation of the integral over K3 of the functions f3.

it is able to reduce the Gibbs artifacts [27]. But images are special 3-dimensional domains. A
challenging problem is to extend the techniques on general d-dimensional domains.

5. Conclusions

Summarizing, the mapped bases approach proved to be effective in different approximation frame-
works. Nevertheless, various related aspects ought to be explored deeper, showing that this technique
still represents an active research line. Interested readers can refer to original paper [16] and the ones
reported in the bibliography for more insights.
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29. C. Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten, Zeit.
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