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Abstract

The Weierstrass‘ theory of one-dimensional Lagrangian systems and a quasi-continuum approach are employed to study
the propagation of solitary waves in tensegrity mass-spring chains, which exhibit softening-type elastic response in the large
displacement regime and are subject to external pre-compression. The presented study analytically derives the shape of the
traveling rarefaction pulses, and limiting values of the speeds of such pulses. Use is made of a tensegrity-like interaction
potential that captures the main features of the real force-displacement response of the examined units. The Weierstrass
approach is validated through numerical applications that establish comparisons between the theory developed in the present
work and previous results available in literature.
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1. Introduction

Tensegrity structures are formed by networks of tensile members (cables) linked to compressive mem-
bers (bars). These structures are not only lightweight but are also significantly tunable, presenting stiff-
ness properties that can be adjusted by changing mechanical, geometrical, and prestress variables [1–3].
The geometrically-nonlinear response of minimal tensegrity prisms formed by three bars (T3 units) and
truncated tensegrity octahedrons has been employed to show that mass-springs systems formed by such
units support the propagation of solitary waves with tunable wave width [4–8]. Stiffening-type units have
been shown to support the propagation of compression solitary waves [4–6], while softening-type units
have been employed to form systems traversed by rarefaction solitary pulses, which are able to suitably
reduce an initial state of external pre-compression of the system [7,8]. Compression solitary pulses can
be profitably used to fabricate novel acoustic lenses with tunable focus [9], while rarefaction pulses can
be employed to develop next-generation impact mitigation devices that do necessarily rely on energy
dissipation phenomena [7].

This paper applies the nonlinear tensegrity-like potential proposed in [6] to develop a Weierstrass
approach [5,6] to the existence and properties of rarefaction solitary waves in pre-compressed chains
of minimal tensegrity regular prisms with softening response [7]. The presented study includes analytic
formulae for the wave speed range that supports such waves, as well as an analytic description of the shape
of the rarefaction pulses. A different approach has been followed in [6], making use of a more standard,
quadratic approximation to the force-displacement response of tensegrity prisms with softening-type
behavior. The paper is organized as follows. Section 2 describes the tensegrity-like interaction potential
used to model the mechanical response of the analyzed tensegrity prisms units. The quasi-continuum
limit of the equations of motion of chains of softening tensegrity prisms alternating with lumped masses
are presented in Sect.3, while the Weierstrass’ analysis of the solitary pulses traveling in such systems is
presented in Sect. 4. Section 5 illustrates some numerical simulations that establish comparisons between
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the predictions of the present theory and the results presented in [7]. The paper ends in Sect. 6 with the
presentation of some concluding remarks and directions for future research.

2. A nonlinear tensegrity-like interaction potential

The present section analyzes the following tensegrity-like potential to capture the main features of
the axial response law of T3 prisms

(1) V (u) = α1 u
2 α2 + u

α3 + u

In Eqn. (1), V is the elastic potential of the prism, u is the relative axial displacement between the
terminal bases, assumed positive in compression, while the quantities α1, α2 and α3 represent constitutive
parameters. The above potential has already been employed in [6] to describe the stiffening-type response
of chains of truncated tensegrity octahedrons. We will show in short that it is also able to describe
a softening response, under a suitable identification of the constitutive parameters. The constitutive
response relating the (compression) axial force F acting to the terminal bases of the prism to the axial
displacement u is obtained as follows

(2) F (u) =
dV

du
= −α1u

2(α2 + u)

(α3 + u)2
+
α1u(2α2 + 3u)

α3 + u

and for the axial stiffness coefficient k one gets

(3) k(u) =
dF

du
=

2α1u
2(α2 + u)

(α3 + u)3
− 2α1u(2α2 + 3u)

(α3 + u)2
+
α1(2α2 + 5u)

α3 + u

The (initial) tangent stiffness k0, for u = 0, is easily computed as follows

(4) k0 = 2
α1α2

α3
.

