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Abstract: In control practices, problems of parametric or time-varying uncertainties 

must be dealt with. Robust control based on norm theory and convex and non-convex 

optimization algorithms is a powerful tool to solve these problems in theory, but it is 

employed rarely in applications. In most engineering cases, Proportional-

Integration-Derivative (PID) control is still the most popular method for its easy-to-

tune and controllable properties. The control method proposed in this paper 

integrates the PID control into robust control formulation as a robust Structured 

Static Output Feedback (SSOF) problem of Linear-Parameter-Varying (LPV) 

systems, which can be converted into a Parameter Dependent Bilinear-Matrix-

Inequality (PDBMI) optimization problem. A convex-concave decomposition based 

method is given to solve the proposed PDBMI problem. The proposed solution has a 

simple structure in PID form and can guarantee stability and robustness of the system 

being controlled in the whole operation range with less conservativeness than 

existing solution. 

Keywords: Robust control, gain scheduling, Proportional-Integration-Derivative 

(PID) control, Bilinear-Matrix-Inequality (BMI), Linear-Matrix-Inequality (LMI), 

Linear-Parameter-Varying (LPV) system. 

1. Introduction 

With the development of control theory and engineering, more advanced control 

technologies are invented by the control community. However when it comes to 

control applications in the reality, most of the plants are still controlled by 

Proportional-Integration-Derivative (PID) based control methods [1]. The class of 

PID controllers has some advantages beyond most of the advanced control methods: 

first, it is easy to tune because it has only three parameters in every single channel 

and each of them has a clear physical meaning; second, knowledge about controlled 

plant can be applied conveniently to determine the control structure, i.e. which 

outputs are feedback to the controller. However, the PID control method is only valid 
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for Linear-Time-Invariant (LTI) system with Single-Input-Single-Output (SISO) in 

theory. While in control practice, most of the controlled plants are nonlinear, time-

variant and uncertain to some degree. For these cases, the PID control with constant 

gains would not work well, and then an “engineering-oriented” method called “Gain-

Scheduled (GS) PID” is introduced to solve the problem [2]. The traditional GS PID 

control uses a “divide and conquer” philosophy, i.e., the nonlinear time-varying plant 

is linearized at several frozen points and thus converted into a family of LTI plants. 

Then a bank of PID controllers is designed for the LTI family. After that, an 

interpolation or switching of the PID gains produces a gain-scheduling [3]. The GS 

PID has been proven to be effective in many engineering cases. However, when it 

comes to theoretical aspects, GS PID is not valid, because there is no guarantee on 

robustness performance and even stability for the whole operation range [4].  

To overcome the disadvantages above, Shamma proposed the LPV system in 

his doctoral thesis [5]. LPV system has the same form as LTI system but the system 

matrices are varying with some parameters while the nonlinearity is reflected by such 

variation. Therefore it can be used to control nonlinear time-variant systems and the 

linear control theory can be extended to LPV system [6]. The authors of this paper 

have recently developed a modeling and control method for a bio-inspired morphing 

fixed-wing unmanned aerial vehicle based on the LPV system [7]. The most fruitful 

aspect should belong to the robust control of LPV system proposed by W u  et al.  [8] 

and B e c k e r  and P a c k a r d  [9]. However, most of research works mainly focus 

on the Dynamic Output Feedback (DOF) control or State Feedback (SF) control 

problem which can be solved via LMI solution. Similar to the LTI case, the DOF and 

SF are well-established in theory but often difficult to be implemented in 

applications. This is because DOF often leads to dynamic controllers of high order 

and plant states are not always available for SF. 

From an applicable viewpoint, combining the theoretical foundation of linear 

robust control and the intuitive and practicability of GS PID control, robust GS PID 

control would be a satisfactory solution. Several literatures [10-14] on the problem 

can be found, but most of the researches are based on the Quadratic Stability (QS) 

theory, which uses a single Lyapunov function along with a controller with fixed 

gains [10] solved via Bilinear-Matrix-Inequality (BMI) for the whole operation 

envelope, which would be much conservative. [12, 14] propose robust GS PID 

control for Affine LPV (ALPV) systems with polytope uncertainties. However, the 

affine assumption cannot be held in some cases. Similar to Static Output Feedback 

(SOF) control of LTI system, the main difficulty is to solve the BMIs, especially for 

parameter-dependent BMIs in the case of robust GS PID control. 

