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Abstract: There are several classes of decision-making prob-
lems that explicitly or implicitly prompt fractional programming
problems. Portfolio selection problems, agricultural planning, in-
formation transfer, numerical analysis of stochastic processes, and
resource allocation problems are just a few examples. The huge
number of applications of minimax fractional programming prob-
lems inspired us to work on this topic. This paper is concerned with
a nondifferentiable minimax fractional programming problem. We
study a parametric dual model, corresponding to the primal prob-
lem, and derive the sufficient optimality condition for an optimal
solution to the considered problem. Further, we obtain the various
duality results under (p, r)-ρ-(η, θ)-invexity assumptions. Also, we
identify a function lying exclusively in the class of (−1, 1)-ρ-(η, θ)-
invex functions but not in the class of (1,−1)-invex functions and
convex function already existing in the literature. We have given
a non-trivial model of nondifferentiable minimax problem and ob-
tained its optimal solution using optimality results derived in this
paper.

Keywords: minimax fractional programming, optimality con-
ditions, duality, generalized invexity

1. Intoduction

In the field of mathematical programming, minimax problems are optimization
problems that involve both minimization and maximization processes. Minimax
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is a decision rule used to minimise the possible loss in the worst-case (maximum
loss) scenario. Engineering design, circuit design, and optimal control provide
the examples of minimax problems. Fractional programming is an intriguing
topic, in these types of problems the objective function is generally presented
as a ratio function. A variety of decision-making problems lead directly or indi-
rectly to fractional programming problems. There has been extensive research
into the properties of fractional programming problems, see Ahmad and Husain
(2006), Du and Pardalos (1995), Husain et al. (2009), Lai and Lee (2002). Some
examples of fractional programming are related to system efficiency measures,
portfolio selection problems, agricultural planning, information transfer, numer-
ical analysis of stochastic processes, resource allocation problems, cargo loading
problems, etc. In physics, maximization of signal-to-noise ratio of a spectral
filter gives rise to concave quadratic fractional program, which was studied by
Falk (1969). This large number of applications motivated us to work on the op-
timality and duality conditions of minimax fractional programming problems.

In the line of the above, during the last period, much attention has been paid
to minimax fractional programming problems. Earlier, Schmitendorf (1977)
obtained necessary and sufficient conditions for static minimax problems. See
also Ahmad (2003), Jayswal (2002), Long and Quan (2011) for further informa-
tion on the respective optimality and duality theorems for minimax fractional
programming problems. Tanimoto (1981) applied these conditions to a dual
problem and proved various duality results. Liu and Wu (1998) established
the sufficient conditions, parametric dual and parameter free dual for general-
ized fractional programming under (F, ρ)-convex functions. Zheng and Cheng
(2007) studied the KKT type sufficient optimality conditions and established
duality results for parametric dual and parameter free duals, corresponding to a
non differentiable minimax fractional problem, with inequality constraints under
(F, ρ, θ)-d-univex function. A parametric dual model for minimax fractional pro-
gramming problem was studied by Ahmad et al. (2011). Lai and Liu (2011)
employed the elementary method and technique to prove the optimality condi-
tions for nondifferentiable minimax fractional programming problem, involving
convexity, and further formulated a parametric dual. Khan and Al-Solamy
(2015) obtained sufficient optimality conditions and duality relations for non-
differentiable minimax fractional programming problem under (Hp, r)-invexity.
More recently, Antczak, Mishra and Upadhyay (2018) established optimality
conditions and duality results for generalized fractional minimax programming
problems. Dubey and Mishra (2020) considered a nondifferentiable multiob-
jective fractional programming problem over cone constraints and further for-
mulated a higher-order symmetric dual, establishing various duality results.
Boufi and Roubi (2019) studied the duality results and the dual bundle meth-
ods for minimax fractional programs. Finally, Son and Kim (2021) proposed
a dual scheme for solving linear countable semi-infinite fractional programming
problems.

In this paper, we consider the following nondifferentiable minimax fractional
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programming problem:

(NFP ) Minimize ψ(s) = sup
y∈Y

d(s, y) + (sTLs)1/2

e(s, y)− (sTNs)1/2
,

subject to h(s) ≤ 0,

where Y is a compact subset of Rl
′

, d(·, ·) : Rn×Rl
′

→ R, e(·, ·) : Rn×Rl
′

→ R
are C1 functions on Rn×Rl

′

and h(·) : Rn → Rm is C1 function on Rn. L and N
are n×n positive semidefinite matrices. We assume that e(s, y)−(sTNs)1/2 > 0
and d(s, y)+(sTLs)1/2 ≥ 0 for each (s, y) ∈ S×Y , where S = {s ∈ Rn : h(s) ≤
0} denotes the set of all feasible solutions of (NFP).

