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Abstract

We consider the novel family of the mixed-type hypergeometric Bernoulli-Gegenbauer polynomials. This family repre-

sents a fascinating fusion between two distinct categories of special functions: hypergeometric Bernoulli polynomials and

Gegenbauer polynomials. We collect some recent results concerning algebraic and differential properties of this class of

polynomials and use some them to deduce an ordinary differential equation satisfied by these polynomials. Some numerical

illustrative examples about the behavior of the zeros of these polynomials are given.

Keywords: Gegenbauer polynomials; generalized Bernoulli polynomials; hypergeometric Bernoulli

polynomials; operational methods
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1. Introduction

For a fixed integer m ∈ N, the mixed-type hypergeometric Bernoulli-Gegenbauer polynomials

V
[m−1,α]
n (x) of order α ∈ (−1/2,∞), where n ≥ 0, are defined through the generating functions and

series expansions as follows:

(1)

(
zmexz
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l=0
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l!

)(
1− xz

π
+

z2

4π2

)−α

=
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n=0

V [m−1,α]
n (x)

zn

n!
,

where |z| < 2π, |x| ≤ 1, and α ∈ (−1/2,∞) \ {0}.

(2)

(
zmexz

ez −
∑m−1

l=0
zl

l!

)(
2π − xz

1− xz
π + z2

4π2

)
=

∞∑
n=0

V [m−1,0]
n (x)

zn

n!
, |z| < 2π, |x| ≤ 1.

The polynomials
{

V
[m−1,α]
n (x)

}
n≥0

represent a fascinating fusion between two classes of special func-

tions: hypergeometric Bernoulli polynomials and Gegenbauer polynomials.

A significant amount of research has been conducted on various generalizations and analogs of the
Bernoulli polynomials and the Bernoulli numbers. For a comprehensive treatment of the diverse aspects,
including summation formulas and applications, interested readers can refer to recent works [1–5]. In-
spired by recent articles [6–10] where authors explore analytic and numerical aspects of hypergeometric
Bernoulli polynomials, hypergeometric Euler polynomials, generalized mixed-type Bernoulli-Gegenbauer
polynomials, and Lagrange-based hypergeometric Bernoulli polynomials, in [11] the authors focus their

© 2024 Yamilet Quintana, Dionisio Peralta, licensee Sciendo.
This work is licensed under the Creative Commons Attribution 4.0 International Public License (CC BY 4.0).

mailto: yaquinta@math.uc3m.es
http://www.ams.org/mathscinet/msc/msc2010.html
http://creativecommons.org/licenses/by/4.0/


D. Peralta, Y. Quintana

attention on algebraic and differential properties of the polynomials
{

V
[m−1,α]
n (x)

}
n≥0

. These properties

include their explicit expressions, derivative formulas, matrix representations, matrix-inversion formulas,
and other relationships connecting them with hypergeometric Bernoulli polynomials. In this paper we
add to these properties the differential equation satisfied by this family of polynomials.

This paper is a written version of the talk given by one of the authors on the occasion of the second
Meeting Gruppo di Attività ANA&A-SIMAI, Rome, April 2024, and it is organized as follows. Sec-
tion 2 provides some notations and preliminary results about hypergeometric Bernoulli polynomials and
Gegenbauer polynomials. Section 3 is dedicated to collect some results of [11] (see Theorems 3.1-3.4, and
Proposition 3.2), as well as, a new result Theorem 3.5.

2. Background and Previous Results

Throughout this paper, let N, N0, Z, R, and C denote, respectively, the sets of natural numbers, non-
negative integers, integers, real numbers, and complex numbers. As usual, we always use the principal
branch for complex powers, in particular, 1α = 1 for α ∈ C. Furthermore, the convention 00 = 1 is
adopted.

For λ ∈ C and k ∈ Z, we use the notations λ(k) and (λ)k for the rising and falling factorials,
respectively, i.e.,

λ(k) =


1, if k = 0,∏k

i=1(λ+ i− 1), if k ≥ 1,
0, if k < 0,

and

(λ)k =


1, if k = 0,∏k

i=1(λ− i+ 1), if k ≥ 1,
0, if k < 0.

From now on, we denote by Pn the linear space of polynomials with real coefficients and a degree
less than or equal to n. Moreover, to present some of our results, we require the use of the generalized
multinomial theorem (cf. [12,13] and the references therein).