This paper proposes a LPV based design method for robust GS PID control, 

which is based on the parameter-dependent Lyapunov theory, and furthermore, 

formulates the problem as a GS SSOF control of LPV system. Then a convex-

concave decomposition based algorithm is proposed to solve the PDBMIs. The 

numerical result shows that the proposed solution is feasible and less conservative 

than the solution in [10]. The main works in this paper are based on the research 

results in literature [10, 11]. We extend them to the parameter dependent case with a 

structured controller, which is less conservative and more practical. 
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2. Preliminaries 

2.1. LPV System and Its robust stability 

The plant considered throughout this paper can be described by LPV system as 

follows: 

(1)   

1 2

1 11 12

2 21

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ,

x A x B w B u

z C x D w D u

y C x D w

  

  

 

  


  
  

 

where xn
Rx  denotes the state vector, wn

Rw and un
Ru  represent the 

disturbance and control input vectors, respectively, yn
Ry  and zn

Rz  are the 

measured and controlled output vectors, respectively. 
 n

R  stands for the vector of varying parameters. The parameters and 

their variation rates are both bounded, i.e.,   is a hyper rectangle and 
 n

R  , with   being a hyper rectangle as well. 

LPV system is indeed a sub-kind of nonlinear system because of parameter-

variation [6]. The robust stability problem of LPV system is often dealt with using 

the Quadratic Stability (QS) theory, which provides a single Lyapunov function for 

the whole parameter trajectory, and thus leads to a conservative result. The method 

used in this paper is based on a Parameter-Dependent QS (PDQS) theory, which can 

be described below. 

Lemma 1.  The LPV system as 

(2)   ( ) ,x A x  

is parameter dependent quadratically stable if and only if there exists a parameter 

dependent symmetric matrix P meeting the following conditions, :   

(3)   
T ( ) ( ) ( ) ( ) 0,A P P A P       

( ) 0,P    .   

P r o o f : This can be proved by choosing a quadratic Lyapunov function as 

follows: 

(4)   
T( ) ( ) .V x x P x  

And then using the Lyapunov stability theory, i.e., letting the following 

conditions hold: 

(5)   ( ( )) 0,V x t   

( ( ))
0.

dV x t

dt
  

It will be easy to prove that (5) is equivalent to (3).  

Based on Lemma 1, the bound real lemma (BRL) for LPV system can be 

obtained. 
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Theorem 1. The LPV system as 

(6)   
( ) ( )

( ) ( )

x A B x

y C D u

 

 

     
     

     
 

is parameter dependent quadratic stable with H  norm less than  , if and only if 

there exists a parameter dependent symmetric matrix P satisfying the following 

LMIs: 

(7)   

T T

T T 0,

A P PA P PB C

B P I D

C D I





  
 

  
 
  

 

0,P   .   

Here all of the matrix variables are functions of  , and as so the symbol of function 

is omitted for the sake of convenience.  

Theorem 1 can be proven using Lemma 1 and the BRL condition for LTI 

system, the proof can be found in [15]. 

2.2. Problem statement 

The problem considered in this paper is to design a practical PID or PI controller for 

system (1) to make sure that the closed system satisfies the conditions in Theorem 1, 

which can be summarized as Problem 1. 

Problem 1. For system (1), denoted as G(), find a structured PID (or PI) 

controller denoted as K() that can be described as follows: 

(8)   
I I I P P D D

,

.

Ix y

u K S x K S y K S y




  
 

Try to make sure that the closed loop system  

(9)   cl LFT( , ),T G K  

meets the conditions in Theorem 1. 

In the Problem 1, KP, KI and KD are parameter dependent matrix gains in the 

Proportional, Integral and Derivative channel, respectively. SP, SI and SD are diagonal 

matrices with the diagonal elements being either 0 or 1. These matrices will act as the 

structured matrices for the corresponding channel, which determine which outputs 

feedback to the controller. For example, a structured integral matrix as  

I

1 0 0

0 0 0 ,

0 0 1

S

 
 


 
  

 

means the 1st and 3rd outputs are feedback to controller in the integral channel. 

