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Improvement of Pilot Symbol Orthogonal Sequences 
in 2×2 to 4×4 MIMO Wireless Communication 

Systems with Channel State Estimation 
Vadim Romanuke* (Professor, Polish Naval Academy, Gdynia, Poland)

Abstract – MIMO wireless communication systems with channel 
state estimation, in which 2 to 4 transmit-receive antenna pairs are 
employed, are simulated. The channel estimation is fulfilled by the 
orthogonal pilot signal approach, where the Walsh Hadamard-
ordered sequences are commonly used for piloting. The signal is 
modulated by applying the quaternary phase shift keying method. 
Maximum 250 000 packets are transmitted through flat-fading 
Rayleigh channels, to which white Gaussian noise is added. Based 
on simulating 10 subcases of the frame length and number of pilot 
symbols per frame, it is ascertained that pilot symbol orthogonal 
sequences in 2×2 to 4×4 MIMO systems can be improved by 
substituting Walsh functions with partially unsymmetrical binary 
functions constituting the eight known orthogonal bases. The 
benefit is that the bit-error rate is substantially decreased, 
especially for 2×2 MIMO systems. Considering three cases of the 
pilot signal de-orthogonalization caused by two indefinite and 
definite pilot sequence symbol errors, the relative decrement 
varies from 0.123 % to 14.7 %. However, the decrement becomes 
less significant as the number of transmit-receive antenna pairs is 
increased. 
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I. INTRODUCTION TO MIMO WITH CHANNEL ESTIMATION 
In modern wireless communication systems, for sending and 

receiving more than one data signal simultaneously over the 
same radio channel, a technique of the multiple input and 
multiple output (MIMO) is used. This is implemented for 
multiplying the capacity of a radio link, where the multipath 
propagation is exploited. Nevertheless, in fact, MIMO is a 
technique using multiple antennas at the transmitter and 
receiver ends of a wireless communication system [1]. This is 
why MIMO systems are used in wireless communication 
standards, including IEEE 802.11n (Wi-Fi), IEEE 802.11ac 
(Wi-Fi) [2], HSPA+ (3G), WiMAX, Long Term Evolution (4G 
LTE) [3], [4], and 5G by implementing massive MIMO [5], [6]. 
MIMO technology has been officially standardized for wireless 
LANs, 3G and 4G mobile phone networks, but it is being 
increasingly tested and spread in many other wireless 
communication standards. 
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To sustain high quality of links, MIMO operates on channel 
state information (CSI) [1], [3], [5], [6]. The CSI is required to 
know how a signal propagates from the transmitter to the 
receiver for adapting transmissions to current channel 
conditions, which is crucial for achieving reliable 
communication with high data rates in multiantenna systems. As 
the CSI represents the combined effect of scattering, fading, and 
power decay with distance, it is not known at the receiver in a 
realistic scenario, so the CSI is extracted from the received 
signal. The channel estimator can perform this task by using 
orthogonal pilot signals prepended to every packet [5]. 
Compared to a blind approach, where the channel estimation is 
based only on the received data, without any known transmitted 
sequence, the tradeoff is the accuracy versus the overhead. The 
orthogonal pilot signal approach has a higher overhead than the 
blind approach, but it achieves a better channel estimation 
accuracy than the blind approach [1], [5]. 

In practice, the coherence time of the channel limits the 
length of orthogonal pilot sequences, from which the channel 
between the transmitter and receiver is estimated [7]. Besides, 
the reuse of pilot sequences of several co-channel cells leads to 
pilot contamination that worsens the MIMO performance [1], 
[3], [5], [6].  

Another problem is that a loss of a symbol (this is, in other 
words, a symbol error) in a pilot sequence (due to channel noise 
and interference) leads to the pilot signal de-orthogonalization 
(PSdeO). Obviously, the PSdeO also worsens the MIMO 
performance [4], [5]. While being in an area of weaker signals, 
the cumulative effect of these negative effects is practically 
perceived as frequent fading distortions (e.g., bouncing antenna 
signal indicator) [3], [4], [7]. 

