
Comparative Review
of Selected Internet Communication Protocols

 Lukasz Kamiński, Maciej Koz lowski, Daniel Sporysz, Katarzyna Wolska,
Patryk Zaniewski, Rados law Roszczyk ∗

Abstract. With a large variety of communication methods and protocols, many
software architects face the problem of choosing the best way for services to share
information. For communication technology to be functional and practical, it should
enable developers to define a complete set of CRUD methods for the processed data.
The research team compared this paper’s most commonly used data transfer protocols
and concepts: REST, WebSocket, gRPC GraphQL and SOAP. A set of web servers
was implemented in Python, each using one of the examined technologies. Then, the
team performed an automated benchmark measuring time and data transfer overhead
for a set of defined operations: creating an entity, retrieving a list of 100 entities and
fetching details of one entity. Tests were designed to avoid the results being interfered
with by database connection or docker-compose environment characteristics. The re-
search team has concluded that gRPC was the most efficient and reliable data transfer
method. On the other hand, GraphQL turned out to be the slowest communication
method of all. Moreover, its server and client libraries caused the most problems
with proper usage in a web server. SOAP did not participate in benchmarking due to
limited compatibility with Python and a lack of popularity in modern web solutions.

Keywords: REST, gRPC, websockets, GraphQL, Internet communication pro-
tocol

1. Introduction

In the modern world of technology, there are many tools that developers can choose
to exchange data between web clients, such as web pages and a server. These tools are
wary of speed and the amount of sent data. Therefore, deciding which tool to use in
a project takes work. Our team recognized that problem and decided to check which

∗Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw, Poland

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 48 (2023) No. 1

ISSN 0867-6356
e-ISSN 2300-3405DOI: 10.2478/fcds-2023-0003

standard web protocol is the fastest and the most memory efficient. We decided to
test gRPC, REST architectural style, the WebSockets Protocol and GraphQL. We
skipped SOAP protocol because of its lack of popularity in modern web applications.

This paper is organized as follows. The next subsections briefly describe tested
protocols. Section two presents related articles. Section three describes testing meth-
ods and testing environment. Section four presents test results. Finally, section five
discusses them ad provides concluding remarks.

1.1. REST

REST (Representational State Transfer) is an architectural style for distributed sys-
tems that Roy T. Fielding described in 2000. It is defined by several constraints that
will be related shortly.

The idea of this approach is based on widely known client-server architecture.
REST allows the client and server to work independently by separating the user
interface on the client side and business logic from data storage on the server side.
Thanks to that, REST achieves the portability of the user interface across multiple
different platforms.

Another constraint of this architecture is that the communication between the
system parts must be stateless. It means that each request from the client to the
server must contain all the information necessary to understand and complete the
request. Because of that, only the client side is responsible for keeping the session
state.

The following principle is the cacheability of responses. It states that every re-
sponse must inform the client if it is cacheable or noncacheable because if it is, the
client can reuse that data for later, similar requests.

After that, there is a uniform interface constraint, which suggests that by ”applying
the software engineering principle of generality to the component interface, the overall
system architecture is simplified and the visibility of interactions is improved”. This
rule also describes more requirements for REST interface to work correctly, such as
hyperlinks or unique identification of each resource.

REST architecture also specifies that it requires the system to be layered. The
layered system style allows an architecture composed of hierarchical layers by con-
straining component behaviour.

The last constraint is Code-On-Demand. It means that REST can also allow the
clients to download and execute code in the form of applets or scripts.

In REST architecture, the sample of information is referred to as a resource. Each
resource has its identifier, which is the URL pointing to the specified information.
To manage this data, REST applications provide RESTful APIs, where resources are
exposed through endpoints. The endpoints, in general, are the URLs that identify
resources.

REST is strictly related to HTTP protocol. It is caused by the fact that to interact
with resources in a REST system, we use four basic HTTP methods. These are:

• GET – used to retrieve list of resources or aspecific resource by its ID,

40 Ł. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, R. Roszczyk

• POST – used to create a new resource,

• PUT – used to update a resource by its ID,

• DELETE – used to delete a resource by its ID.