Moreover, for instance, forcing the matrix KD to null will lead to a PI controller. 
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3. Robust controller design 

3.1. Robust SOF control 

Similar to the LTI case, a PID control design problem can always be converted to a 

Static Output Feedback (SOF) control design problem. Thus the SOF control problem 

is investigated before solving the PID control problem. The following theorem can 

be derived from Theorem 1 by extending the result in [10] to the parameter dependent 

case. 

Theorem 2. The system (1) can be stabilized via parameter dependent SOF with 

an H∞ norm of the closed loop system less than γ if and only if there exist a parameter 

dependent matrix Ky and parameter dependent positive definite symmetric matrix P 

such that the following conditions are satisfied: 

(10)   

cl

T T
cl cl cl

T T
cl cl

cl cl

0,

A P PA P PB C

B P I D

C D I





  
 

  
 
  

 

where 

cl 2 2 cl 1 2 21

cl 1 12 2 cl 11

, ,

, ,

y y

y

A A B K C B B B K D

C C D K C D D

   

  
 

and the varying parameter  is omitted for brevity. 

P r o o f : Let u=Ky*y and substitute it into (1). Then the closed loop system one 

can get is as follows: 

cl cl

cl cl

( ) ( ) ,

( ) ( ) ,

x A x B w

z C x D w

 

 

 


 
 in which,  

cl 2 2 cl 1 2 21

cl 1 12 2 cl 11

, ,

, .

y y

y

A A B K C B B B K D

C C D K C D D

   

  
 

So, according to Theorem 1, Theorem 2 is proved. 

3.2. Robust GS PID control 

Based on Theorem 2, the solution of Problem 1 in PID case can be derived into the 

following theorem. 

Theorem 3. The PID case of Problem 1 is solvable if there exist a parameter 

dependent positive definite symmetry matrix P and a parameter dependent matrix Ky 

such that the following conditions are met. 

(11)   

cl

T T
cl cl cl

T T
cl cl

cl cl

0,

A P PA P PB C

B P I D

C D I





  
 

  
 
  

 

where  
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cl 2 2 cl 1 2 21

cl 1 12 2 cl 11

, ,

, ,

y y

y

A A B K C B B B K D

C C D K C D D

   

  
 

with 

(12)    

1 2
1 2

2

P 2

1 1 2 I

D 2 2

21

D 2 1

0
, , ,

0 0 0

0

0 , 0 ,

( ) 0

0

0 ,

A B B
A B B

C

S C

C C C S

S C A C

D

S C B

     
       

    

 
 

 
 
  

 
 


 
  

 



















3

2

1

K

K

K

K y , , 1, 2, 3,u yn n

iK R i


   

and D 2 2 3I S C B K  is invertible.  

If Problem 1 is solvable, a possible set of PID gains can be expressed as follows: 

(13)   

D 3 D 2 2 3

P D D 2 2 1

I D D 2 2 2

/ ( ),

( ) ,

( ) .

K K I S C B K

K I K S C B K

K I K S C B K

 


 
  

 

P r o o f : Inserting system (1) into (8), the following equations can be derived: 

(14)   I 2 ,x C x  

(15)    

P P 2 I I D D 2 1 2

1

D D 2 2 I I I P P 2 D D 2

D D 2 D D 2 1

( )

( (

) ).

Iu K S C x K S x K S C Ax B w B u

I K S C B K S x K S C K S C

K S C A x K S C B w



     

    

 

 

Let  
T

Ix x  , define the system matrices as (12) and formulate a new 

system as 

(16)   

1 2

1 11 12

2 21

,

,

.

A B w B u

S z C D w D u

y C D w

 





   


   


 

 

Let   
1

D D 2 2I K S C B


   , then Ky can be rewritten as 
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(17)   

P

I

D

.y

K

K K

K

 
 

 
 
  

 

Then (15) can be written as 

(18)    2 21 .y yu K C D w K y    

Thus Problem 1 is equivalent to the parameter dependent SOF problem of 

system (16). The PID gain matrices can be solved through (17) or (13).   

Theorem 3 can be used to solve the PID case of Problem 1 in theory, but when 

it comes to engineering, Theorem 3 may not be applicable for the following reasons: 

1. Derivative of the output matrix C2 is indispensable, but explicit relationship 

between C2 and the varying parameters is often unavailable. 

2. Realization of the derivative action often leads to high frequency dynamics 

(poles with large amplitude), which is difficult to be implemented in restricted 

hardware. 

3. I+SDC2B2K3 must be invertible in the whole parameter region, which cannot 

be guaranteed in the design progress. 