II. MOTIVATION 
In MIMO, as well as in other wireless communication 

systems exploiting orthogonality, orthogonal codes are 
generated based on Walsh functions [1]. In particular, Walsh 
functions are generated from the Hadamard matrix [7]. Thus, 
the first orthogonal sequence of pilot symbols is usually the 
sequence of ones, which is the Walsh function of the zeroth 
order (being a function-constant) [8]. The second orthogonal 
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sequence of pilot symbols is the Walsh function of the last order 
(in the given finite binary basis ordered by Walsh [7], [9]), 
which is an ideal meander of the highest frequency. In general, 
the structure of Walsh functions is symmetrical (considering 
from the middle of the unit interval on which the functions are 
defined) [7], [8]. Partially unsymmetrical binary functions 
(PUBFs) which constitute orthogonal bases are also known 
(e.g., see [7]). The eight orthogonal bases of such binary 
functions [9] were simulated to substitute the respective Walsh 
functions in wireless communication systems with the code 
division multiple access (CDMA). It was shown in [10] that 
such orthogonal sets of binary functions could outperform a 
Walsh set. Namely, using PUBFs instead of Walsh functions 
allows decreasing the bit-error rate (BER) by 3 % to 5 % [10]. 
It is thereafter assumed that BER in MIMO systems with the 
orthogonal pilot signal approach can be decreased by similarly 
substituting Walsh functions with PUBFs. Obviously, this is 
believed to increase throughput and reliability of MIMO links 
by mitigating effects of PSdeO and pilot contamination [5]. 

III. GOAL AND STEPS TO ACHIEVE IT 
Issuing from the plausibility to improve orthogonal 

sequences of pilot symbols, the goal is to estimate the BER 
performance of 2×2, 3×3, and 4×4 MIMO systems with channel 
state estimation by the orthogonal pilot signal approach for both 
the Walsh (Hadamard) and PUBFs. Along with the case of 
perfect orthogonality, the BER performance should be also 
estimated for various scenarios of PSdeO. To achieve the goal, 
2×2 to 4×4 MIMO wireless communication systems with 
channel state estimation are to be simulated, where the number 
of transmit and receive antennas is the same (two, three, and 
four, respectively). The simulation will be configured and 
carried out by using MATLAB® R2019a Communications 
System ToolboxTM (CST) functions. The BER performance is 
to be plotted versus the bit-energy-to-noise-density ratio 
(BENDR or, as it is often referred to, “Eb/No”) in a wide range 
starting from 0 dB with a step of 1 dB. A subsequent 
interpretation of the simulation results must reveal whether the 
improvement of pilot symbol orthogonal sequences is real and 
what the benefit is. 

IV. CONFIGURATION OF THE SIMULATION 
For using 2 to 4 transmit antennas, the signal is modulated by 

applying the quaternary phase shift keying (QPSK) method. In 
the CST, this is realised by the QPSKModulator object. The 
modulated signal is then encoded by using the CST 
OSTBCEncoder object. The OSTBCEncoder object encodes an 
input symbol sequence using orthogonal space-time block code 
(OSTBC). The block maps the input symbols block-wise and 
concatenates the output codeword matrices in the time domain. 
It is worth noting that the symbol rate of the code is 1 for a 2×2 
system, and is 3/4 for 3×3 and 4×4 systems. Thus, the frame 
length denoted by F is set at 36, 72, 144, 288 symbols. 
Subsequently, the number of pilot symbols per frame denoted 
by P, which commonly does not exceed 25 % of the frame 
length, is set at integers shown in Table I, with respect to each 

frame length. This results in the 10 subcases of the two 
parameters paired for simulation. 

It is reasonable to set the maximum BENDR at 8 dB. Thus, 
the simulation is to be run over the BENDR range from 0 dB to 
8 dB with a step of 1 dB. For each of those 9 BENDR points, 
maximum 250 000 packets are transmitted through flat-fading 
Rayleigh channels [11], to which white Gaussian noise is added 
by applying the CST AWGNChannel object. It is assumed that 
the channel remains unchanged for the length of the packet (i.e., 
it undergoes slow fading), and the channel undergoes 
independent fading between the multiple transmit-receive 
antenna pairs [12]. 

TABLE I 
THE 10 SUBCASES OF THE FRAME LENGTH AND  

NUMBER OF PILOT SYMBOLS PER FRAME 

Frame length (F) 288 144 72 36 

Number of pilot 
symbols per 
frame (P) 

64 32 16 8 

32 16 8  

16 8   

8    

 
The CST OSTBCCombiner object combines the signals from 

all of the receive antennas and the channel estimate signal to 
extract the soft information of the symbols encoded by an 
OSTBC. The combining algorithm uses only the estimate for 
the first symbol period per codeword block. The output of the 
combiner is demodulated by applying the CST 
QPSKDemodulator object. 