Antczak (2001) introduced p-invex sets and (p, r)-invex functions and estab-
lished sufficient conditions for a nonlinear programming problem under (p, r)-
invexity assumptions. Further generalization of (p, r)-invex functions was stud-
ied by Mandal and Nahak (2011), leading to (p, r)-ρ-(η, θ)-invex functions. Re-
cently, higher-order duality results for nondifferentiable minimax fractional pro-
gramming problem were derived by Sonali et al. (2020) using generalized B-
(p, r)-invex functions. In this article, we derive duality theorems in order to
relate nondifferentiable minimax fractional programming problem and its para-
metric dual model under (p, r)-ρ-(η, θ)-invexity assumptions.

This paper is structured as follows. Section 2 reviews (p, r)-ρ-(η, θ)-invex
functions and sufficient optimality conditions for optimal solution to the non-
differentiable minimax fractional programming problem. Along with this, we
have formulated an example, which is (−1, 1)-ρ-(η, θ)-invex but not (1,−1)-
invex and not convex. Further, a parametric dual model and duality results are
discussed under aforesaid assumptions in Section 3. Also in Section 3, we have
given the non-trivial example of the given model, validating our results.

2. Notations and preliminaries

For each (s, y) ∈ S × Y and M = {1, 2, . . . ,m}, we define

J(s) = {j ∈M : hj(s) = 0},

Y (s) =

{

y ∈ Y :
d(s, y) + (sTLs)1/2

e(s, y)− (sTNs)1/2
= sup

b∈Y

d(s, b) + (sTLs)1/2

e(s, b)− (sTNs)1/2

}

,

K(s) =

{

(q, ξ, ȳ) ∈ N ×Rq+ ×Rl
′

: 1 ≤ q ≤ n+ 1, ξ = (ξ1, ξ2, . . . , ξq) ∈ Rq+,

q
∑

i=1

ξi = 1, ȳ = (ȳ1, ȳ2, . . . , ȳq), ȳi ∈ Y (s), i = 1, 2, . . . , q

}

.

Since d and e are continuously differentiable and Y is compact in Rl
′

, it follows
that for each s∗ ∈ S, Y (s∗) 6= φ, and for any ȳi ∈ Y (s∗), we have a positive
constant

k0 = ψ(s∗) =
d(s∗, ȳi) + (s∗TLs∗)1/2

e(s∗, ȳi)− (s∗TNs∗)1/2
.
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Definition 1 (Mandal and Nahak, 2011) Let ϕ : X → R (where X ⊂ Rn)
be a differentiable function and let p, r be arbitrary real numbers. Then, ϕ is
said to be (p, r)-ρ-(η, θ)-invex (strictly (p, r)-ρ-(η, θ)-invex) with respect to η and
θ at u ∈ X on X if there exist η, θ : X ×X → Rn and ρ ∈ R such that for all
s ∈ X, the following inequalities hold

[1

r
(er(ϕ(s)−ϕ(u)) − 1)

]

≥
1

p
∇ϕ(u)(epη(s,u) − 1) + ρ||θ(s, u)||2

(> if s 6= u) for p 6= 0, r 6= 0,

[1

r
(er(ϕ(s)−ϕ(u)) − 1)

]

≥
[

∇ϕ(u)η(s, u)
]

+ ρ||θ(s, u)||2

(> if s 6= u) for p = 0, r 6= 0,

(ϕ(s)− ϕ(u)) ≥
1

p
[∇ϕ(u)(epη(s,u) − 1)] + ρ||θ(s, u)||2

(> if s 6= u) for p 6= 0, r = 0,

(ϕ(s)− ϕ(u)) ≥ ∇ϕ(u)η(s, u) + ρ||θ(s, u)||2 (> if s 6= u) for p = 0, r = 0.

Let us consider an example to understand the importance of the above given
functions.

Example 1 Let X = [3.5, 5.5] ⊂ R. Consider the function f : X → R, defined
by f(x) = log(log(x)). Let η(x, u) = 10u and θ(x, u) = x+ u for r = 1, p = −1
and ρ = − 1

2 .

We are going to show that

1

r
[er(f(x)−f(u)) − 1]−

1

p
∇f(u)(epη(x,u) − 1)− ρ ‖θ(x, u)‖

2
≥ 0

at r = 1, p = −1 and ρ = − 1
2 . Indeed, we have

[e(log(log(x))−log(log(u))) − 1] +
1

u log(u)
(e−10u − 1) +

1

2
(x+ u)

=
[ log(x)

log(u)
− 1

]

+
1

u log(u)
(e−10u − 1) +

1

2
(x+ u) ≥ 0 ∀x, u ∈ X.

Hence, f is (−1, 1)-ρ-(η, θ)-invex.

Further, for x = 5.5 and u = 3.5, we have

f(x)− f(u)− (x− u)T∇f(u) = log(log(x))− log(log(u))− (x− u)
1

u log(u)

= −0.14806876 < 0.