3.3. Robust GS PI Control 

PI control is usually much more applicable in applications and the following Theorem 

can be used to solve the PI case of Problem 1. 

Theorem 4. The PI case of Problem 1 is solvable if there exist a parameter 

dependent positive definite symmetry matrix P and a parameter dependent matrix Ky 

such that the following conditions are satisfied. 

(19)   

cl

T T
cl cl cl

T T
cl cl

cl cl

0,

A P PA P PB C

B P I D

C D I





  
 

  
 
  

 

where  

cl 2 2 cl 1 2 21

cl 1 12 2 cl 11

, ,

, ,

y y

y

A A B K C B B B K D

C C D K C D D

   

  
 

with 

(20)   

 

1 2
1 2

2

P 2
1 1 2

I

0
, , ,

0 0 0

0
0 , ,

0

A B B
A B B

C

S C
C C C

S

     
       

    

 
   

 

 











2

1

K

K
K y , , 1, 2.u yn n

iK R i


   

Then the solution of Problem 1 in PI case is  
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(21)   
P 1

I 2

,

.

K K

K K





 

Theorem 4 can be readily proven by forcing KD to zero along the track in 

Theorem 3. 

It is noticed that, the proposed solution in Theorem 3 and Theorem 4 converts 

the robust GS PID control problem into a parameter dependent SOF problem, which 

will lead to convex optimization problem with parameter dependent BMI constraints. 

The following section in this paper focuses on solving the parameter dependent 

BMIs. 

4. The proposed PDBMI solution 

4.1. Quadratic decomposition of BMI 

This section presents a solution of BMI for a kind of optimization problem with BMI 

constraints as follows: 

(22)   
T T

min ( ),

s.t. ( ) 0,

,

f x

X Y Y X

x




 
 


 

where : m n nX R R   is a matrix function of x as well as Y and f  is a convex function 

of x. 

The BMI constraint in (22) is a frequent case arisen from robust control theory, 

including the SOF problem. The following results can convert such BMI constraint 

into an LMI constraint which can be solved efficiently by means of interior-point 

methods using some open-source software tools such as SeDuMi [16]. 

Lemma 2. The BMI constraints in (22) can be decomposed into the difference 

of two quadratic matrix functions as follows: 

(23)    T T 1
( ) ( ) ,

2
X Y Y X Q X Y Q X Y      

where  

(24)   
T( ) ,Q F F F  

is a quadratic function of matrix F. 

P r o o f :  

 

T T

T T T T T T T T

T T T T

1
( ) ( )

2
1

( ) ( ) ( ) ( )
2

1
( ) ( )

2
1

2* 2* ,
2

Q X Y Q X Y

X Y X Y X Y X Y

X X X Y Y X Y Y X X X Y Y X Y Y

X Y Y X X Y Y X

   

       
 

         
 

    
 
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i.e., the right side equals the left side, Lemma 2 is proved. 

Theorem 5. For matrix value mapping: 

, : ,m n nX Y R R   

The following inequality holds: 

(25)   
T T ( ) ( ),X Y XY Q X Q Y    

and “=” holds only when  

(26)   det( ) 0.X Y   

P r o o f : Let 

(27)   .F X Y   

Using the property of quadratic matrix, we can get the following condition,  

(28)   
T( ) 0,Q F F F   

in which the “=” holds only when det(F)=0, 
T

T T T T

T T T T

( ) 0 ( ) ( ) 0

0

(25).

Q F X Y X Y

X X Y Y X Y Y X

X Y Y X X X Y Y

     

     

    

 

Finally, Theorem 5 is proven.  

Then the optimization problem of (22) can be converted to convex problem with 

LMI constraints in the following steps. 

Using Lemma 1, the inequality in (22) can be reformulated as 

(29)   ( ) ( ) 0.Q X Y Q X Y     

Suppose there is a feasible solution of X0 and Y0, let 

(30)   0 0 0, , ,M X Y N X Y N X Y       

(31)   ( ), ( ),G Q M H Q N   

(32)   
T T T

0 0 0 0 0.H N N N N N N    

Using Theorem 5, we can get 

(33)   0 .H H  

Therefore 

(34)   0 0,G H   

is a sufficient condition of the BMI constraint in (22). The equation (34) can be 

written as: 

(35)   
T

0 0.M M H   

Using the Schur Complement Theorem [15], (35) is equivalent to the following 

LMI: 

(36)   

T
0 0.