2.1. Hypergeometric Bernoulli Polynomials and Gegenbauer Polynomials

For a fixed m ∈ N, the hypergeometric Bernoulli polynomials are defined by means of the following
generating function [8,14–21]:

(3)
zmexz

ez −
∑m−1

l=0
zl

l!

=
∞∑
n=0

B[m−1]
n (x)

zn

n!
, |z| < 2π,

and the hypergeometric Bernoulli numbers are defined by B
[m−1]
n := B

[m−1]
n (0) for all n ≥ 0. The

hypergeometric Bernoulli polynomials also are called generalized Bernoulli polynomials of level m [8,9].
It is clear that if m = 1 in (3), then we obtain the definition of the classical Bernoulli polynomials Bn(x)

and classical Bernoulli numbers, respectively, i.e., Bn(x) = B
[0]
n (x) and Bn = B

[0]
n , respectively, for all

n ≥ 0.
The first four hypergeometric Bernoulli polynomials are as follows:

B
[m−1]
0 (x) = m!,

B
[m−1]
1 (x) = m!

(
x− 1

m+1

)
,

B
[m−1]
2 (x) = m!

(
x2 − 2

m+1x+ 2
(m+1)2(m+2)

)
,

B
[m−1]
3 (x) = m!

(
x3 − 3

m+1x
2 + 6

(m+1)2(m+2)
x+ 6(m−1)

(m+1)3(m+2)(m+3)

)
.
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HBG polynomials: some properties

The following results summarize some properties of the hypergeometric Bernoulli polynomials (cf. [8,
9,14,19,22]).

Proposition 2.1. [8, Proposition 1], For a fixed m ∈ N, let
{
B

[m−1]
n (x)

}
n≥0

be the sequence of hyperge-

ometric Bernoulli polynomials. Then the following statements hold:

(a) Summation formula. For every n ≥ 0,

(4) B[m−1]
n (x) =

n∑
k=0

(
n

k

)
B

[m−1]
k xn−k.

(b) Differential relations (Appell polynomial sequences). For n, j ≥ 0 with 0 ≤ j ≤ n, we have

(5) [B[m−1]
n (x)](j) =

n!

(n− j)!
B

[m−1]
n−j (x).

(c) Inversion formula. ( [19], Equation (2.6)) For every n ≥ 0,

(6) xn =

n∑
k=0

(
n

k

)
k!

(m+ k)!
B

[m−1]
n−k (x).

(d) Recurrence relation. ( [19], Lemma 3.2) For every n ≥ 1,

B[m−1]
n (x) =

(
x− 1

m+ 1

)
B

[m−1]
n−1 (x)− 1

n(m− 1)!

n−2∑
k=0

(
n

k

)
B

[m−1]
n−k B

[m−1]
k (x).

(e) Integral formulas.∫ x1

x0

B[m−1]
n (x)dx =

1

n+ 1

[
B

[m−1]
n+1 (x1)−B

[m−1]
n+1 (x0)

]
=

n∑
k=0

1

n− k + 1

(
n

k

)
B

[m−1]
k ((x1)

n−k+1 − (x0)
n−k+1).

B[m−1]
n (x) = n

∫ x

0
B

[m−1]
n−1 (t)dt+B[m−1]

n .

(f) ( [19], Theorem 3.1) Differential equation. For every n ≥ 1, the polynomial B
[m−1]
n (x) satisfies the

following differential equation

(7) B
[m−1]
n

n!
y(n) +

B
[m−1]
n−1

(n− 1)!
y(n−1) + · · ·+ B

[m−1]
2

2!
y′′ + (m− 1)!

(
1

m+ 1
− x

)
y′ + n(m− 1)!y = 0.

As a straightforward consequence of the inversion Formula (6), the following expected algebraic prop-
erty is obtained.

Proposition 2.2. [8, Proposition 2]. For a fixed m ∈ N and each n ≥ 0, the set{
B

[m−1]
0 (x), B

[m−1]
1 (x), . . . , B

[m−1]
n (x)

}
is a basis for Pn, i.e.,

Pn = span
{
B

[m−1]
0 (x), B

[m−1]
1 (x), . . . , B[m−1]

n (x)
}
.
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Let ζ(s) be the Riemann zeta function defined by

ζ(s) =
∞∑
n=1

1

ns
, ℜ(s) > 1.

The following result provides a formula for evaluating ζ(2r) in terms of the hypergeometric Bernoulli
numbers.

Proposition 2.3. [9, Theorem 3.3]. For a fixed m ∈ N and any r ∈ N, the following identity holds.