Thus, f is not a convex function on x.
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Figure 1. Example 1

Moreover, in order to show that the considered function is not (p, r)-invex
for r = 1 and p = −1, that means, to demonstrate that

1

r
erf(x) −

1

r
erf(u)

[

1 +
r

p
∇f(u)(epη(x, u) − 1)

]

< 0

for r = 1 and p = −1, we calculate

= elog(log(x)) − elog(log(u))
[

1−
1

u log(u)
(e−10u − 1)

]

= log(x)− log(u)
[

1−
1

u log(u)
(e−10u − 1)

]

at x = 3.5 and u = 5.5 this yields

1

r
erf(x) −

1

r
erf(u)

[

1 +
r

p
∇f(u)(epη(x,u) − 1)

]

= −0.6338033 < 0.

Thus, f is not (1,−1)-invex.
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Thus, the function f is (−1, 1)-ρ-(η, θ)-invex but not (1,−1)-invex or convex.

Lemma 1 (Generalized Schwartz inequality) Let G be a semidefinite ma-
trix of order n. Then, for all s, w ∈ Rn,

sTGw ≤ (sTGs)1/2(wTGw)1/2. (1)

The equality holds if Gs = λGw for some λ ≥ 0.

Theorem 1 (Lai et al., 1999) [Necessary Condition] If s∗ is an optimal so-
lution of the problem (NFP) satisfying s∗TLs∗ > 0, s∗TNs∗ > 0, and ∇hj(s

∗), j ∈
J(s∗), are linearly independent, then there exist (q, ξ∗, ȳ) ∈ K(s∗), k0 ∈ R+, w, v ∈
Rn and ζ∗ ∈ Rm+ such that

q
∑

i=1

ξ∗i {∇d(s
∗, ȳi) + Lw − k0(∇e(s

∗, ȳi)−Nv)}+∇
m
∑

j=1

ζ∗j hj(s
∗) = 0, (2)

d(s∗, ȳi) + (s∗TLs∗)1/2 − k0(e(s
∗, ȳi)− (s∗TNs∗)1/2) = 0, i = 1, 2, . . . , q, (3)

m
∑

j=1

ζ∗j hj(s
∗) = 0, (4)

ξ∗i ≥ 0 (i = 1, 2, . . . , q),

q
∑

i=1

ξ∗i = 1, (5)

wTLw ≤ 1, vTNv ≤ 1, (s∗TLs∗)1/2 = s∗TLw, (s∗TNs∗)1/2 = s∗TNv. (6)

In the above theorem, both matrices L and N are positive definite. If one
of s∗TLs∗ and s∗TNs∗ is zero or both of them are zero, then the functions
involved in the objective of the problem (NFP) are not differentiable. To derive
the necessary conditions under this situation, for (q, ξ∗, ȳ) ∈ K(s∗), we define

Zȳ(s
∗) =

{

z ∈ Rn : zT∇hj(s
∗) ≤ 0, j ∈ J(s∗),

with anyone of the following conditions, (i)-(iii), holding
}

:

(i) s∗TLs∗ > 0, s∗TNs∗ = 0.

⇒ zT
(

q
∑

i=1

ξ∗i

{

∇d(s∗, ȳi)+
Ls∗

(s∗TLs∗)1/2
−k0∇e(s

∗, ȳi)

})

+(zT (k20N)z)1/2 < 0,

(ii) s∗TLs∗ = 0, s∗TNs∗ > 0

⇒ zT
(

q
∑

i=1

ξ∗i

{

∇d(s∗, ȳi)− k0

(

∇e(s∗, ȳi)−
Ns∗

(s∗TNs∗)1/2

)})

+ (zTLz)1/2 < 0,

(iii) s∗TLs∗ = 0, s∗TNs∗ = 0

⇒ zT
(

q
∑

i=1

ξ∗i

{

∇d(s∗, ȳi)− k0∇e(s
∗, ȳi)

})

+ (zT (k20N)z)1/2 + (zTLz)1/2 < 0,

If, in addition, we insert the condition Zȳ(s
∗) = φ, then the result of Theorem

1 still holds.
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Remark 1 All the results in this paper will be given only for the case when
p 6= 0, r 6= 0. The proofs for the other cases are easier than for this one. This
follows from the form of inequalities, which are given in Definition 1. Moreover,
without limiting the generality considerations, we shall assume that r > 0.

Theorem 2 (Sufficient Condition) Let s∗ be a feasible solution of (NFP) and
there exist: a positive integer q, 1 ≤ q ≤ n + 1, ξ∗ ∈ Rq+, ȳi ∈ Y (s∗)(i =
1, 2, . . . , q), k0 ∈ R+, w, v ∈ Rn and ζ∗ ∈ Rm+ satisfying the relations (2)-(6).
Assume that

(i)
q
∑

i=1

ξ∗i (d(·, ȳi)+(·)TLw−k0(e(·, ȳi)−(·)TNv)) is (p, r)-ρ1-(η, θ)-invex func-

tion at s∗ with respect to η and θ for all s ∈ S,

(ii)
m
∑

j=1

ζ∗j hj(·) is (p, r)-ρ2-(η, θ)-invex function at s∗ with respect to the same

function η and θ,
(iii) ρ1 + ρ2 ≥ 0.

