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Abstract

Research background: Many studies have been done in the field of predicting the Volatility 
of Commodities; however, very little or no analysis has been conducted on any sector, industry, or 
indices to identify which model is best to understand the asset’s characteristics, as there is a hypothesis 
that all financial time series can be interpreted by implementing the same model.
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Purpose: The primary objective is to identify different tools developed by the researchers in estimating 
impulsive clustering and leverage effects. A comparison will be made among the available tools of the 
GARCH family models to suggest the best tool to forecast and calculate volatility with the least error.
Research methodology: The data used are historical time series data of Indian base metal indices, 
i.e., Aluminum (AL), Copper (CO), Lead (LE), Nickel (NI), and Zinc (ZI) from NSE for a period from 
1st June 2012 to 31st August 2022 from the official website of NSE of India. The study compared and 
attempted to identify which GARCH family model is suitable to measure the volatility clustering and 
leverage effect in Indian base metal indices by reducing the chances of error.
Results: The study has revealed that the GRACH asymmetric models, while approximating and 
predicting the financial time series, can enhance the model’s output when it has a high frequency. Here, 
the asymmetric GARCH models (TARCH, CGARCH, EGARCH, and PARCH) better predict volatility 
than classic models.
Novelty: This study is original in its approach, as a previous study stated the presence of volatility or 
leverage effect by implementing any one tool. However, this study will compare available tools to suggest 
which is appropriate for which sector. This analysis will support future researchers and practitioners 
in evaluating volatility clustering and the effect of leverage by implementing the appropriate GARCH 
family model without believing in a hypothesis that a single model is good enough to predict volatility.

Keywords: Volatility, asymmetric GARCH, Base Metal, forecasting, Sustainability 

JEL classification: C01, C10, C 12, E41, E44

Introduction

Predicting and modeling volatility is considered to be one of the crucial ingredients in the 
financial markets. Several research studies have already been conducted on developing various 
models to resolve the issues, as this prediction leads to efficient risk management and price 
of the financial assets. In the last three decades, a wide study has been conducted on financial 
market volatility empirically like:

Mandelbrot (1963) stated that in the financial time series, the basic outcome that can be 
felt is the presence of impulsive clustering and leptokurtosis. It is more confirmed that the 
time series’ financial returns are non-normally distributed, leading to fat-tailed. Moreover, 
Mandelbrot (1963) strongly refused the existence of a normal distribution of the data set. 

Leveraging Financial and operating on fixed costs provides a partial output of the 
fluctuation, which Black (1976) solved for the first time, revealing the response of change in 
volatility towards good news and bad news. 

Harris and Sollis (2003) proposed that in a financial time series, expecting a long memory 
is a regular phenomenon like other time series (e.g., macroeconomics), but the property of the 
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existence of long memory can be interpreted through the high frequency in the financial time 
series. These states about the presence of information impact on the financial time series make 
long-range dependency and affect the future counts. 

Another vital element is the volatility with the time variance, otherwise called 
heteroscedasticity of data in the financial time series. It means the variance or change in 
volatility (Kumar, 2019; Kumar et al., 2019a).

This kind of variance needs special treatment as it cannot be understood through linear 
models, i.e., RW and OLS. These variances can be interpreted effectively by Bollerslev (1986) 
and Engle (1982) through the Generalised Auto-Regressive Conditional Heteroscedasticity 
(GARCH) and Auto-Regressive Conditional Heteroscedasticity (ARCH) models, respectively. 
ARCH models were widely used in analyzing financial markets. This is mostly used for high-
frequency data and a heavy peaked and tailed distribution. 

Apart from all this, EMH (Efficient Market Hypothesis) is an analysis that an investor may 
choose to analyze through past prices. However, there is a consideration that the market is only 
moderately competent. For instance, if the market is strongly efficient, then the performance 
of the assets can be forecasted from their past prices or behavior. (Miron, Tudor, 2010; Peters, 
2001; Sahoo et al., 2024).