Some data serialization formats are used in REST communication. The most
popular are JSON and XML. Using the specified system format, we send resources to
create or update, and also the server provides us with information on the resources
we requested in that format.

Summing up, the use of REST architecture can result in better performance and
scalability in simple, lightweight applications [9, 10].

1.2. The WebSocket Protocol

The WebSocket Protocol is a protocol which enables two-way communication. This
means that the server does not have to wait for the client to make a request and can
send data independently. This is achieved by using a single TCP connection which is
established between client and server [8].

The protocol consists of two parts. The first one is a handshake. In order to
make it client sends a HTTP request. This request must have several headers set
(Connection, Upgrade). Example client request:

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://example.com

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

Server replies with its own handshake response which has HTTP code set to 101.
Example response:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

Sec-WebSocket-Protocol: chat

When the handshake is successfully finished further communication is done via
a single TCP connection using The Websocket Protocol. The client and server can
send data independently in chunks named as messages. Messages are made of frames
which are transferred across sides.

In order to close the connection, a unique frame is sent by one of the peers. This
frame indicates the will of closure. When another peer receives it, it responds with a
Close frame. Thanks to that, the first peer can safely close the connection, knowing
that no more data will be transferred.

41Comparative Review of Selected Internet Communication Protocols

1.3. gRPC

gRPC (Google Remote Procedure Call) is an open source system that implements
remote procedure call concept. It was developed in 2015 by Google as a successor of
previous RPC system called Stubby.

The power of gRPC comes from many things but there are two which are major.
It is HTTP/2 communication protocol and Protocol Buffers.

HTTP/2 as the newest version of popular HTTP protocol provides a lot of use-
ful features to this type of communication. Thus, gRPC provides the mechanisms
of deadlines, timeouts, terminations and cancelling calls. Moreover, thanks to this
protocol, there are 4 types of communication that can be implemented [1]:

• Unary Call – the simplest type of communication where there is only one for
one request,

• Client Stream – in some way it is very similar to Unary Call, but here a client
sends a stream of messages instead of a single one,

• Server Stream – the opposite to Client Stream, in which client sends only one
request and expects a stream of messages,

• Bidirectional Stream – combination of two previous methods, in which both
sides of a stream send messages at the same time.

Protocol Buffers is a cross-platform mechanism developed by Google which allows
to define data structures and interfaces in *.proto files. Then, developed file can
be used to generate a file in targeted language (i.e., Java, Python, Go). The benefit
of this is that one Protobuf file can generate an API for different language that is
implementing server side, and other which is implementing client side. What is more,
Protocol Buffer is a binary format what means that is faster and smaller than other
formats (i.e., JSON) [2].

1.4. SOAP

Simple Object Access Protocol (SOAP) defines a mechanism for exchanging struc-
tured and typed information in a decentralized, distributed environment. It possible
to express application semantics with packaging model and encoding rules for data
within modules. It is important to note that SOAP does not define any application
semantics itself but a mechanism for expressing it, so it has many use cases ranging
from messaging systems to RPC.

Each SOAP message consists of an envelope, encoding rules and RPC representa-
tion. SOAP envelope represents a message framework describing what a message is,
who its receiver is and which data is mandatory or optional. SOAP encoding rules ex-
plain a serialization and de-serialization mechanism for application data types. SOAP
RPC representation constructs remote procedure calls and responses.

42 Ł. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, R. Roszczyk

SOAP data model was designed with language-independent abstraction for data
types. Two data types are supported: a simple XSD and a compound one. For
example, simple XSD types include int, boolean and string. Compound types are
used to exchange structures and arrays. Simple Object Access Protocol is XML-based
and each message is serialized into XML file.

1.5. GraphQL

GraphQL is an open-source solution for querying and mutating data via remote API.
The solution was first developed internally by Facebook, but it became publicly re-
leased in 2015. Now it is developed by Linux Foundation.