Then, s∗ is an optimal solution of problem (NFP).

Proof Suppose, to the contrary, that s∗ is not an optimal solution of (NFP).
Then there exists an s̄ ∈ S such that

sup
ȳ∈Y

d(s̄, ȳ) + (s̄TLs̄)1/2

e(s̄, ȳ)− (s̄TNs̄)1/2
< sup
ȳ∈Y

d(s∗, ȳ) + (s∗TLs∗)1/2

e(s∗, ȳ)− (s∗TNs∗)1/2
.

We note that

sup
ȳ∈Y

d(s∗, ȳ) + (s∗TLs∗)1/2

e(s∗, ȳ)− (s∗TNs∗)1/2
=
d(s∗, ȳi) + (s∗TLs∗)1/2

e(s∗, ȳi)− (s∗TNs∗)1/2
= k0,

for any ȳi ∈ Y (s∗), i = 1, 2, . . . , q and

d(s̄, ȳi) + (s̄TLs̄)1/2

e(s̄, ȳi)− (s̄TNs̄)1/2
≤ sup
ȳ∈Y

d(s̄, ȳ) + (s̄TLs̄)1/2

e(s̄, ȳ)− (s̄TNs̄)1/2
.

Therefore, we have

d(s̄, ȳi) + (s̄TLs̄)1/2

e(s̄, ȳi)− (s̄TNs̄)1/2
< k0.

Also from ξ∗i ≥ 0, i = 1, 2, . . . , q, ξ∗ 6= 0 and ȳi ∈ Y (s∗), we get

q
∑

i=1

ξ∗i
[

d(s̄, ȳi) + (s̄TLs̄)1/2 − k0
(

e(s̄, ȳi)− (s̄TNs̄)1/2
)]

< 0. (7)
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Using (1), (3), (6) and (7), we obtain

q
∑

i=1

ξ∗i
[

d(s̄, ȳi) + s̄TLw − k0
(

e(s̄, ȳi)− s̄TNv
)]

≤

q
∑

i=1

ξ∗i
[

d(s̄, ȳi) + (s̄TLs̄)1/2 − k0
(

e(s̄, ȳi)− (s̄TNs̄)1/2
)]

< 0 =

q
∑

i=1

ξ∗i
[

d(s∗, ȳi) + (s∗TLs∗)1/2 − k0
(

e(s∗, ȳi)− (s∗TNs∗)1/2
)]

=

q
∑

i=1

ξ∗i
[

d(s∗, ȳi) + s∗TLw − k0
(

e(s∗, ȳi)− s∗TNv
)]

.

It follows that
q

∑

i=1

ξ∗i
[

d(s̄, ȳi) + s̄TLw − k0
(

e(s̄, ȳi)− s̄TNv
)]

<

q
∑

i=1

ξ∗i
[

d(s∗, ȳi) + s∗TLw − k0
(

e(s∗, ȳi)− s∗TNv
)]

.

(8)

As
q

∑

i=1

ξ∗i
[

d(·, ȳi) + (·)TLw − k0
(

e(·, ȳi)− (·)TNv
)]

is (p, r)-ρ1-(η, θ)-invex at s∗ on S with respect to η and θ, we have that

1

r
(er(A−B) − 1) ≥

≥
1

p

(

q
∑

i=1

ξ∗i
(

∇d(s∗, ȳi) + Lw − k0
(

∇e(s∗, ȳi)−Nv
)))(

epη(s,s
∗) − 1

)

+ ρ1||θ(s, s∗)||2

where

A =

q
∑

i=1

ξ∗i (d(s, ȳi) + sTLw − k0
(

e(s, ȳi)− sTNv
))

B =

q
∑

i=1

ξ∗i
(

d(s∗, ȳi) + s∗TLw − k0
(

e(s∗, ȳi)− s∗TNv
))

holds for all s ∈ S, and so for s = s̄. Using (8), together with the inequality
above, we get

1

p

[

(

q
∑

i=1

ξ∗i
[

∇d(s∗, ȳi) + Lw − k0
(

∇e(s∗, ȳi)−Nv
)])(

epη(s̄,s
∗) − 1

)

]

+ρ1||θ(s̄, s∗)||2 < 0.

(9)
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From the feasibility of s̄, together with ζ∗j ≥ 0, j ∈ J , we have

m
∑

j=1

ζ∗j hj(s̄) ≤ 0. (10)

By (p, r)-ρ2-(η, θ)-invexity of
m
∑

j=1

ζ∗j hj(·) at s∗ on S with respect to the same

function η and θ, we get

1

r
(e
r
( m∑

j=1

ζ∗j hj(s̄)−
m∑

j=1

ζ∗j hj(s
∗)
)

− 1)

≥
1

p

[ m
∑

j=1

∇ζ∗j hj(s
∗)
(

epη(s̄,s
∗) − 1

)

]

+ ρ2||θ(s̄, s∗)||2.