Volatility in financial assets can be taken for granted as an element of the rise in risk, 
which may produce a financial crisis (Kumar, 2018a). So, volatility should be given priority in 
making any investment decisions. Investors believe volatility helps calculate derivatives for 
discovering the spot price of assets and certain critical decisions for portfolio designing and 
hedging strategies (Kumar, 2018b). Policymakers keep an eye on volatility and take major steps 
to maintain a balanced performance in the financial markets. 

This study aims to identify the superior volatility model for Indian base metal indices by 
asymmetric GARCH models. This study will be a novel approach as the previous researcher 
measured the presence of impulsive clustering or leverage effect by implementing a particular 
model. As per the knowledge, very little or no analysis is conducted on any sector, industry, 
or indices to identify which model is best to understand the asset’s characteristics, as there is 
a hypothesis that all financial time series can be interpreted by implementing the same model. 

The paper is represented with different sections. Section 1 states the conceptual study on 
GARCH family models and previous studies. In Section 2, the Research methodology highlights 
the data setting and all the tools used in the study. In section 3, an analysis is conducted on the 
GARCH family models to identify the superiority of Indian base metal volatility. Section 4 states 
the results of the analysis and Section 5 discusses the conclusions, implications of the study.
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1.	 Literature review

The stock return highlight on volatility clustering, Leverage effect, and Leptokurtosis was 
proposed by three learned researchers: Black, F (1976), Fama E.F. (1965), and Benoit M. (1963). 
Several researchers commented that traditional time series models are based on an assumption 
of constant variance that does not provide true estimated results on the movement of stock return. 
Hence, a new model is presented, i.e., suggested the ARCH models by Engle (1982) that avoid 
the past issues parting the unconditional variance constant by changing conditional variance 
over time. The limitation of the ARCH model assumption, i.e., specifying the conditional 
variance as a linear function, was solved by subsequent researchers. Bollerslev (1986) suggests 
the GARCH Model (Generalized ARCH), which considers the features of ARCH and lagged 
conditional variances. The GARCH model also supports longer data with flexible lag selection. 
Engle et al. (1987) proposed an advanced method of the ARCH model, where it considers the 
mean to determine the conditional variance and named it GARCH-M. This empirical study 
supports the identification that risk premiums are not time-invariant but rather systematic. 
With the lapse of time, it was further observed that the GARCH model has several limitations, 
which were identified and solved by Nelson (1991), exploring the positive or negative return 
and inconsistency through a model. The proposed model is named the EGARCH (Exponential 
GARCH) model. 

GJR GARCH, a model introduced by Glosten et al. (1993), is an advanced model to 
GARCH-M, which shows uneven volatility due to the shock of positive and negative 
returns. With time, several studies were made, and improved models were supplemented with 
GARCH models to solve the drawbacks of each model. Ding et al. (1993) proposed APGARCH 
(Asymmetric Power GARCH), Zokoian (1994) gave TGARCH (Threshold GARCH), and many 
more. Many researchers like (Hsieh, 1989; Taylor, 1994; Bekaert, Harvey, 1997; Aggarwal 
et al., 1988; Brook, Burke, 2003; Frimpong, Oteng, 2006; Olowe, 2009) concluded about the 
ARCH and GARCH models that volatility measurement can only be possible GARCH (1, 1). 
A comparing review of GARCH-M, EGARCH, TGARCH, and PGARCH is stated by a few 
researchers based on researchers such as (Su, 2010; Miron, Tudor, 2010; Awartani, Corradi, 
2005; Gokan, 2000) that all the asymmetric models in GARCH helps to predict the volatility 
of daily return on stock throughout the world. Amongst all of the EGARCH models, it fits best 
to measure the volatility.