The core concept of GraphQL relies on an extensive query language that enables
API consumers to not only apply filters but also choose fields of the returned structure.
This approach is more flexible than REST APIs exposing a set of endpoints, each
returning a consistent set of data. The responsibility for defining the presence of
individual fields in a returned structure is moved from an API server to an API
consumer, which results in an optimization of data traffic and an ability to eliminate
API versioning. GraphQL user HTTP protocol for network communication.

GraphQL allows the API developers to declare an interface for querying data on
SQL and NoSQL database solutions. Since GraphQL allows for nested structures, a
NoSQL database (e.g., MongoDB) fits the technology well. GraphQL also improves
development flexibility by providing client-side and server-side API libraries for many
popular programming languages (e.g., Python, as used in this work).

2. Related work

We have searched for similar works, that intended to compare REST, gRPC, Web-
sockets and GraphQL protocols, but we have found none that would compare all of
them in terms of performance. However, there are studies that set some of those pro-
tocols side by side, for example, contrasting the time it takes to implement a query
or analysing an energy costs of specified protocols.

Many of the found papers focus on testing REST and GraphQL protocols. In
the first work, authors lead a performance comparative study with the stated two
technologies. They analysed three applications and each of them was developed using
two protocols – REST and GraphQL. The researched was based on measuring the re-
sponse time and the average transfer rate between the requests. The study describes,
that in two applications migrating from REST to GraphQL resulted in higher perfor-
mance in the aspects of average number of requests per second and transfer rate of
data. However, above workloads of 3000 requests, REST protocol performed better
than GraphQL [16].

Next study compares REST and GraphQL in terms of convenience of use. It an-
swers the question “How much time do developers spend when implementing queries in
REST and GraphQL?”. Results of the experiment presented in that paper show that

43Comparative Review of Selected Internet Communication Protocols

implementing remote service queries was more quick, when using GraphQL technol-
ogy than REST technology. Implementing GraphQL queries took less effort compared
to REST, among participants with no or little knowledge of those protocols, as well
as among experienced developers [4].

Another paper examines the performance of REST and GraphQL protocols. A
series of experiments was also executed that showed that the choice of better protocol
for given purpose depends highly on type of query and requested data. With the
same amount of used data, REST protocol is obvious better choice as it stands out
with better response times, CPU and memory consumption. However, in test cases
where REST was forced to under-fetch data, GraphQL performed better in terms of
response time and memory usage but still needed more of the CPU resources. Overall
the result showed that GraphQL should be considered when under- and over-fetching
or request smaller subsets of data is likely to happen and REST protocol is the best
option in other, more basic cases [11].

The following work contrasts REST, SOAP, Socket and gRPC in computation
offloading of mobile applications and it analysis energy costs of those protocols. The
experiment carried out in that study was about evaluating the energy consumption
of stated protocols using algorithms of different complexities and different input sizes
and types. Results show that, when executing more simple algorithms with small
input data, local execution is way more economic. Regarding remote execution, the
best option is REST architecture, that is followed by Socket. The paper also states,
that computation offloading can be responsible of saving up to 10 times as much
energy when compared to local execution [5].

After that, there is also a paper that analyzes the efficiency of REST and gRPC
protocols in microservice-based ecosystems. In order to perform tests, the authors
created implementations of REST and gRPC services which were developed using
.NET 5 platform. The main parameter that was tested, was the response time of the
performed operations. The explored communication tasks was based on: text cloning,
fetching maximum value of an integer, fetching an array of consecutive integers, fetch-
ing a text file and downloading a PDF file. Each test was performed with the use of
both encrypted and not encrypted data. For most of the tasks that was tested with
not encrypted data, the results was better for the REST protocol. Only in the large
file transfer gRPC performed better. On the other hand, with the usage of encrypted
data, both protocols got similar results. REST performed better during transmission
of numerical data and gRPC was faster for file transfer operations [3].