Using (4), (10) and the above inequality, we get

1

p

[ m
∑

j=1

∇ζ∗j hj(s
∗)
(

epη(s̄,s
∗) − 1

)

]

+ ρ2||θ(s̄, s∗)||2 ≤ 0. (11)

By summing up (9) and (11), we obtain

1

p

[

(

q
∑

i=1

[

∇d(s∗, ȳi) + Lw − k0
(

∇e(s∗, ȳi)−Nv
)]

+

m
∑

j=1

∇ζ∗j hj(s
∗)
)(

epη(s̄,s
∗) − 1

)

]

+ (ρ1 + ρ2)||θ(s̄, s∗)||2 < 0.

Using (2), we get

(ρ1 + ρ2)||θ(s̄, s∗)||2 < 0,

which contradicts hypothesis (iii). Hence the result. �

3. Duality results

In this section, we consider the following dual to (NFP):

(NFD) max
(q,ξ,ȳ)∈K(c)

sup
(c,ζ,k,w,v)∈H1(q,ξ,ȳ)

k,

where H1(q, ξ, ȳ) denotes the set of all (c, ζ, k, w, v) ∈ Rn×Rm+ ×R+×Rn×Rn
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satisfying

q
∑

i=1

ξi{∇d(c, ȳi) + Lw − k(∇e(c, ȳi)−Nv)}+∇

m
∑

j=1

ζjhj(c) = 0, (12)

q
∑

i=1

ξi{d(c, ȳi) + cTLw − k(e(c, ȳi)− cTNv)} ≥ 0, (13)

m
∑

j=1

ζjhj(c) ≥ 0, (14)

(q, ξ, ȳ) ∈ K(c), (15)

wTLw ≤ 1, vTNv ≤ 1. (16)

If for a triplet (q, ξ, ȳ) ∈ K(c), the set H1(q, ξ, ȳ) = φ, then we define the
supremum over it to be −∞.

Now we derive the following weak, strong and strict converse duality theo-
rems.

Theorem 3 (Weak duality) Let s be a feasible solution of (NFP) and (c, ζ, k, w, v,
q, ξ, ȳ) be a feasible solution of (NFD). Assume that

(i)
q
∑

i=1

ξi(d(·, ȳi) + (·)TLw − k(e(·, ȳi)− (·)TNv)) is (p, r)-ρ1-(η, θ)-invex at c

with respect to η and θ,

(ii)
m
∑

j=1

ζjhj(·) is (p, r)-ρ2-(η, θ)-invex at c with respect to the same η and θ,

(iii) ρ1 + ρ2 ≥ 0.

Then,

sup
y∈Y

d(s, y) + (sTLs)1/2

e(s, y)− (sTNs)1/2
≥ k. (17)

Proof Suppose, contrary to the above hypothesis, that

sup
y∈Y

d(s, y) + (sTLs)1/2

e(s, y)− (sTNs)1/2
< k.

From the above, we have

d(s, ȳi) + (sTLs)1/2 − k(e(s, ȳi)− (sTNs)1/2) < 0, for all ȳi ∈ Y.

Using (5), we get

ξi(d(s, ȳi) + (sTLs)1/2 − k(e(s, ȳi)− (sTNs)1/2)) < 0, (18)

with at least one strict inequality, since ξ = (ξ1, ξ2, . . . , ξq) 6= 0.
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From (1), (13), (16), and (18), we have

q
∑

i=1

ξi
[

d(s, ȳi) + sTLw − k
(

e(s, ȳi)− sTNv
)]

≤

q
∑

i=1

ξi
[

d(s, ȳi) + (sTLs)1/2 − k
(

e(s, ȳi)− (sTNs)1/2
)]

< 0 ≤

q
∑

i=1

ξi
[

d(c, ȳi) + cTLw − k
(

e(c, ȳi)− cTNv
)]

.

Hence

q
∑

i=1

ξi
[

d(s, ȳi) + sTLw − k
(

e(s, ȳi)− sTNv
)]

<

q
∑

i=1

ξi
[

d(c, ȳi) + cTLw − k
(

e(c, ȳi)− cTNv
)]

.

(19)

Since

q
∑

i=1

ξi
(

d(·, ȳi) + (·)TLw − k(e(·, ȳi)− (·)TNv)
)

is (p, r)-ρ1-(η, θ)-invex at c with respect to η and θ, we have

1

r
(er(C−D) − 1) ≥

≥
1

p

[

(

q
∑

i=1

ξi
[

∇d(c, ȳi) + Lw − k
(

∇e(c, ȳi)−Nv
)])(

epη(s,c) − 1
)

]

+ ρ1||θ(s, c)||2.

where

C =

q
∑

i=1

ξi
(

d(s, ȳi) + sTLw − k
(

e(s, ȳi)− sTNv
))

D =

q
∑

i=1

ξi
(

d(c, ȳi) + cTLw − k
(

e(c, ȳi)− cTNv
))

.