While an end-to-end MIMO system is simulated, the number 
of errors is registered. The maximum number of errors is 10 % 
of the maximum number of packets. Thus, if 25 000 errors 
occur at a given BENDR, the simulation loop is broken (for the 
given value of BENDR). 

V. CASES TO BE SIMULATED 
The above-mentioned PSdeO occurs when the negative value 

(which might be thought of as logical “0” or symbol “0”) of a 
binary function is switched into the positive value (logical “1” 
or symbol “1”) and vice versa. These pilot sequence symbol 
errors are notationally referred to as “0→1” and “1→0”, 
respectively. To estimate the BER performance under 
circumstances of PSdeO, the six cases (Table II) are to be 
simulated for orthogonal codes built by both the Walsh and 
PUBFs. 

In an N×N MIMO system, the N pilot sequences are taken as 
the first N Walsh Hadamard-ordered functions from the basis of 
P functions (Fig. 1). In the case of basing orthogonal codes on 
PUBFs, the N pilot sequences are taken as the last N PUBFs 
from each of the eight bases of P functions (Fig. 2). 
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Fig. 1. The four Walsh Hadamard-ordered orthogonal functions (sequences) in 
a 4×4 MIMO system for the 10 subcases of the frame length and pilot symbols 
per frame (Table I). The frequency of the third and fourth meanders (differed 
only by a symbol shift) is half the frequency of the second meander. 

 
Fig. 2. The four last PUBFs (sequences) from each of the eight bases of 16 
functions in a 4×4 MIMO system for the frame of 72, 144, or 288 symbols, 
where 16 pilot symbols per frame are used). Unlike the 4×4 MIMO system with 
Walsh sequences, the meanders here have roughly the same frequency. 
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TABLE II 
THE SIX CASES OF SIMULATION FOR BOTH THE WALSH AND PUBFS 

Simulation 
case # Description of the case 

Notation of pilot 
sequence symbol 
errors 

1 Perfect orthogonality 
there are no pilot 
sequence symbol 
errors 

2 PSdeO caused by one indefinite pilot 
sequence symbol error “0→1” or “1→0” 

3 PSdeO caused by one definite pilot 
sequence symbol error “0→1” 

4 PSdeO caused by two indefinite 
pilot sequence symbol errors 

“0→1” and “0→1”,  
or “1→0” and “1→0”,  
or “1→0” and “0→1”,  
or “0→1” and “1→0” 

5 PSdeO caused by two repeated 
definite pilot sequence symbol errors “0→1” and “0→1” 

6 
PSdeO caused by two repeated 
indefinite pilot sequence symbol 
errors 

“0→1” and “0→1”  
or “1→0” and “1→0” 

VI. SIMULATION RESULTS 
In order to present simulation results easily readable and 

comparable, the BER performance is visualized for every 
simulation case in the same figure by using subplots for every 
subcase of the frame length and number of pilot symbols per 
frame (see Table I). Thus, the BER for 2×2, 3×3, and 4×4 
MIMO systems is plotted on the same axes using different line 
thickness (and, additionally, marker size): thicker lines (along 
with larger markers) correspond to the system with a greater 
number of transmit-receive antenna pairs. In the case of basing 
orthogonal codes on Walsh functions, the BER performance 
markers are square dots (black colour); in the case of using 
PUBFs, the markers are circle dots (red colour). 

Simulation results for the case of the perfectly orthogonal 
pilot sequences (simulation case #1) are presented in Fig. 3. It 
is clearly seen that the BER performance is better for the MIMO 
system with a greater number of transmit-receive antenna pairs. 
Thus, transmitting 288-symbol frames piloted with 8 symbols 
at BENDR of 0 dB allows achieving a BER of about 0.25 (i.e., 
every fourth bit is lost) for the 2×2 MIMO, whereas it is 
decreased to 0.19 and 0.15 for 3×3 and 4×4 MIMO systems, 
respectively. Herein, it is worth noting that for the 2×2 MIMO, 
at BENDR of up to 2 dB, the BER becomes slightly less by 
using PUBFs than that by using Walsh functions. Such a feature 
can be spotted for other two subcases of piloting with 8 symbols 
(when transmitting frames of 72 and 144 symbols). A similar 
low-BENDR BER decrement is partially seen at  

72F =  and 16P = ,  
144F =  and 32P = ,  
288F =  and 16P = ,  
288F =  and 32P = ,  
288F =  and 64P = .  