Next work describes performance comparison between GraphQL, REST and SOAP
protocols. The method used to evaluate the differences between those three protocols,
was based on data fetching operation. For the test purpose, authors created systems
for each protocol using .NET technologies. There were several test cases that included
fetching elements from database, as well as using simple and more complex joins.
These operations was tested for a single row and also for 100 rows. For the analysis,
the authors also used two types of databases: MySQL and MongoDB. The experiment
was performed using two computers – server and client – that were connected through
a local network. The results showed that GraphQL was characterized by the worst
performance in all test cases. Another conclusion is the fact that the packet size is

44 Ł. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, R. Roszczyk

the largest with the usage of SOAP protocol. It is caused by the XML format used
in SOAP message passing. The performance results of the REST protocol were the
best among tested technologies [7].

Another study compares the performance of REST API, GraphQL and gRPC.
For the research, the authors developed three applications that contained the same
functionalities, but with the use of different protocols. The systems was created using
.NET 5 platform. The experiments measured the execution time, performance and
volume of the data, that was processed during display and adding operations. The
exact testing methods relied on fetching small, medium and large amount of data,
as well as inserting new data. The result showed, that the best protocol in terms of
performance is REST. However, considering the smallest data package size, the better
option is gRPC protocol. Overall, the choice of selecting one specific protocol for a
given task is very complicated. During selecting a technology, several factors should
be considered such as: data size, system performance and number of users [17].

The following work contrasts WebSocket and HTTP protocol performance. For
the testing purposes the authors used machines working in the same LAN network
and developed a special application. The methods used for the analysis depended
on sending and receiving texts of the length of 100 characters. The main conclusion
from the research is the fact that with the transmission of over 100 data copies using
the WebSocket protocol can result in over 100 times better performance over HTTP
protocol. It was also proved that the usage of WebSockets is a good way to transfer
a big number of small data packages in the period of one second, because in other
scenarios basic HTTP requests are better option. The authors also noticed that the
TLS encryption has no effect on the performance of both protocols [12].

After that, there is also a paper that compares the performance of web services
using Symfony, Spring, and Rails technologies. Using each of the frameworks, REST
and SOAP application were developed. In research the authors focused on measuring
the request execution time. The tests included select, insert and update operations.
Results showed that performance of the REST and SOAP protocols highly depends
on technology in which the application was developed [14].

Last study presents the performance and usage comparison of REST and SOAP
web services. Results show that REST outperforms SOAP in terms of bandwidth
usage and message processing performance. Authors also stated that REST is a good
option in basic, most common cases, while SOAP should be considered if particular
functionality, such as security options, is required. REST is also a more simple, easier
to develop technology than SOAP protocol [15].

3. Measurement methods

In this paper, we discuss the differences in features and limitations of communication
protocols for web services to help engineers and architects choose a protocol that
suits their needs the most. Although the knowledge of their functionalities is often
sufficient to select one, some solutions are required to handle large requests. We need
insight into protocol performance to make an informed decision. We want to per-

45Comparative Review of Selected Internet Communication Protocols

form benchmarks to find the fastest protocols and protocols with the most miniature
network data footprint.

Nowadays, web services are usually deployed in a containerized environment. We
are interested in knowing how much performance is allocated for virtualization thus
we will perform benchmarks comparing the performance of applications deployed in
a bare metal environment and a virtualized environment.

3.1. Performance comparison

For each protocol, we implemented a web service providing an interface to CRUD
operations on a database using libraries listed in the Table 1. The main factors
for choosing these libraries are the popularity and deployment web frameworks. Ith
popular projects, we are less likely to encounter unusual performance issues and bugs.
Also, notice how Flask is used across three out of four implementations. Using the
same web framework should provide results that are better comparable.

To evaluate the performance of protocols, we measured total time that elapsed
between making a request and fully receiving a response. We implemented clients in
Python for each service using libraries from Table 2 to achieve this. The clients, the
servers and a database were hosted on the same machine. Although this architecture
could result in them competing for resources, we believe the benefits of reduced net-
work delay outweigh a solution in which we could deploy these projects on separate
host machines.