ζ(2r) =
(−1)r−122r−1π2rB

[m−1]
2r

m!(2r)!
+ ∆[m−1]

r ,

where

∆[m−1]
r =

(−1)r−122r−1π2r

m!

B[m−1]
2r (1)−B

[m−1]
2r

2(2r)!
−

B
[m−1]
2r+1 (1)−B

[m−1]
2r+1

(2r + 1)!
−

r−1∑
j=1

(
B

[m−1]
2r−2j+1(1)−B

[m−1]
2r−2j+1

)
(2r − 2j + 1)!

B2j

(2j)!

 .

With respect to Gegenbauer polynomials, we recall that for α > −1
2 , we denote by {Ĉ(α)

n (x)}n≥0

the sequence of Gegenbauer polynomials, orthogonal on [−1, 1] with respect to the measure dµ(x) =

(1− x2)α−
1
2 dx (cf. [23], Chapter IV), normalized by

Ĉ(α)
n (1) =

Γ(n+ 2α)

n!Γ(2α)
.

More precisely,∫ 1

−1
Ĉ(α)
n (x)Ĉ(α)

m (x) dµ(x) =

∫ 1

−1
Ĉ(α)
n (x)Ĉ(α)

m (x)(1− x2)α−
1
2 dx = Mα

n δn,m, n,m ≥ 0,

where the constant Mα
n is positive. It is clear that the normalization above does not allow α to be zero

or a negative integer. Nevertheless, the following limits exist for every x ∈ [−1, 1] (see [23], (4.7.8))

lim
α→0

Ĉ
(α)
0 (x) = T0(x), lim

α→0

Ĉ
(α)
n (x)

α
=

2

n
Tn(x),

where Tn(x) is the nth Chebyshev polynomial of the first kind. In order to avoid confusing notation, we

define the sequence {Ĉ(0)
n (x)}n≥0 as follows:

Ĉ
(0)
0 (1) = 1, Ĉ(0)

n (1) =
2

n
, Ĉ(0)

n (x) =
2

n
Tn(x), n ≥ 1.

We denote the nth monic Gegenbauer orthogonal polynomial by

C(α)
n (x) = (kαn)

−1Ĉ(α)
n (x),

where the constant kαn (cf. [23], Formula (4.7.31)) is given by

kαn =
2nΓ(n+ α)

n!Γ(α)
, α ̸= 0,

k0n = lim
α→0

kαn
α

=
2n

n
, n ≥ 1.

Then for n ≥ 1, we have

(8) C(0)
n (x) = lim

α→0
(kαn)

−1Ĉ(α)
n (x) =

1

2n−1
Tn(x).
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HBG polynomials: some properties

As is well known, for α > −1
2 the monic Gegenbauer orthogonal polynomials C

(α)
n (x) admit other

different definitions [23–26]. In order to deal with the definitions (1) and (2) of the HBG polynomials, we
are interested in the definition of these polynomials by means of the following generating functions:

(9)

(
1− xz

π
+

z2

4π2

)−α

=

∞∑
n=0

Γ(n+ α)

πnΓ(α)
C(α)
n (x)

zn

n!
, |z| < 2π, |x| ≤ 1, α ∈ (−1/2,∞) \ {0},

and

(10)
2π − xz

1− xz
π + z2

4π2

=
∞∑
n=0

1

πn−1
C(0)
n (x)zn =

∞∑
n=0

Γ(n+ 1)

πn−1
C(0)
n (x)

zn

n!
, |z| < 2π, |x| ≤ 1.

Remark 2.1. Note that (9) and (10) are suitable modifications of the generating functions for the

Gegenbauer polynomials Ĉ
(α)
n (x):

(
1− 2xz + z2

)−α
=

∞∑
n=0

Ĉ(α)
n (x)zn, |z| < 1, |x| ≤ 1, α ∈ (−1/2,∞) \ {0},

1− xz

1− xz + z2
= 1 +

∞∑
n=1

n

2
Ĉ(0)
n (x)zn, |z| < 1, |x| ≤ 1.

Proposition 2.4. [27, cf. Proposition 2.1]. Let {C(α)
n }n≥0 be the sequence of monic Gegenbauer orthog-

onal polynomials. Then the following statements hold.

(a) Three-term recurrence relation.