In the remaining two subcases, where 

32F =  and 8P = ,  
144F =  and 16P = ,  

using PUBFs does not improve the BER performance. 
In the case of one indefinite pilot symbol error (simulation 

case #2), PSdeO has its bad impact on the BER performance 
(see Fig. 4). For instance, in transmitting 288-symbol frames 
piloted with 8 symbols, the BER increases by approximately 
0.02 at BENDR of 0 dB. Low-BENDR BER decrement, when 
PUBFs are used in 2×2 MIMO systems, similar to that in the 
case of the perfect orthogonality still can be spotted. However, 
the benefit is too tiny to be visually confirmed. In general, the 
BER polylines in Fig. 3 are almost replicated by those in Fig. 4 
with the exception of that the BER performance significantly 
worsens (especially at low BENDRs) for 2×2 MIMO systems, 
and 3×3 and 4×4 MIMO systems with 8 pilot symbols. Besides, 
3×3 and 4×4 MIMO systems, where 

72F =  and 16P = ,  
288F =  and 16P = ,  

are badly influenced (at low BENDRs) by this PSdeO case also. 
On the contrary, 3×3 and 4×4 MIMO systems, where 

144F =  and 16P = ,  
144F =  and 32P = ,  
288F =  and 32P = ,  
288F =  and 64P = , 

are not influenced by that, and the respective BER polylines 
factually duplicate those in Fig. 3. 

The case, in which PSdeO is caused only by switch “0→1” 
(simulation case #3), is unexpectedly revealed to be just as bad 
(see the respective BER performance in Fig. 5) as case #2. Once 
again, the BER performance for 2×2 MIMO systems 
significantly worsens at low BENDRs, whereas 3×3 and 4×4 
MIMO systems with 16 pilot symbols or more are almost not 
affected by this PSdeO case at BENDRs greater than 2 dB. 

In the case of two indefinite pilot sequence symbol errors 
(simulation case #4), the bad impact of PSdeO on the BER 
performance is more noticeable (Fig. 6). It is easily noticed that, 
for 2×2 MIMO systems with 8 pilot symbols, the BER becomes 
significantly smaller (by 0.005 to 0.01) by using PUBFs than 
that by using Walsh functions. The respective four subcases are 
seen in Fig. 6 without zoom-in. Moreover, piloting by PUBFs 
improves the BER even at high BENDRs. Nevertheless, using 
PUBFs almost does not differ from using Walsh functions in 
3×3 and 4×4 MIMO systems affected by this PSdeO case. 

As it is expected, the case, in which PSdeO is caused by two 
repeated switches “0→1” (simulation case #5), appears to be 
quite substantial (Fig. 7). Now, it is clearly seen that, whichever 
the number of transmit-receive antenna pairs is, the BER 
becomes significantly smaller by using PUBFs for the MIMO 
systems with 8 pilot symbols. The BER is decreased by up to 
0.04 for the 2×2 MIMO systems, although the decrement is not 
greater than 0.01 for the 3×3 MIMO systems. Obviously, the 
BER decrement is much smaller for the 4×4 MIMO systems (it 
is hardly noticeable for the subcase of F = 288 and P = 8). 
Furthermore, the BER becomes significantly smaller (by 0.005 
to 0.01) by using PUBFs for the 2×2 MIMO systems with 16 
pilot symbols.  
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Fig. 3. The BER performance versus BENDR in the case of perfect orthogonality (simulation case #1). The BER performance is best for the 4×4 MIMO systems. 
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Fig. 4. The BER performance versus BENDR in the case of one indefinite pilot symbol error (“0→1” or “1→0”). This is PSdeO by simulation case #2. 
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Fig. 5. The BER performance versus BENDR in the case of one definite pilot sequence symbol error (“0→1”). This is PSdeO by simulation case #3. 
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Fig. 6. The BER performance versus BENDR in the case of two indefinite pilot sequence symbol errors (see Table II). This is PSdeO by simulation case #4. 
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Fig. 7. The BER performance versus BENDR in the case of two repeated pilot sequence symbol errors (“0→1” and “0→1”). This is PSdeO by simulation case #5. 
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Fig. 8. The BER performance versus BENDR in the case of two repeated indefinite pilot sequence symbol errors (see Table II, PSdeO by simulation case #6). 
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Fig. 9. The averaged BER performance versus BENDR for the six simulation cases. The BER performance difference is the greatest in the bottom subplot row. 
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The results of simulating PSdeO caused by two repeated 
indefinite pilot sequence symbol errors (simulation case #6) 
appear similar (Fig. 8) to the previous case results. The only 
difference is that now, when the repeated pilot symbol switch is 
indefinite, the BER decrement is less than that in the case of 
two repeated switches “0→1”. 