We used MongoDB 5.0.5 database and Steam Games DataSet [6]. NoSQL database
was chosen because we want to minimize the impact of database operations on our
measurements, and NoSQL databases are generally faster than SQL databases [13].

Three scenarios were considered in test cases: (1) inserting an entry, (2) fetching
an entry, and (3) fetching several entries. First we measured how performant protocols
are with inserting a single game entry into a database. The test was performed on an
empty database with indexing turned off. Before proceeding to another protocol, the
database was restored to an initial state to avoid performance degradation over time.
The same game entry data was used for the testing of every service. Then indexing
was turned on and the database was populated with 100 entries from Steam Game
DataSet. We used just 100 entries to keep a table index short and make queries to the
database as quickly as possible. The other two test cases aim to measure how protocols
behave with small and large outbound data transfers. The second and the third test
cases involve fetching a single game entry and 100 game entries simultaneously. Same
as for the first test, we ensured that the same data was used to test each protocol.

Before any benchmark took place, we generated a load on each service to address
the cold start issue.

46 Ł. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, R. Roszczyk

Table 1. API libraries and versions

Project Used libraries and versions

REST Flask 2.0.3, requests 2.27.1, pymongo 4.0.2
GraphQL Flask 2.0.3, graphql-core 2.3.2, graphql-relay

2.0.1, graphql-server-core 2.0.0, graphene
2.1.9, graphene-mongo 0.2.13

WebSockets Flask 2.0.3, simple-websocket 0.5.1, pymongo
4.0.2

gRPC pymongo 4.0.2, grpcio 1.45.0, grpcio-tools
1.45.0

Table 2. Client libraries and versions

Project Used client libraries and versions

REST client requests 2.27.1
GraphQL client python-graphql-client 0.4.3
WebSockets client simple-websocket 0.5.1
gRPC client grpc 1.45.0

3.2. Network load comparison

To evaluate the impact on network, we measured how much data is sent and received
to operate on a web service. We captured and recorded every network packet sent
and received during a single request. Then the data consumption was evaluated by
assessing the length of every packet and summing them up. Two operations were
tested against data consummations: add one entry and get one entry. All tests were
performed on the same entry data.

3.3. Test environment

All benchmarks were performed on a platform with Windows 10 OS with hardware
configuration specified in a Table 3. To minimize the impact of a real-time system
on the results of benchmarks, we ensured no background tasks were running on a
test machine. We used Docker Desktop 4.6.1 as a virtualization platform to test
the performance of a vitalised environment. The same Python interpreter in version
3.9.12 was used across all implementations to make results better comparable.

47Comparative Review of Selected Internet Communication Protocols

Table 3. Hardware configuration

Component Model

CPU AMD Ryzen 5600X
OS Windows 10 Pro
RAM DDR4 16GB 3200Mhz

4. Results

This section presents the results of conducted tests. We divided them into several
subsections. First subsection covers the performance comparison. It shows the tests of
inserting one element into the database, getting one element and a hundred elements.
We ran tests on the native OS and Docker. The second subsection presents how much
data needs to be transferred between the client and server to achieve those operations.

4.1. Performance comparison

4.1.1. Inserting one element to database

As presented in Figure 1, the times needed to insert one element into the database is
shorter. We decided to remove outliers from the chart in order to maintain readability.
We achieved the lowest mean times on Docker when using REST style. Surprisingly,
gRPC turned out to be slower on this platform.

The comparison between running tests via Docker and direct on Windows is worth
mentioning. Figure 2 shows shorter times for three protocols. The inserting operation
is faster when run on a native OS than in Docker. This time gRPC protocol was the
fastest of all. Only GraphQL achieved worse performance on native OS than on
Docker. What is more, Docker turned out to be less stable than Windows. We
noticed several tests which took abnormally long. It is evident in the maximum value
for WebSockets tests. The value is more than ten times bigger than on a similar test
on Windows.

Table 4 presents collected values for Docker and Windows tests.

4.1.2. Fetching one element

Our second test was to measure times needed to fetch one element from database.
Figure 3 shows result chart of tests done on Docker platform, while Figure 4 presents
results from Windows. Once more times measured during tests conducted on native
OS were shorter.