(11) xC(α)
n (x) = C

(α)
n+1(x) + γ(α)n C

(α)
n−1(x), α > −1

2
, α ̸= 0,

with initial conditions C
(α)
−1 (x) = 0, C

(α)
0 (x) = 1 and recurrence coefficients γ

(α)
0 ∈ R,

γ
(α)
n = n(n+2α−1)

4(n+α)(n+α−1) , n ∈ N.
(b) For every n ∈ N (see [23], (4.7.15))

(12) hαn := ∥C(α)
n ∥2µ =

∫ 1

−1
[C(α)

n (x)]2dµ(x) = π21−2α−2n n!Γ(n+ 2α)

Γ(n+ α+ 1)Γ(n+ α)
.

(c) Rodrigues formula.

(1− x2)α−
1
2C(α)

n (x) =
(−1)nΓ(n+ 2α)

Γ(2n+ 2α)

dn

dxn

[
(1− x2)n+α− 1

2

]
, x ∈ (−1, 1).

(d) Structure relation (see [23], (4.7.29)). For every n ≥ 2

C(α−1)
n (x) = C(α)

n (x) + ξ
(α)
n−2C

(α)
n−2(x),

where

ξ(α)n =
(n+ 2)(n+ 1)

4(n+ α+ 1)(n+ α)
, n ≥ 0.

(e) For every n ∈ N (see [23], Formula (4.7.14))

d

dx
C(α)
n (x) = nC

(α+1)
n−1 (x).
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(f) For every n ∈ N (see [28], Proposition 2.1)

d

dx
C(0)
n (x) =

n

2
C

(1)
n−1(x).

The interested readers are referred to [29–32] for detailed explanations and examples of integral
representations of the Gegenbauer polynomials in terms of the Gould-Hopper polynomials, and the study
of other classical special functions within the context of exponential operators.

3. The HBG polynomials and their properties

The following properties of the HBG polynomials have been recently showed. We omit their proofs,
and refer interested readers to [11] for the details of them.

Proposition 3.1. For α ∈ (−1/2,∞), let
{

V
[m−1,α]
n (x)

}
n≥0

be the sequence of HBG polynomials of

order α. Then the following explicit formulas hold.

(13) V [m−1,α]
n (x) =

n∑
k=0

(
n

k

)
Γ(k + α)

πkΓ(α)
C

(α)
k (x)B

[m−1]
n−k (x), n ≥ 0, α ̸= 0,

(14) V [m−1,0]
n (x) =

n∑
k=0

(
n

k

)
k!

πk−1
C

(0)
k (x)B

[m−1]
n−k (x), n ≥ 0.

Thus, the suitable use of (11) and (13) allow us to check that for α ∈ (−1/2,∞) \ {0}, the first five
HBG polynomials are:

V
[m−1,α]
0 (x) =m! v0(α),

V
[m−1,α]
1 (x) =m!

[
v1(α)x− 1

m+ 1

]
,

V
[m−1,α]
2 (x) =m!

[
v2(α)x

2 − 2(π + α)

π(m+ 1)
x+

4π2(α+ 1) + α(m+ 1)2(m+ 2)

2π2(m+ 1)2(m+ 2)(1 + α)

]
,

V
[m−1,α]
3 (x) =m!

[
v3(α)x

3 − 3

m+ 1
v2(α)x

2 + 3

(
2

(m+ 1)2(m+ 2)

(
1 +

α

π

)
− α

2π2

(
1 +

(1 + α)

π

))
x

+3

(
2(m− 1)

(m+ 1)3(m+ 2)(m+ 3)
− α

2π2(m+ 1)

)]
,

V
[m−1,α]
4 (x) =m!

[
v4(α)x

4 − 4

m+ 1
v3(α)x

3 + 3

(
m− 2

(m+ 1)(m+ 2)
+

8α

π(m+ 1)2(m+ 2)
− α

π2
− 2(1 + α)α

π3

− (2 + α)(1 + α)α

π4

)
x2 + 6

(
5−m

(m+ 1)2(m+ 2)(m+ 3)
+

4(m− 1)α

π(m+ 1)3(m+ 2)(m+ 3)
+

α

π2(m+ 1)

+
(1 + α)α

π3(m+ 1)

)
x2 − 6(m3 − 3m2 − 6m+ 36)

(m+ 1)2(m+ 2)2(m+ 3)(m+ 4)
+

6(1 + 2α)α

π2(m+ 1)2(m+ 2)
+

3(1 + α)α

4π4

]
,

where vn(α) =

n∑
k=0

(
n

k

)
α(k)

πk
, 0 ≤ n ≤ 4.
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In contrast to the hypergeometric Bernoulli polynomials and Gegenbauer polynomials, the HBG polynomials
neither satisfy a Hanh condition nor an Appell condition. More precisely, we have the following result.