H M

M I

 
 

 
 

Then, the problem of (22) can be converted to a convex optimization problem 

with LMI constraint. 
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4.2. Application on the SOF problem 

In this section, we will apply the quadratic decomposition method to the parameter 

dependent H∞  SOF problem in Theorem 2, the following algorithm can be derived. 

Step 1. Find an initial feasible solution 

It is often difficult to find a feasible solution for (10) straightforward. The 

following steps can be performed to determine an initial solution. 

Step 1.1. Find a feasible solution for the following LMI: 

(37)   

T T T
0 0 0 2 2 0

0

0,

0,

X A AX F B B F

X

   


 

in which F0 is parameter dependent but X0 is constant. Actually, a feasible state 

feedback gain F0 is solved with a fixed Lyapunov function. 

Step 1.2. Let 

(38)   
0 0 0 2/ * ,K F X C  

where 2C
 is the Moore-Penrose inverse of 2C . Then use 0K  as yK  to minimize   

with the constraint of inequality (10), if any solution of 
*

0P and 
*

0  is obtained, then 

( 0K , 
*

0P ,
*

0 ) is a feasible solution for inequality (10). 

Step 2. Apply the Quadratic Decomposition iteratively to solve the BMI 

Using procedures in Subsection 4.1 with the feasible solution solved in Step 1 

as an initial point, the BMI in (10) can be converted to the following LMI: 

(39)   

T T
1 F F

T T
1 11

F 11

F

( )

0
0,

0

0 0 2

kH P PB C A P

B P I D

C D I

A P I





    
 
   

   
 
  

 

where  

(40)  
T T T

F F F F F F[( ) ( ) ( ) ( ) ( ) ( )]
,

2

k k k k k k k k
k

A P A P A P A P A P A P
H

       
  

and  

(41)   F 2 2 ,yA A B K C   

(42)   F 12 2 ,yC A D K C   

in which variables with subscript k stand for the expressions calculated using the 

results in the k-th iteration. 

Then, let k = k+1 and denote the solution of (39) with subscript k to continue the 

iteration of Step 2 until the stop condition of  

(43)   1 ,k k      

is achieved, where   is a small value near 0 (will be chosen empirically as 0.0005 in 

this paper). 
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5. umerical example 

The LPV system in the example of [10] is used to illustrate the solution proposed in 

this paper so as to generate comparisons to the solution proposed in [10]. Assuming 

that 

(44)   0 1 1 2 2 ,y y y yK K p K p K    

and 

(45)   0 1 1 2 2 ,P P p P p P    

are consistent to the problem in [10], the structured matrices are chosen as follows: 

(46)   I

1 0 0

0 1 0

0 0 0

S

 
 


 
  

, P .S I  

Using the solution based on QS in [10] with a fixed gain matrix Ky, an optimal 

value of  

(47)   =0.6843 

is achieved. By virtue of the proposed solution, a parameter dependent gain matrix is 

obtained using (44): 

(48)   

0

1

2

4.6, 6.4,2.71,4.7, 1.63
,

7.16, 5.18,2.48, 1.06, 2.16

67.8, 54.88,25,5.43, 14.8
,

31.8,24.8, 11.4, 1.13,7.7485

8.05, 4.74,4.51, 4, 6.65
,

11.3, 7.8, 2.86, 0.01, 2.77

y

y

y

K

K

K

    
  

    
    

  
  

    
  

     





 

and an optimal value of  

(49)   =0.6245 

is obtained. It is obvious that the obtained value is less than the result presented in 

the solution in [10] as shown in (47). 

6.  Conclusions 

In this paper, the robust GS PID control problem for LPV system is investigated and 

a solution based on parameter dependent Lyapunov function is proposed, which leads 

to a convex optimization problem with parameter dependent BMI constraints. A 

Quadratic Decomposition based algorithm is proposed and applied to the robust GS 

SOF problem. The numerical example shows that the proposed solution is effective 

and less conservative than the solution in [10]. 

However it is also noticed that, Theorem 5 leads to a sufficient condition to 

transform BMIs to LMIs. That is to say, the algorithm is also conservative and the 

result in this paper may not be the optimal solution but a suboptimal one, instead. 
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