GraphQL protocol was the slowest both on Docker and Windows. REST and

48 Ł. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, R. Roszczyk

Table 4. Times measured for inserting one value to database

Docker [µs] Windows [µs]

mean 2425 2278
min 1563 1818
max 3479 7779

REST

σ 280 395

mean 2695 1512
min 1565 999
max 6560 4822

gRPC

σ 667 253

mean 4161 4834
min 3605 4128
max 8337 7151

GraphQL

σ 318 429

mean 2950 2424
min 1999 1248
max 90272 6632

WebSockets

σ 2789 775

Figure 1. Inserting one element to database on Docker

49Comparative Review of Selected Internet Communication Protocols

Figure 2. Inserting one element to database on Windows

gRPC achieved very similar results, but gRPC turned out to be the fastest of all.
Its speed is especially visible when testing on native OS. WebSockets were the least
stable again. Their maximum test value was several times bigger than other protocols.
Table 5 shows test times.

50 Ł. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, R. Roszczyk

Table 5. Times measured for fetching one value from database

Docker [µs] Windows [µs]

mean 2631 2289
min 2066 1837
max 7683 5134

REST

σ 428 280

mean 2495 1456
min 1537 1029
max 7001 5101

gRPC

σ 616 258

mean 6022 6271
min 4209 4989
max 9656 10000

GraphQL

σ 588 578

mean 3069 2439
min 1999 1031
max 30320 9491

WebSockets

σ 1071 843

Figure 3. Fetching one element on Docker

51Comparative Review of Selected Internet Communication Protocols

Figure 4. Fetching one element on native OS

4.1.3. Fetching a hundred elements

The last conducted test measured how long it takes to fetch a hundred elements from
database. Figure 5 present results from Docker platform, and Figure 6 shows results
from Windows.

This time the WebSockets protocol turned out to be the slowest and the least
stable. There are several tests which took much longer than they normally last.
gRPC protocol was definitely the fastest in this task.

Table 6 shows mean test times.

52 Ł. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, R. Roszczyk

Table 6. Times measured for fetching a hundred elements from database

Docker [µs] Windows [µs]

mean 24301 19728
min 22420 17758
max 90189 38277

REST

σ 3030 1600

mean 11730 11611
min 8002 9893
max 38763 20067

gRPC

σ 5403 1189

mean 23107 22176
min 20820 19266
max 48715 44608

GraphQL

σ 2567 2565

mean 25327 23533
min 22962 20888
max 189695 51930

WebSockets

σ 9444 2244

Figure 5. Fetching a hundred elements on Docker

53Comparative Review of Selected Internet Communication Protocols

Figure 6. Fetching a hundred elements on native OS

4.2. Memory comparison

4.2.1. Insert one element to database

Table 7 presents how many bytes have been transferred in each protocol and operation.
The measurements have been collected with WireShark.

Table 7. Message size in bytes

Operation REST gRPC GraphQL WebSockets

Fetching element 3536 3811 3766 3469
Inserting element 3298 3769 3746 3069

Results show that, indisputably, WebSockets offers the best memory usage out of
4 presented communication protocols. In both fetching and inserting it achieved the
best result. Other protocols use noticeably more resources, especially gRPC which is
the most memory-consuming mechanism of communication in this comparison.

54 Ł. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, R. Roszczyk

5. Conclusion

Out tests showed that gRPC protocol is the fastest in transferring data between
client and server. The WebSockets protocol achieved similar results to REST when
transferred data was small (inserting and fetching one element). When data was
larger (test with a hundred elements) it turned out to be the slowest. REST style was
moderately fast. It turned to be slower than gRPC, but was never the worst in any
category. GraphQL had some troubles with small data. It was the worst in inserting
and fetching one element from database. It was slightly faster than the WebSockets
in fetching a hundred elements.

What can easily be visible is that Docker platform is less stable than native OS.
There are several tests (in particular, the WebSockets protocol tests) which show out-
lier times. This means that Docker might have an impact on a web app performance.