Theorem 3.1. For α ∈ (−1/2,∞), let
{

V
[m−1,α]
n (x)

}
n≥0

be the sequence of HBG polynomials of order α. Then

we have

(15)
d

dx
V

[m−1,α]
n+1 (x) = (n+ 1)

[α
π

V [m−1,α+1]
n (x) + V [m−1,α]

n (x)
]
, α ̸= 0,

(16)
d

dx
V

[m−1,0]
n+1 (x) = (n+ 1)

[
V [m−1,0]
n (x) +

1

2

n∑
k=0

(
n

k

)
(k + 1)!

πk
C

(1)
k (x)B

[m−1]
n−k (x)

]
, α = 0.

From Theorem 3.1 we can conclude that a general methodology involving operational methods could fail for
this family of polynomials (see for instance, [8]).

On the other hand, it is possible to establish an integral formula connecting the HBG polynomials with the
monic Gegenbauer polynomials. This integral formula allows us to deduce a concise expression for the Fourier
coefficients of the HBG polynomials.

Lemma 3.1. For α ∈ (−1/2,∞), let
{

V
[m−1,α]
n (x)

}
n≥0

be the sequence of HBG polynomials of order α. Then,

the following formula holds.

(17)

∫ 1

−1

V [m−1,α]
n (x)C(α)

n (x)dµ(x) =


m!n!Γ(n+2α)

π2α+2nΓ(n+α+1)Γ(n+α)

∑n
k=0

(
n
k

) Γ(k+α)
πk−1Γ(α)

, α ̸= 0,

m!π
2n

∑n
k=0

(
n
k

)
k!

πk−1 , α = 0,

whenever n ≥ 0.

Regarding the zero distribution of these polynomials, the numerical evidence indicates that this distribution
does not align with the behavior of either Bernoulli hypergeometric polynomials or Gegenbauer polynomials. For

instance, in Figure 1, the plots for the zeros of V
[m−1,α]
28 (x) and V

[m−1,α]
30 (x) are shown for m = 2 and α = − 1

4 .

-1.0 -0.5 0.5 1.0

-0.10

-0.05

0.05

0.10

(a) Zeros of V
[1,− 1

4 ]
28 (x).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(b) Zeros of V
[1,− 1

4 ]
30 (x).

Figure 1: Zeros of V
[1,− 1

4 ]
28 (x) and V

[1,− 1
4 ]

30 (x).

As expected, the symmetry property of Gegenbauer polynomials is not inherited by the HBG polynomials. For

instance, Figure 2 displays the induced mesh of V
[m−1,α]
j (x) for m = 2, α = 1, and j = 1, . . . , 21. Each point on

this mesh takes the form (x
[m−1,α]
j , j), j = 1, . . . , 21. In contrast, Figure 3 displays the induced mesh of C

(α)
j (x) for

α = 1, and j = 1, . . . , 19.
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-1.00 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.00
X

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Y

Figure 2: Induced mesh of V
[m−1,α]
j (x) for m = 2, α = 1, and j = 1, . . . , 21.
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7.5
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12.5

15.0

17.5

20.0
Y

Figure 3: Induced mesh of C
(α)
j (x) for α = 1, and j = 1, . . . , 19.

For any α ∈ (−1/2,∞), it is possible to deduce interesting relations connecting the HBG polynomials

V
[m−1,α]
n (x) and the hypergeometric Bernoulli polynomials B

[m−1]
n (x). The following two results concern these

relations.

Proposition 3.2. For a fixed m ∈ N, let V
[m−1,α]
n (x) be the nth HBG polynomial of order α ∈ (−1/2,∞) \ {0}.

Then, the following relation is satisfied:

(18)

∞∑
n=0

B[m−1]
n (x)

zn

n!
=

∞∑
n=0

∑
0≤j,k≤|α|

(−1)j

22kπ2k+j

(
α

j, k

)
xjV [m−1,α]

n (x)
zn+2k+j

n!
.