Kumar et al. (2019b) conducted a study on the NSE and Spot Index future by implementing 
GARCH family models. The study has used Nifty 50 futures and spots along with their indices, 
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i.e., bank index, inflation index, and IT index, from Jan 1st, 2007, to Jun 30th, 2018. The study 
reveals that volatility clustering can be predicted from the GARCH models along with the stock 
market characteristics, while the effect of leverage can be measured through EGARCH. A few 
analyses are also made on emerging stock markets for volatility estimation and prediction by 
considering ARCH and GARCH models. The researchers being Akgül and Sayyan (2005) and, 
Kumar and Mishra (2019a) of India, Rashid and Ahmad (2008) in Pakistan, R. Gokbulut and 
M. Pekkaya (2014) in Turkey. Their analysis concludes that the data from emerging economies 
shows Leptokurtosis, non-normality, negative skewness, volatility clusters, and GARCH (1, 1) 
as the best fit. Meanwhile, CGARCH and TGARCH are supported by Gokbulut and Pekkaya 
(2014) as they find them more suitable for measuring volatility. A series of analyses were 
conducted by researchers from emerging countries like Kumar and Mishra (2019b), Floros 
(2008) in Nigeria, Moustafa Abd et al. (2011), Angabini and Wasiuzzaman (2011) in Malaysia, 
Ezzat Hassan (2012) of Egypt, Su (2010) in China, Emenike (2010) and Freddie et al. (2012) 
of Saudi Arabia who made a comparison of various models from the GARCH and ARCH 
family and concluded that GARCH, GJR GARCH, and EGARCH are fitting for the clustering 
effect, leptokurtosis volatility measurements, and identifying leverage effect. Kumar and 
Biswal (2019) attempted a study to measure the volatility clustering and leverage effect of top 
future stock markets from Jan 1st, 2014, to Oct 31st, 2018, by implementing the GARCH family 
model. The study confirms that EGACRH can be accepted for analyzing the leverage effect 
while estimating the characteristics of the stock market. GARCH (1, 1) is the best model. 

1.1.	 Problem of the study

The Commodity market is always volatile, and as a result, the practitioner is unable to 
identify the performance and forecast accurately. This confusion put the practitioners at a great 
loss. As a result, several research studies were conducted to measure the volatility and the 
leverage effects. It is difficult to estimate the volatility accurately by implementing the right 
technique. So the main issue is, can we suggest the best technique out of the list of tools for 
certain Commodity markets? 

1.2.	 Purpose of the study

As per the problem of the study, the primary objective is to identify different tools developed 
by the researchers in estimating impulsive clustering and leverage effects. A comparison will 
be made among the available tools of the GARCH family models to suggest the best tool to 
forecast and calculate volatility with the least error. This study is original in its approach, as 
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the earlier study stated the presence of volatility or leverage effect by implementing any one 
tool. However, this study will compare the available tools to suggest which is appropriate for 
which sector.

2.	 Research methodology

2.1.	 Collection of data

The historical time series data of Indian base metal indices, i.e., Aluminum (AL), Copper 
(CO), Lead (LE), Nickel (NI), and Zinc (ZI) from MCX for a period from 1st June 2012 to 31st 
August 2022 from the official website of MCX of India were undertaken for the research.

2.2.	 Statistical tools 

The tools used are as follows:

a)	 Calculation of indices daily average: The data available, i.e., open prices, high prices, low 
prices, and close prices for all the periods are taken. The average of these four prices is 
considered for analysis, i.e. 

Average prices of Indices (Daily) = (open + high + low + close)/4.

Most of the researchers have considered the closing price. However, it will not be rational to 
consider the closing price only as in a day; the index may open at a high price and continue 
high for the whole day and then at a minimum while closing or vice versa.

b)	 Adjusted return Calculation: The calculation of the adjusted return is as follows: 

1
  it

it
it

PR LN P −
=

 

where, Pit and Pit–1 state the natural logarithm of the Commodity’s average price of day t 
and the previous day t, respectively. The natural logarithm average returns are used to 
present nonstationary and avoid future price variability. 
Descriptive Statistics: A return series of Indian Base metal is accepted to detect 
distributional practices through descriptive statistics. The outcome displays Jarque-Bera 
Statistics, Standard Deviation (σ), Kurtosis (K), Mean(X), and Skewness (S).

c)	 Test of Normality
Jarque-Bera (JB) Statistics: A Lagrange multiplier test used for normality assessment. For 
several statistics to measure the normality, the Jarque-Bera test is applied. The JB test is 
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run before one of these tests to confirm the presence of these tests. When the data series is 
large, other kinds of tests are unreliable; hence, the JB test is run. 