Eqn.(3) shows that k(u) tends to a horizontal asymptote k = kf for u→ ∞, with kf given by

(5) kf = 2 α1 =
α3

α2
k0

The same equation reveals that it is possible to model a softening-type response when it results in α1 > 0,
α2 ≥ 0, 0 < α3/α2 < 1. In the special case with α2 = 0, one in particular gets k0 = 0, that is, a model with
zero initial stiffness (absence of external and internal prestress, cf. [7]). Fig. 1(a, b, c) visually illustrate
the V vs. u, F vs. u and k vs. u laws, derived from Eqns.(1)-(3), for specific values of the constitutive
parameters α1, α2 and α3. The green and the red curves correspond to softening-type responses, while
the blue curves refer to a stiffening-type behavior, which is included for the sake of comparison with the
results presented in [6]. Let us introduce the strain variable ξ = u/h0, and rewrite the potential (1) as
follows

(6) V̂ (ξ) = V (u(ξ)) = α̂1 ξ
2 ξ + α̂2

ξ + α̂3
.

where

(7) α̂1 = α1 h
2
0, α̂2 =

α2

h0
, α̂3 =

α3

h0

We now move on to fit the tensegrity-like model to the response of a micro-scale T3 prism analyzed
in [7], which is composed of bars additively manufactured using the Ti6Al4V titanium alloy (0.80 mm
diameter, 120 MPa Young modulus) and Spectra fiber cables (0.28 mm diameter, 5.48 MPa Young
modulus). Such a prism exhibits a height of 5.63 mm in the undeformed configuration under zero external
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Figure 1: Plots of the interaction potential (a), axial force (b) and axial stiffness response laws of the
tensegrity-like model for given values of α1, α2 and α3.

force, and is supposed to be subject to a initial pre-compression force F0 = 31.70 N that produces an
initial compression strain ϵ0 = 0.15. Let u be identified with the axial displacement measured from the
pre-compressed configuration of the prism, and let ū denote the axial displacement measured from the
undeformed configuration. Furthermore, let F̄tens denote the axial force acting in the current deformation
of the prism and set Ftens = F̄tens−F0. Fig. 2 shows the F̄tens vs. ū and the Ftens vs. u laws numerically
obtained for the T3 prism under examination, which show a tangent slope decreasing with the axial
displacement, that is, an elastically-softening response.

Employing a set of 44 fitting points spaced along the u-axis of the Ftens vs. u curve, for u ∈ [−1.15, 1.15]
mm, we were able to fit the tensegrity-like model to the response depicted in Fig. 2(d), obtaining the
following best fit parameters: α1 = 5.607× 10−3 N/m, α2 = 8.485× 103 m and α3 = 4.855× 10−3 m (use
was made of the Mathematica® v.13.2 function ‘FindFit’). Fig. 3 shows a very good matching between
the tensegrity-like model and the Ftens − u response.

3. Quasi-continuum limit of the equations of motion

The present section develops the quasi-continuum limit of the equations of motion of a mass-spring
chain equipped with T3 prisms that feature an interaction law described by Eqn. (1). We analyze a chain
composed of an infinitely large number of units and we let ui−1, ui and ui+1 denote the displacements
exhibited by the masses i− 1, i and i+ 1, respectively. The equation of motion of the i-the mass in the
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Figure 2: Force-displacement responses of T3 prisms with elastically softening behavior [7].
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Figure 3: Fitting of the tensegrity-like model (red dashed curve) to the Ftens vs. u response (green-solid
curve).
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longitudinal direction is written as follows

(8) müi = Vu (ui−1 − ui)− Vu (ui − ui+1)

By introducing a longitudinal coordinate x along the axis of the chain, we now write the displacement
of the i-th mass the realization of a continuous function u(x, t) in correspondence to the current time t and
the initial position xi of such a mass (i.e., ui = u(xi, t)). Next, we use a discrete-to-continuum approach,
which consists of employing fourth-order Taylor series expansions for Vu (ui−1 − ui) and Vu (ui − ui+1)
into Eqn. (8).

(9)
m

h20
utt = L{[Vu(u(x, t))]xx},

where L ≈ 1 + 1
12h

2
0∂xx is a differential operator.

By considering ϵ << 1 and u ∼ ϵu, the Taylor expansion of Eqn. (1) with respect to ϵ is given by

(10) V (u) ≈ α1
α2

α3
3

ϵ2u2 − α1
α2 − α3

α4
3

ϵ3u3 + . . . , .