What was also noticed is that the memory usage is in some way associated with
protocols performance. WebSockets scored poorly in performance comparison but
used the littlest amount of memory to transfer data. The opposite is with gRPC, it
has noticed the best performance but was the most memory-consuming at the same
time.

Above conclusions and the overall authors feelings lead to another conclusions
about proper use cases of each protocol. If a programmer is looking for the fastest
way to transfer data and does not care about message size the relevant option will
be gRPC. On the other hand, if delivery time is not crucial and there is need of
low memory usage the right option will be WebSocket. REST protocol is also an
interesting way to communicate. It provides decent memory usage, time performance
and what is the most important it is easily accessible, which means that every new
client can easily connect to server. There is also GraphQL which provides the worst
memory usage to time performance ratio especially in single element operations. This
means that this protocol should be used in other way, e.g., nested data structures
where data is fetched with queries.

References

[1] gRPC official documentation. https://grpc.io/docs/what-is-grpc/core-concepts/.
Accessed on May 17, 2022.

[2] Protocol buffers official documentation. https://developers.google.com/protocol-
buffers/docs/overview. Accessed on May 17, 2022.

[3] Bolanowski M., Żak K., Paszkiewicz A., Ganzha M., Paprzycki M., Sowiński P.,
Lacalle I., and Palau C. E. Eficiency of REST and gRPC realizing communication
tasks in microservice-based ecosystems. 2022.

[4] Brito G. and Valente M. T. REST vs GraphQL: A controlled experiment. In
2020 IEEE international conference on software architecture (ICSA), pages 81–
91. IEEE, 2020.

55Comparative Review of Selected Internet Communication Protocols

[5] Chamas C. L., Cordeiro D., and Eler M. M. Comparing REST, SOAP, socket
and gRPC in computation offloading of mobile applications: An energy cost
analysis. In 2017 IEEE 9th Latin-American Conference on Communications
(LATINCOM), pages 1–6. IEEE, 2017.

[6] Deepan N. and Narayanan S. 80000 steam games dataset.
https://kaggle.com/datasets/deepann/80000-steam-games-dataset/metadata.
Accessed in April, 2022.

[7] Erlandsson P. and Remes J. Performance comparison: Between GraphQL, REST
& SOAP (bachelor’s thesis), 2020.

[8] Fette I. and Melnikov A. The WebSocket Protocol. RFC 6455, IETF Trust,
December 2011.

[9] Fielding R. and Reschke J. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and content. Technical report, 2014.

[10] Fielding R. T. Architectural styles and the design of network-based software
architectures. University of California, Irvine, 2000.

[11] Frig̊ard E. GraphQL vs. REST: A comparison of runtime performance (bachelor’s
thesis), 2022.

[12] Lasocha W. P. and Badurowicz M. Porównanie wydajności protoko lu WebSocket
i HTTP. Journal of Computer Sciences Institute, 19:67–74, 2021.

[13] Li Y. and Manoharan S. A performance comparison of SQL and NoSQL
databases. pages 15–19, 08 2013.

[14] Lubartowicz P. and Pańczyk B. Performance comparison of web services using
Symfony, Spring, and Rails examples. Journal of Computer Sciences Institute,
17:384–389, 2020.

[15] Makkonen J. et al. Performance and usage comparison between REST and SOAP
web service. 2017.

[16] Seabra M., Nazário M. F., and Pinto G. REST or GraphQL? a performance
comparative study. In Proceedings of the XIII Brazilian Symposium on Software
Components, Architectures, and Reuse, pages 123–132, 2019.

[17] Śliwa M. and Pańczyk B. Performance comparison of programming interfaces on
the example of REST API, GraphQL and gRPC. Journal of Computer Sciences
Institute, 21:356–361, 2021.

Received 14.09.2022, Accepted 02.12.2022

56 Ł. Kamiński, M. Kozłowski, D. Sporysz, K. Wolska, P. Zaniewski, R. Roszczyk