6 24
N NJB S K= +

( )22 1 3
6 4

N kJB s K 
 =


−
−


+

where, k explains the estimated number of coefficients, K is the Kurtosis, and S is the 
Skewness.

d)	 Data Stationary: The most important test for a time series is the test of the unit root. The unit 
root test states the stationary and non-stationary data. The unit root test is calculated as per 
the (Dickey, Fuller, 1979) by implementing the Augmented Dickey-Fuller test (ADF) and 
the Phillips-Perron (1988) Test (PP-Test)
It depends on the following model, where p is the lag.

1 1 1 1 1      t t t t p t p tY Y Y Yα β γ ε− − − − +∆ = + + ∆ ++∂ …+∂ ∆ +
  

where α – constant, β – time trend coefficient and p value is the lag order of the autoregressive 
process, εt – white noise error term.
The regression with the AR (1) process, the mathematical formula for the Phillips-Perron 
(PP) test is shown as.

1 0 t 1   Y t tY α γ ε− −∆ = + +

e)	 AIC and SBC has been used for choosing the Best ARMA (p, q) model
AIC and SBC are considered to determine the ARMA (p, q) model. ARMA (p, q) is 
simulated first to show this method. The values are paired and looped pϵ {0, 1, 2, 3, 4, 5, 6} 
and q ϵ {0, 1, 2, 3, 4, 5, 6} and evaluate the AIC and SBC. The model will then be selected 
based on the lowest value of AIC and SBC. 

Akaike Information Criterion: AIC = –2log (L) + 2K

SBC-Schwarz Criterion SBC = –2log (L) + K log (n)

f)	 Autoregressive Conditional Heteroskedasticity (ARCH)
The serial correlation of Heteroskedasticity, i.e., the relation within the heteroskedasticity, 
is called the ARCH effect. It often gets outward when there lies a clustering of fluctuation 
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or movements of a particular element by making a certain form, which some factors can 
explain. 
The model is as follows:

1t o t tY X uβ β+= +

( )2
0 1 10,t tu N uα α −= +

Depending on the squared error term lagged one time period; this signifies that the error 
term is normally distributed with the mean as zero and conditional variance. 
When the error terms are presented with a lagged one or two, it is the conditional variance:

( ) ( )2 2
1 2 1 2\ ,  \ , t t t t t tvar ut u u E u u uσ − − − −= … =

where the error term, of the conditional variance is presented as σt
2. Then the model for 

presenting the ARCH effect is:

2 2
0 1 1t tuσ α α −= +

g)	 Generalised Autoregressive Conditional Heteroskedasticity (GARCH)
The GARCH model came into existence in 1986 by Bollerslev, including lagged square 
residuals and standard deviation. The model can be presented as: 

2 2 2
0 1 1 1 1t t tuσ α α β σ− −= + ∑ +∑

where 2
tσ  is conditional volatility, ut–1 is defined as an error or residual and 2

1tσ −  is the lagged 
conditional volatility which make the GARCH different from the ARCH. In which 2

1 1tβ σ −  is 
the GARCH element.

h)	 Exponential Generalised Autoregressive Conditional Heteroskedasticity (EGARCH)
The further development termed the asymmetric GARCH model was developed by 
Nelson (1991), who defined it as EGARCH. The additional component introduced was the 
Exponential component in ARCH. The objective is to reduce the basic standard GARCH 
from the positive constraints. However, it also contains non-negatives for the conditional 
variance on the volatility. 

( ) ( )2

1
In t t t i

t
g zσ α β

∞

−
=

= +∑
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where the function g(zt) can be represented in different ways. Nelson (1991) suggested using 
mod zt to control both signs, i.e., positive and negative, without affecting the magnitude of zt

i)	 Threshold Generalised Autoregressive Conditional Heteroskedasticity (TGARCH) 
The form of the GARCH family is the threshold GARCH model that is capable of modelling 
the leverage effects. It can be presented as:

2 2 2 2
0 1 1 1

1 1 1

p p q

t t t t t t j t j
t t j

u S uσ α α α β σ− − − −
= = =

= + + +∑ ∑ ∑

where: 	
1

1
1

1 for 0
0 for 0

t
t

t

u
S

u
−

−
−

<
=  ≥

	

j)	 Power Generalised Autoregressive Conditional Heteroskedasticity (PGARCH)
Ding (1993) presented a special case by introducing power to the basic GARCH component 
to identify the leverage effect and named it as PGARCH.