Theorem 3.2. For a fixed m ∈ N, the HBG polynomials V
[m−1,0]
n (x) are related with the hypergeometric Bernoulli

polynomials B
[m−1]
n (x) by means of the following identities.
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(19)

2πB
[m−1]
0 (x) = V

[m−1,0]
0 (x),

2πB
[m−1]
1 (x)− xB

[m−1]
0 (x) = V

[m−1,0]
1 (x)− x

πV
[m−1,0]
0 (x),

2πB
[m−1]
n (x)− nxB

[m−1]
n−1 (x) = V

[m−1,0]
n (x)− nx

π V
[m−1,0]
n−1 (x) + n(n−1)

4π2 V
[m−1,0]
n−2 (x), n ≥ 2.

Remark 3.1. When α = r ∈ N, by multinomial Theorem we have(
1− xz

π
+

z2

4π2

)r

=
∑

j+k=r

(−1)j

22kπ2k+j

(
r

j, k

)
xjz2k+j .

Thus, for r = 1 we can combine the above identity with (18), and obtain the following connecting relations:

(20)

B
[m−1]
0 (x) = V

[m−1,1]
0 (x)

B
[m−1]
1 (x) = V

[m−1,1]
1 (x)− x

π
V

[m−1,1]
0 (x)

B[m−1]
n (x) = V [m−1,1]

n (x)− nx

π
V

[m−1,1]
n−1 (x) +

n(n− 1)

4π2
V

[m−1,1]
n−2 (x), n ≥ 2,

Hence, as a straightforward consequence of (18) and (19), the HBG polynomials V
[m−1,1]
n (x) and V

[m−1,0]
n (x)

are related by means of the following identities:

(21)

2πV
[m−1,1]
0 (x) = V

[m−1,0]
0 (x)

2πV
[m−1,1]
1 (x)− 3xV

[m−1,1]
0 (x) = V

[m−1,0]
1 (x)− x

π
V

[m−1,0]
0 (x)

2πV [m−1,1]
n (x)− 3nxV

[m−1,1]
n−1 (x) +

(
n(n− 1)

2π
+

n(n− 1)x2

π

)
V

[m−1,1]
n−2 (x)− n(n− 1)(n− 2)x

4π2
V

[m−1,1]
n−3 (x)

= V [m−1,0]
n (x)− nx

π
V

[m−1,0]
n−1 (x) +

n(n− 1)

4π2
V

[m−1,0]
n−2 (x), n ≥ 2.

Using (13), (14), and employing a matrix approach, we can obtain a matrix representation for V
[m−1,α]
n (x),

n ≥ 0. In order to implement that, we follow some ideas from [7,8].

First of all, we must point out that for r = 0, 1, . . . , n, Equations (13) and (14) allow us to deduce the following

matrix form of V
[m−1,α]
r (x):

(22) V [m−1,α]
r (x) = C(α)

r (x)B[m−1](x), r = 0, 1, . . . , n,

where

C(α)
r (x) =


[(

r
r

)Γ(r+α)
πrΓ(α)C

(α)
r (x)

(
r

r−1

)Γ(r−1+α)
πr−1Γ(α) C

(α)
r−1(x) · · · C

(α)
0 (x) 0 · · · 0

]
, if α ̸= 0,

[(
r
r

)
r!

πr−1C
(0)
r (x)

(
r

r−q

) (r−1)!
πr−2 C

(0)
r−1(x) · · · C

(0)
0 (x) 0 · · · 0

]
, if α = 0,

the null entries of the matrix C
(α)
r (x) appear (n − r)-times, and the matrix B[m−1](x) is given by B[m−1](x) =[

B
[m−1]
0 (x) B

[m−1]
1 (x) · · · B[m−1]

n (x)
]T

.

Now, for α ∈ (−1/2,∞), let C(α)(x) be the (n+1)× (n+1) whose rows are precisely the matrices C
(α)
r (x) for

r = 0, 1, . . . , n. That is,

C(α)(x) =



C
(α)
0 (x) 0 · · · 0(

1
1

)Γ(1+α)
πΓ(α) C

(α)
1 (x) C

(α)
0 (x) · · · 0

(
2
2

)Γ(2+α)
π2Γ(α)C

(α)
2 (x)

(
2
1

)Γ(1+α)
πΓ(α) C

(α)
1 (x) · · · 0

...
...

. . .
...(

n
n

)Γ(n+α)
πnΓ(α)C

(α)
n (x)

(
n

n−1

)Γ(n−1+α)
πn−1Γ(α) C

(α)
n−1(x) · · · C

(α)
0 (x)


, α > −1

2
, α ̸= 0,
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and from (8):

C(0)(x) =



1 0 · · · 0(
1
1

)
πT1(x) 1 · · · 0(

2
2

)
1
πT2(x)

(
2
1

)
T1(x) · · · 0

...
...