We shall now introduce this approximation in Eqn. (9). As we are dealing with a quasi-continuum
approximation, where h0 can be considered small, we can neglect the terms of order greater than O(ϵ3h20).
We end up with the Boussinesq equation

(11) utt =
h20
m

(
α1α2

α3
uxx − 3α1

α2 − α3

α2
3

(u2)xx

)
+ γuxxxx,

where

(12) γ =
h40α1α2

6α3m

This equation allows us to use the well-known sech-2 solution of the Boussinesq Equation [10]. However,
if we do not want to assume any approximation on the form of the potential, we can use Rosenau’s [11]
idea to invert the operator L, obtaining

L−1 ≈
(
1− 1

12
h20∂xx

)
Applying such an inverse operator in Eqn. (9), we arrive at the following modified Boussinesq Equation

(13) utt =
h0

2

m
[Vu]xx +

1

12
uxxtt

The advantage of equation (13), over the more standard equation (11), is that it is well-posed mathe-
matically. Additionally, it allows us to preserve the form of the elastic potential proposed in the present
work.

It is useful to introduce the following modified potential, which is a function of the dimensionless
variable ξ introduced in the previous section

(14) Ṽ (ξ) =
V̂ (ξ)

m
= α̃1 ξ

2 α̃2 + ξ

α̃3 + ξ
,

with

(15) α̃1 =
α̂1

m
=
α1h0

2

m
; α̃2 = α̂2; α̃3 = α̂3
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A simple manipulation of Eqn. (13), with the aid of Eqn. (14), leads us to the differential equation

(16) ξtt =
[
Ṽξ

]
xx

+
1

12
ξxxtt

We now consider a ξ-wave traveling with speed v, by setting ξ = ϕ(x−vt), where ϕ is a scalar function to
be determined. By restricting our attention to cases in which the rarefaction pulse does not produce the
complete loss of the initial pre-compression of the system, we rquire that it results in ϕ ∈ [ξlim, 0], where
ξlim = −u0/h0. Using the change of variable z = x − vt and the prime notation for the differentiation
with respect to z, we rewrite Eqn. (16) as follows

(17) v2ϕ′′ =
[
Ṽϕ

]′′
+ v2

1

12
ϕ′′′′,

A double integration of Eqn. (17) with respect to z and the use of asymptotic boundary conditions leads
us to write

(18) v2
1

12
ϕ′′ = v2ϕ−

[
Ṽϕ

]
.

Multiplying Eqn. (18) by ϕ′ on both sides and carrying a new integration with respect to z, we finally
obtain

(19) F =
1

v2

(
v2ϕ2 − 2Ṽ + C

)
,

where C is an integration constant, and we have set

(20) F =
1

12
ϕ′2.

which easily shows us that it results in F ≥ 0 for any ϕ ∈ [ξlim, 0].

4. Weierstrass analysis of solitary pulses

We adopt the methodology outlined [5,6] to construct a Weierstrass analysis of the solutions of Eqn.
(19) [12,13]. By substituting Eqn. (14) into Eqn. (19) and setting the integration constant C to zero, we
can write

(21) F = ϕ2
[
1− 2

v2
α̃1

α̃2 + ϕ

α̃3 + ϕ

]
.

According to Weierstrass’ theory, we can relate the existence of solitary pulses to the presence of two
asymptotic points and an inversion point of ϕ [12,13], where it results ϕ′ = 0. Eqn. (20) show that these
points actually coincide with zero points of F . On the other hand, Eqn. (21) shows that the points where
ϕ = 0 are zero points of order two for F , that is, asymptotic points of the wave profile. As ϕ approaches
zero, it is clear from Eqn. (21) that the limitation F ≥ 0 implies that the wave speed v must be greater
than the following lower bound

(22) vmin =

√
2α̃1

α̃2

α̃3
= c0,
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where c0 = h0

√
k0
m denotes the speed of sound in the linear response regime [14].

We shall call ϕ = ϕ∗ the inversion point of the solitary pulse, which is computed by setting to zero
the term in square brackets on the right hand side of Eqn. (21), obtaining

(23) ϕ∗ =
α̃3v

2 − 2α̃1α̃2

2α̃1 − v2
.

Since we are studying a softening regime with α2 > α3 (see Sect. 2), we observe from Eqn. (23) that it
result ϕ∗ < 0 (negative wave peak) in the present case. Such a noticeable result implies that the solitary
pulse supported by the system under consideration is actually a rarefaction pulse, which reduces its initial
state of pre-compression. By setting ϕ∗ = ξlim in Eqn. (23), we obtain the maximum wave speed vmax at
which the rarefaction wave can propagate, while the system remains in a compressed state. It is an easy
task to obtain for such wave speed the following expression

(24) vmax =

√
2α̃1

α̃2 + ξlim
α̃3 + ξlim

.