Using (19), together with the inequality above, we get

1

p

[

(

q
∑

i=1

ξi
[

∇d(c, ȳi) + Lw − k
(

∇e(c, ȳi)−Nv
)])(

epη(s,c) − 1
)

]

+ ρ1||θ(s, c)||2

< 0. (20)
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From the feasibility of s, together with ζj ≥ 0, j ∈ J , we obtain

m
∑

j=1

ζjhj(s) ≤ 0. (21)

By (p, r)-ρ2-(η, θ)-invexity of
m
∑

j=1

ζjhj(·) at c with respect to the same function

η and θ, we have

1

r

(

e
r
( m∑

j=1

ζjhj(s)−
m∑

j=1

ζjhj(c)
)

−1
)

≥
1

p

m
∑

j=1

∇ζjhj(c)
(

epη(s,c)−1
)

+ρ2||θ(s, c)||2.

Now, from (14) and (21), we get

1

p

m
∑

j=1

∇ζjhj(c)
(

epη(s,c) − 1
)

+ ρ2||θ(s, c)||2 ≤ 0. (22)

By adding (3) and (22), we obtain

1

p

[( q
∑

i=1

ξi
[

∇d(c, ȳi) + Lw − k
(

∇e(c, ȳi)−Nv
)]

+

m
∑

j=1

∇ζjhj(c)

)

(

epη(s,c) − 1
)

]

+(ρ1 + ρ2)||θ(s, c)||2 < 0.

Consequently, (12) and the above inequality yield

(ρ1 + ρ2)||θ(s, c)||2 < 0,

which contradicts the fact that ρ1 + ρ2 ≥ 0. Hence the result. �

Theorem 4 (Strong duality) Let s∗ be an optimal solution for (NFP) and
let ∇hj(s

∗), j ∈ J(s∗) be linearly independent.
Then, there exist (q∗, ξ∗, ȳ∗) ∈ K(s∗) and (s∗, ζ∗, k∗, w∗, v∗) ∈ H1(q

∗, ξ∗, ȳ∗),
such that (s∗, ζ∗, k∗, w∗, v∗, q∗, ξ∗, ȳ∗) is a feasible solution of (NFD).
If, in addition, the assumptions of Theorem 3 hold for all feasible solutions
(c, ζ, k, w, v, q, ξ, ȳ) of (NFD), then (s∗, ζ∗, k∗, w∗, v∗, q∗, ξ∗, ȳ∗) is an optimal
solution of (NFD) and the two objectives have the same optimal values.

Proof Since s∗ is an optimal solution of (NFP) and ∇hj(s
∗), j ∈ J(s∗) are

linearly independent, then, by Theorem 1, there exist (q∗, ξ∗, ȳ∗) ∈ K(s∗) and
(s∗, ζ∗, k∗, w∗, v∗) ∈ H1(q

∗, ξ∗, ȳ∗) such that (s∗, ζ∗, k∗, w∗, v∗, q∗, ξ∗, ȳ∗) is a
feasible solution of (NFD) and the two objectives have the same values as

k∗ =
d(s∗, ȳ∗i ) + (s∗Ls∗)1/2

e(s∗, ȳ∗i )− (s∗Ns∗)1/2
.

Optimality of (s∗, ζ∗, k∗, w∗, v∗, q∗, ξ∗, ȳ∗) for (NFD) thus follows from Theorem
3. �



Optimality and duality of nondifferentiable minimax ratio constraint problems 83

Theorem 5 (Strict converse duality) Let s∗ and (c̄, ζ∗, k∗, w∗, v∗, q∗, ξ∗, ȳ∗)
be the optimal solutions of (NFP) and (NFD), respectively, and let ∇hj(s

∗), j ∈
J(s∗) be linearly independent. Suppose that

(i)
q∗
∑

i=1

ξ∗i (d(·, ȳi
∗)+(·)TLw∗−k∗(e(·, ȳi

∗)−(·)TNv∗)) is strictly (p, r)-ρ1-(η, θ)-

invex at c̄ with respect to η and θ,

(ii)
m
∑

j=1

ζ∗j hj(·) is (p, r)-ρ2-(η, θ)-invex at c̄ with respect to same η and θ,

(iii) ρ1 + ρ2 ≥ 0.

Then, s∗ = c̄, that is, c̄ is an optimal point in (NFP) and

sup
ȳ∗∈Y

d(c̄, ȳ∗) + (c̄TLc̄)1/2

e(c̄, ȳ∗)− (c̄TNc̄)1/2
= k∗.