. . .
...(

n
n

)
n!

(2π)n−1Tn(x)
(

n
n−1

) (n−1)!
(2π)n−2Tn−1(x) · · · 1


.

It is clear that the matrix C(α)(x) is a lower triangular matrix for each x ∈ R, so that det
(
C(α)(x)

)
= 1.

Therefore, C(α)(x) is a nonsingular matrix for each x ∈ R and α ∈ (−1/2,∞).

Theorem 3.3. For a fixed m ∈ N and any α ∈ (−1/2,∞), let
{

V
[m−1,α]
n (x)

}
n≥0

be the sequence of HBG

polynomials. Then, the following matrix representation holds.

V[m−1,α](x) = C(α)(x)B[m−1](x),(23)

where V[m−1,α](x) =
[
V

[m−1,α]
0 (x) V

[m−1,α]
1 (x) · · · V

[m−1,α]
n (x)

]T
.

The following examples show how Theorem 3.3 can be used.

Example 3.1. Let us consider m = 1, n = 3, and α = 1, then,

(24) B(x) =
(
C(1)(x)

)−1

V[0,1](x) =



1 0 0 0

x
π 1 0 0

4x2−1
2π2

2x
π 1 0

6x3−3x
π3

3(4x2−1)
2π2

3x
π 1



−1

V[0,1](x),

where

V[0,1](x) =



1(
1 + 1

π

)
x− 1

2(
1 + 2

π + 1
π2

)
x2 −

(
1 + 1

π

)
x+ 1

6 − 1
2π2(

1 + 3
π + 6

π2 + 6
π3

)
x3 − 3

2

(
1 + 2

π + 2
π2

)
x2 + 1

2

(
1 + 1

π − 3
π2 − 6

π3

)
x+ 3

4π2


.

Since

(
C(1)(x)

)−1

=



1 0 0 0

x
π 1 0 0

4x2−1
2π2

2x
π 1 0

6x3−3x
π3

3(4x2−1)
2π2

3x
π 1



−1

=



1 0 0 0

− x
π 1 0 0

1
2π2 − 2x

π 1 0

0 3
2π2 − 3x

π 1


,

then (24) becomes

B(x) =



1

x− 1
2

x2 − x+ 1
6

x3 − 3
2x

2 + 1
2x


.
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That is, the entries of the matrix B(x) are the first four classical Bernoulli polynomials.

It is worth noting that for α = m = 1, the HBG polynomials V
[0,1]
n (x) coincide with the GBG polynomials

V
(1)
n (x), for all n ≥ 0 (cf. [7]).

Example 3.2. Let m = n = 3 and α = − 1
4 . From (23), we obtain

C(− 1
4 )(x)B[2](x) =



1 0 0 0

− x
4π 1 0 0

− 3
16π2

(
x2 − 2

3

)
− x

2π 1 0

− 21
64π3

(
x3 − 6x

7

)
− 9

16π2

(
x2 − 2

3

)
− 3x

4π 1





6

6x− 3
2

6x2 − 3x+ 3
20

6x3 − 9x2

2 + 9x
20 + 3

80



=



6

− 3x
2π + 6x− 3

2

−45x2+6π2(40x2−20x+1)+30π(1−4x)x+30

40π2

3(−6π2x(40x2−20x+1)+15x(6−7x2)−15π(12x3−3x2−8x+2)+π3(320x3−240x2+24x+2))
160π3


.

Straightforward calculations show that this last matrix coincides with

V[2,− 1
4 ](x) =



6

6
(
1− 1

4π

)
x− 3

2

6
(
1− 1

2π − 3
16π2

)
x2 − 3

(
1− 1

4π

)
x+ 3

20 + 3
4π2

6
(
1− 3

4π − 9
16π2 − 21

64π2

)
x3 − 9

2

(
1− 1

2π − 3
16π2

)
x2 + 9

4

(
1
5 − 1

20π + 1
π2 + 3

4π3

)
x+ 3

80 − 9
16π2


.

Hence, C(− 1
4 )(x)B[2](x) = V[2,− 1

4 ](x).