We shall now determine the wave form of the solitary pulse, by introducing the inverse function
f = ±z. From Eqn. (20), we deduce dϕ

dz =
√
12F , which allow us to write

(25) f :=

∫ √
1

12 F
dϕ

The insertion of Eqn. (21) into Eqn. (25) leads, after some calculations, to the following result

(26) f =
v√
3

ψ tan−1
(
χ
ρ

)
− ρ tan−1

(
χ
ψ

)
ψρ

where

(27) χ =

√
v2 − 2α̃1

ϕ+ α̃2

ϕ+ α̃3
, ρ =

√
c02 − v2, ψ =

√
2α̃1 − v2

We will see in the next section that a simple reversal of the axes of the graph of f(ϕ) allows us to
visualize the shape of the pulse ϕ(f).

5. Numerical applications

We now compare the predictions of the tensegrity-like model presented in the previous section with
the numerical results obtained in [7] for the propagation of rarefaction pulses in a chain formed by 1400
T3 prisms exhibiting the properties analyzed in in Sect. 2. Such prisms are alternated with lead discs
showing 2 mm thickness and 25 g mass. Let h̄ = 7.63 mm denote the undeformed height of the unit
formed by a T3 prism and a lead disc, and let ξ̄ = ū/h̄ = ξ+ ϵ0(1− ξ) denote the total axial strain of the
unit. We computed the wave speeds and wave width of the tensegrity-like model making use of Eqn. (23),
and assuming a cutoff of ξ equal to 0.02 ϵ0. Comparisons between the predictions of the tensegrity-like
model and the numerical solutions obtained in [7] are presented in Tab. 1, considering both the speed
and the width of the traveling pulses in the mass-spring chain under consideration. A good matching can
be observed between the two analyzed approaches. The waveform of the tensegrity-like pulses is shown in
Fig. 4 for different wave speeds v, which range from a value close to vmin (1.02 c0), up to vmax (1.13 c0).
One observes that the peak strain markedly increases with the wave speed, while the wave width slightly
reduces.

14



A Weierstrass approach to the analysis of rarefaction solitary waves in tensegrity mass-spring systems

Table 1: Predictions of the tensegrity-like model for the velocity and amplitude of rarefaction pulses
traveling in a mass-spring chain with softening response, compared to the numerical results presented
in [7].

peak amplitude ϕ∗ + ϵ0(1− ϕ∗) wave speed wave width

0.122
Present model 1.02 c0 10.13 h0
Reference [7] 1.00 c0 12.00 h0

0.040
Present model 1.10 c0 6.79 h0
Reference [7] 1.08 c0 10.00 h0

0 Present model 1.13 c0 6.10 h0

-5 0 5
f  h0

0.05

0.10

0.15

ξ

v  1.02 c0

v  1.10 c0

v  vm a x  1.13 c0

Figure 4: Shapes of the rarefaction pulses predicted by the tensegrity-like model for different values of
the wave speed.

6. Concluding remarks

By deriving the quasi-continuum limit of the equations of motion of a tensegrity-like model of a
mass-spring system with softening-type response, and conducting an analysis à la Weierstrass [12,13], we
have predicted the occurrence of rarefaction pulses in chains formed by pre-compressed tensegrity units
and lumped masses. The presented results confirm those obtained through a different analytic approach
in [8], as well as the numerical results presented in [7] for tensegrity mass-spring chains formed by a large
number of units. It is worth noting that the presence of rarefaction pulses in tensegrity mass-spring chains
paves the way to the development of a radically new concept for the protection of bodies from the effects
of compressive disturbances, which makes use of the solitary wave dynamics of such systems, without
necessarily requiring the dissipation of mechanical energy. Such ‘metamaterial’ behaviors of tensegrity
lattices will be studied through future research, in association with bandgap-type responses [15] and
superelastic effects [16]. Another potential avenue for future research involves studying the dynamics and
stability of innovative transversely isotropic metamaterials consisting of tensegrity chains embedded in a
porous matrix [17,18].
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