Proof We shall assume that s∗ 6= c̄ and reach a contradiction. From the strong
duality theorem (Theorem 4), it follows that

sup
ȳ∗∈Y

d(s∗, ȳ∗) + (s∗TLs∗)1/2

e(s∗, ȳ∗)− (s∗TNs∗)1/2
= k∗. (23)

By the feasibility of s∗, together with ζ∗j ≥ 0, j ∈ J , we get

m
∑

j=1

ζ∗j hj(s
∗) ≤ 0. (24)

Now, from (14) and (24), we have

1

r

(

e
r
( m∑

j=1

ζ∗j hj(s
∗)−

m∑

j=1

ζ∗j hj(c̄)
)

− 1
)

≤ 0.

From hypothesis (ii) and the above, we have

1

p

[

(

m
∑

j=1

∇ζ∗j hj(c̄)
)(

epη(s
∗,c̄) − 1

)

]

+ ρ2||θ(s∗, c̄)||2 ≤ 0,

that is

1

p

[

(

m
∑

j=1

∇ζ∗j hj(c̄)
)(

epη(s
∗,c̄) − 1

)

]

≤ −ρ2||θ(s∗, c̄)||2. (25)

Now, using (12), (25) and the assumption ρ1 + ρ2 ≥ 0, we get

1

p

[

(

q∗
∑

i=1

ξ∗i
[

∇d(c̄, ȳ∗i ) + Lw∗ − k∗
(

∇e(c̄, ȳ∗i )−Nv∗
)])(

epη(s
∗,c̄) − 1

)

]

≥

≥ −ρ1||θ(s∗, c̄)||2. (26)
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Since
q∗
∑

i=1

ξ∗i (d(·, ȳi
∗) + (·)TLw∗ − k∗(e(·, ȳ∗i )− (·)TNv∗))

is strictly (p, r)-ρ1-(η, θ)-invex at c̄ with respect to η and θ, therefore, using (3),
we have

1

r
(er(E−F ) − 1) > 0,

where

E =

q∗
∑

i=1

ξ∗i
(

d(s∗, ȳ∗i ) + s∗TLw∗ − k∗
(

e(s∗, ȳ∗i )− s∗TNv∗
))

F =

q∗
∑

i=1

ξ∗i
(

d(c̄, ȳ∗i ) + c̄TLw∗ − k∗
(

e(c̄, ȳ∗i )− c̄TNv∗
))

.

This further gives

q∗
∑

i=1

ξ∗i
[

d(s∗, ȳ∗i ) + s∗TLw∗ − k∗
(

e(s∗, ȳ∗i )− s∗TNv∗
)]

−

q∗
∑

i=1

ξ∗i
[

d(c̄, ȳ∗i ) + c̄TLw∗ − k∗
(

e(c̄, ȳ∗i )− c̄TNv∗
)]

> 0.

Therefore, from (13),

q∗
∑

i=1

ξ∗i
[

d(s∗, ȳ∗i ) + s∗TLw∗ − k∗
(

e(s∗, ȳ∗i )− s∗TNv∗
)]

> 0.

Since ξ∗i ≥ 0 and ξ∗ 6= 0, therefore there exists i such that

d(s∗, ȳ∗i ) + s∗TLw∗ − k∗
(

e(s∗, ȳ∗i )− s∗TNv∗
)

> 0.

Hence, we get

d(s∗, ȳ∗i ) + s∗TLw∗

e(s∗, ȳ∗i )− s∗TNv∗
> k∗,

which contradicts (23). Hence, the proof is completed. �

Now, we illustrate an example of a nondifferentiable minimax model and the
way to obtain its optimal solution using optimality results.
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Example 2 Let n = l′ = 1, m = 2 and Y = [0, 1].
Let d(s, y) = s2 + y + 9, e(s, y) = s2 + 12, L = N = 1, h1(s) = s − 4 and
h2(s) = −s+ 2. Also h(s) ≤ 0 ⇒ s− 4 ≤ 0 and −s+ 2 ≤ 0, ⇒ 2 ≤ s ≤ 4.

Therefore

S = {s ∈ R|2 ≤ s ≤ 4}.

Now

d(s, y) + (sTLs)
1

2 = s2 + y + 9 + |s| > 0

and

e(s, y)− (sTNs)
1

2 = s2 + 12− |s| > 0 ∀(s, y) ∈ S × Y,

where

S × Y = {(s, y)|2 ≤ s ≤ 4, 0 ≤ y ≤ 1}.

Now, the problem NFP becomes

minϕ(s) = sup
y∈Y

s2+y+9+|s|
s2+12−|s|

s.t. s− 4 ≤ 0,

−s+ 2 ≤ 0,

and y ∈ [0, 1],

with Y (s) = {1} and K(s) = {(1, 1, 1)}.

In order to find a minimax solution of NFP for s∗ ∈ [2, 4], we have consid-
ered the following cases.

Case 1. Take s∗ = 2 from (3), (5) and (6), so that we get k0 = 8/7, w = v = 1
and ξ∗1 = 1.