We can now proceed as outlined in [8]. From the summation Formula (4) it follows

B[m−1]
r (x) = M[m−1]

r T(x), r = 0, 1, . . . , n,

where

(25) M[m−1]
r =

[(
r
r

)
B

[m−1]
r

(
r

r−1

)
B

[m−1]
r−1 · · ·

(
r
0

)
B

[m−1]
0 0 · · · 0

]
,

the null entries of the matrix M
[m−1]
r appear (n− r)-times, and T(x) =

[
1 x · · · xn

]T
.

Analogously, by (25) the matrix B[m−1](x), can be expressed as follows:

B[m−1](x) = M[m−1]T(x)

=



B
[m−1]
0 0 · · · 0(

1
1

)
B

[m−1]
1

(
1
0

)
B

[m−1]
0 · · · 0(

2
2

)
B

[m−1]
2

(
2
1

)
B

[m−1]
1 · · · 0

...
...

. . .
...(

n
n

)
B

[m−1]
n

(
n

n−1

)
B

[m−1]
n−1 · · ·

(
n
0

)
B

[m−1]
0


T(x).(26)
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Notice that according to (25) the rows of the matrix M[m−1] are precisely the matrices M
[m−1]
r for r = 0, . . . , n.

Furthermore, the matrix M[m−1] is a lower triangular matrix, so that det
(
M[m−1]

)
= (m!)n+1. Therefore, M[m−1]

is a nonsingular matrix.

Another interesting algebraic property of the HBG polynomials is related with the following matrix-inversion
formula.

Theorem 3.4. For a fixed m ∈ N and any α ∈ (−1/2,∞), let
{

V
[m−1,α]
n (x)

}
n≥0

be the sequence of HBG

polynomials. Then, the following formula holds.

(27) T(x) =
(
Q[m−1,α](x)

)−1

V[m−1,α](x),

where Q[m−1,α](x) = C(α)(x)M[m−1].

A simple and important consequence of Theorem 3.4 is:

Corollary 3.1. For a fixed m ∈ N and any α ∈ (−1/2,∞) the set
{

V
[m−1,α]
0 (x), . . . ,V

[m−1,α]
n (x)

}
is a basis for

Pn, n ≥ 0, i.e.,

Pn = span
{

V
[m−1,α]
0 (x),V

[m−1,α]
1 (x), . . . ,V [m−1,α]

n (x)
}
.

We finish this section with the following new result:

Theorem 3.5. For a fixed m ∈ N and any α = r ∈ N, the polynomials y = Aj,k(x)V
[m−1,r]
n−k−r (x), with Aj,k(x) =

(−1)j

2kπk+r

(
r
j,k

)
xj, satisfy the following ordinary differential equation:

(28)

∑
j+k=r

(
B

[m−1]
n

(n− k − r)!
y(n) +

nB
[m−1]
n−1

(n− k − r)!
y(n−1) + · · ·+ n(n− 1) · · · 3

(n− k − r)!
B

[m−1]
2 y′′

+(m− 1)!

(
1

m+ 1
− x

)
n!

(n− k − r)!
y′ +m(m− 1)!

n!

(n− k − r)!
y

)
= 0.

Proof. Using (18) and taking V
[m−1,r]
n−k−r (x) = 0 for n− k − r < 0 we can deduce that

B[m−1]
n (x) =

∑
j+k=r

(−1)j

2kπk+r

(
r

j, k

)
xj n!

(n− k − r)!
V

[m−1,r]
n−k−r (x)

=
∑

j+k=r

Aj,k(x)
n!

(n− k − r)!
V

[m−1,r]
n−k−r (x).

Hence the substitution of this last identity into (7) yields (28).

4. Concluding remarks

In the present paper, we collect some recent results concerning mixed-type hypergeometric Bernoulli-
Gegenbauer polynomials and use some them to deduce an ordinary differential equation satisfied by these polyno-
mials (Theorem 3.5). Since the HBG polynomials do not fulfill either Hanh or Appell conditions (see Theorem 3.1)
we can conclude that a general methodology involving operational methods could fail for this family of polynomials
(see for instance, [8]).

Furthermore, we provided some examples to illustrate that the class of HBG polynomials does not generalize
to the classical Bernoulli polynomials, although the latter can be recovered using Theorem 3.3. Unfortunately, the
numerical evidence suggests that the zero distribution of the HBG polynomials does not align with the behavior
of either Bernoulli hypergeometric polynomials or Gegenbauer polynomials.

Finally, the use of Theorem 3.4 and the differential equation (7) allow to prove that the HBG polynomials
satisfy a differential equation of order n (see Theorem 3.5).
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