The BER performance averaged over each of the six 
simulation cases is presented in Fig. 9 along with the mean 
percentage of the difference between the performance by Walsh 
Hadamard-ordered functions and PUBFs. These polylines show 
that the BER is undoubtedly decreased in the PSdeO cases 
caused by two pilot sequence symbol errors for 2×2 MIMO 
systems. Besides, in the PSdeO cases caused by two repeated 
pilot sequence symbol errors (see the subplot bottom row of 
Fig. 9) the BER decrement is clearly seen for 3×3 MIMO 
systems. Furthermore, in these subcases, the performance of 
4×4 MIMO systems by using PUBFs is improved by 2.42 % 
(case #5) and 1.77 % (case #6). 

VII. DISCUSSION 
As it has been mentioned above, the BER performance is 

improved as the number of MIMO transmit-receive antenna 
pairs is increased. In addition, the difference between the BER 
performance by Walsh Hadamard-ordered functions and 
PUBFs becomes smaller, which is confirmed by the bottom 
subplot row in Fig. 9, as well as by the respective subplots in 
Figs. 6–8, where the polylines are like being converged at a 
lower line (implying the least BER for 4×4 MIMO systems). 

TABLE III 
RECAPITULATION OF THE BER PERFORMANCE  

BY WALSH HADAMARD-ORDERED FUNCTIONS AND PUBFS 

C
as

e 
# Description of 

the PSdeO 
case and its 
probability 

Notation of pilot 
sequence symbol 
errors 

Difference between  
the performance by Walsh 
Hadamard-ordered functions  
and PUBFs 
2×2 MIMO 3×3 MIMO 4×4 MIMO 

2 

one indefinite 
pilot sequence 
symbol error, 
0.5 

“0→1” or “1→0” 0.027 % 
(unreliable) 

0.00036 % 
(unreliable) 

0.147 % 
(unreliable) 

3 

one definite 
pilot sequence 
symbol error, 
0.25 

“0→1” –0.014 % 
(unreliable) 

0.226 % 
(unreliable) 

–0.266 % 
(unreliable) 

4 

two indefinite 
pilot sequence 
symbol errors, 
0.5 

“0→1” and “0→1”,  
or “1→0” and “1→0”,  
or “1→0” and “0→1”,  
or “0→1” and “1→0” 

2.307 % 0.169 % 0.123 % 

5 

two repeated 
definite pilot 
sequence 
symbol errors, 
0.125 

“0→1” and “0→1” 14.728 % 4.5988 % 2.421 % 

6 

two repeated 
indefinite pilot 
sequence 
symbol errors, 
0.25 

“0→1” and “0→1”  
or “1→0” and “1→0” 8.407 % 3.016 % 1.7696 % 

 
It is hard to claim what the probability of the perfect 

orthogonality case and PSdeO. However, PSdeO itself is likely 
and the five various scenarios of PSdeO studied above are very 
likely outcomes of transmitting signals through realistic 

environments. These scenarios are not equiprobable, though. 
Their theoretic probabilities (by a presumption of that cases #2 
and #4 are the exhaustive events) are given in Table III along 
with the mean percentage of the difference between the BER 
performance by Walsh Hadamard-ordered functions and 
PUBFs (Fig. 9). The percentage for cases #2 and #3 are treated 
unreliable because the difference does not disappear as the 
number of MIMO transmit-receive antenna pairs is increased. 
The probability of case #5 is not small, so the performance of 
the 4×4 MIMO system can be significantly improved as the 
difference in 2.421 % is very significant, let alone 2×2 and 3×3 
MIMO systems. 

VIII. CONCLUSION 
Based on the MATLAB simulations carried out, it is certain 

that pilot symbol orthogonal sequences in 2×2 to 4×4 MIMO 
systems with channel state estimation can be improved by 
substituting Walsh functions with PUBFs. The benefit is that 
the BER is substantially decreased, especially for 2×2 MIMO 
systems. Considering the cases of PSdeO with two pilot 
sequence symbol errors, which are 50 % probable, the relative 
BER decrement varies from 0.123 % to 14.7 %. In spite of the 
fact that the BER decrement becomes less significant as the 
number of transmit-receive antenna pairs is increased, the 
substitution is a promising way to increase throughput and 
reliability of MIMO links. 
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