Since h1(s
∗) 6= 0 ⇒ ζ∗1 = 0 for s∗ = 2, and also since h2(s

∗) = 0,
therefore from (2) ζ∗2 = 11/7 > 0. Now, using w = v = 1 along with
ξ∗1 = 1, k0 = 8/7, ζ∗1 = 0 and ζ∗2 = 11/7, we can check that all the neces-
sary conditions for a minimax solution are satisfied.

Case 2. Take 2 < s∗ < 4. Using (4), we obtain

ζ∗1 (s
∗ − 4) + ζ∗2 (−s

∗ + 2) = 0

⇒ ζ∗2 = −
(s∗ − 4)ζ∗1
(−s∗ + 2)

.
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From (5), ξ∗1 = 1, and from (6), we get w2 ≤ 1, v2 ≤ 1, |s∗| = s∗w and
|s∗| = s∗v, which implies w = v = 1. By using values of ζ∗2 , ξ

∗
1 , w and v

in (2) and (3), we get

(2s∗ + 1)−
(s∗2 + 1 + 9 + |s|)

(s∗2 − |s∗|+ 12)
(2s∗ − 1) +

2ζ∗1
(s∗ − 2)

(2s∗ + 1)−
(s∗2 + 10 + |s∗|)

(s∗2 − |s∗|+ 12)
(2s∗ − 1) = −

2ζ∗1
(s∗ − 2)

.

Since −2ζ1
(s∗−2) ≤ 0 for s∗ ∈ (2, 4), therefore

(2s∗ + 1)−
(s∗2 + 10 + |s∗|)

(s∗2 − |s∗|+ 12)
(2s∗ − 1) ≤ 0,

that is,

(2s∗ + 1)(s∗2 − |s∗|+ 12)− (s∗2 + 10 + |s∗|)(2s∗ − 1) ≤ 0,

that is, −2s∗2 + 4s∗ + 22 ≤ 0, which is not possible for any s∗ ∈ (2, 4).
Therefore s∗ ∈ (2, 4) cannot be a minimax solution.

Case 3. Take s∗ = 4. Using (3), (5) and (6), we get k0 = 5/4, w = v = 1 and
ζ∗1 = −1/4.

Since ζ∗1 = −0.25 < 0 does not satisfy the condition that ζ∗1 ∈ R+, there-
fore s∗ = 4 cannot be a minimax solution.

Now we will justify that s∗ = 2 is an optimal solution of NFP. For this, we will
show that ψ(s) and φ(s) is a (p, r)-ρ-(η, θ)-invex function at s∗. Here

ψ(s) =

q
∑

i=1

ξ∗i

(

d(s, ȳi) + (s)TLw − k0(e(s, ȳi)− (s)TNv)
)

= [(s)2 + 1 + 9 + (s)w − k0((s)
2 + 12− (s)v)]

φ(s) =

m
∑

j=1

ζ∗j hj(s).

Using w = v = 1, k0 = 1.1428, ζ∗1 = 0 and ζ∗2 = 1.5714, we get

ψ(s) = [(s)2 + 1 + 9 + (s)− k0((s)
2 + 12− (s))]

= −
1

7
(s)2 +

15

7
(s)−

26

7
φ(s) = ζ∗2h2(s)

=
11

7
(−(s) + 2).
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For θ(s, u) = 1 and η(s, u) = sin(s) + 10 at r = 1, p = −1, ρ1 = −1.5713999
and s∗ = 2 we have

1
r [e

r(ψ(s)−ψ(2)) − 1]− 1
p∇ψ(2)(e

pη(s, u) − 1)− ρ ‖θ(s, u)‖
2

= [e(
1

7
(4−(s)2)+ 15

7
((s)−2)) − 1] + 11

7 (e(−sin(s)−10) − 1) + 1.5713999 ≥ 0, ∀ s ∈ S,

and at ρ2 = 1.5713999

1
r [e

r(φ(s)−φ(2)) − 1]− 1
p∇φ(2)(e

pη(s, u) − 1)− ρ ‖θ(s, u)‖
2

= [e(−
11

7
(s)+ 22

7
) − 1]− 11

7 (e(−sin(s)−10) − 1)− 1.5713999 ≥ 0, ∀ s ∈ S.

Thus, the sufficient conditions of the theorem are easily verified and s∗ = 2
is a minimax solution.

4. Concluding remarks

In the present work, we have considered a parametric dual model for the non-
differentiable minimax fractional programming problem. We have proven weak,
strong and strict converse duality results involving (p, r)-ρ-(η, θ)-invex functions.
We have given an example of a non-trivial function to show the existence of the
functions, which satisfy the definition of the (p, r)-ρ-(η, θ)-invexity. Also, we
have formulated an example of a non-trivial model, validating the necessary
and sufficient conditions. Now, the question arises whether or not duality in
nondifferentiable minimax fractional programming with (p, r)-ρ-(η, θ)-invexity
can be further extended to the second order case.
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