( )0
1 1

^
p qdd d

t t t i t i j t j
t j

yiu uσ α α β σ− − −
= =

= + + +∑ ∑

where d > 0, and yi represents the leverage effect coefficient. When d = 2, it can be confirmed 
that it reduces the leverage effects of the basic GARCH model. 

k)	 Component Generalised Autoregressive Conditional Heteroskedasticity (CGARCH)
This model came into existence in 1993 by Engle and Lee. This model sets components as 
temporary and permanent by decomposing the variance. This can be represented as:

( ) ( )2 2 2
1 1 1t t t t t tq q qσ α ε β σ− − −= + − + −

( ) ( )2 2
0 1 0 1 1t tt tq p q uα α σ− − −= + − +∅ −

whereas, qt represents a permanent component, p represents the long memory, α and β 
represent the short-term.
Mathematically, the asymmetric CGARCH can be presented as:

( ) ( ) ( )2 2 2 2
1 1 1 1 1t t t t t t t tq q q qσ α ε γ ε β σ− − − − −= + − + − + −

( ) ( )2 2
1 0 1 0 1 1t t tq p q uα α σ− − −= + − +∅ −
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3.	 Results

As per the study’s objective time to suggest the appropriate model for estimating and 
predicting commodity market volatility, the primary research is to understand whether the 
selected sectors follow a normal distribution. The study implemented the Jarque Bera test 
on all of the selected sectors to conduct the normality test. Table 1 highlights the outcome 
of descriptive statistics and the test of normality of the data with the Jarque-Berra Test. 

Table 1. Test of normality of the Indian Base metal Indices 

AL CO LE NI ZI

Mean 0.001434 0.001280 0.001257 0.000911 0.001309

Median 0.004691 0.004040 0.005315 0.004174 0.002496

Maximum 2.193505 2.110780 1.994326 2.077379 2.048816

Observations 3,066 3,066 3,066 3,066 3,066

Minimum –2.426508 –2.027972 –1.989997 –2.044818 –2.039237

Std. Dev. 0.624521 0.653441 0.629382 0.653928 0.648477

Jarque-Bera 918.7122 881.2564 941.4358 833.2711 853.8376

Skewness –0.152807 –0.106635 –0.168591 –0.107714 –0.133458

Kurtosis 5.664223 5.617786 5.693635 5.544850 5.571462

Probability 0.000000 0.000000 0.000000 0.000000 0.000000

Sum 4.395603 3.925933 3.853613 2.793655 4.013656

Sum Sq. Dev. 1,195.432 1,308.710 1,214.114 1,310.660 1,288.902

Source: own elaboration.

Table 1 provides descriptive statistics and the results of the Jarque-Bera test for normality 
for the Indian Base Metal Indices, including Aluminum (AL), Copper (CO), Lead (LE), Nickel 
(NI), and Zinc (ZI). The mean, median, maximum, minimum, standard deviation, skewness, 
and kurtosis and the number of observations are reported for each index. The Jarque-Bera 
statistic is a test for normality, with a lower probability indicating a departure from normality. 
In this case, the probability values for all indices are zero, suggesting a statistically significant 
departure from normality. Skewness values are negative for all indices, indicating a negatively 
skewed distribution, while the kurtosis values are greater than three, indicating leptokurtic 
distributions with heavier tails than a normal distribution. These findings suggest that the return 
distributions for all indices exhibit a long left tail, indicating a higher probability of extreme 
negative returns.
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The ADF test is considered a negative test. The more negative, the better and stronger the 
rejection of the hypothesis that, at some level of confidence, it lays a unit root.

It depends on the subsequent model, where p is the lag.

t 1 1 t 1 p 1 t p 1   Y Y  Y  t t tY α β γ ε− − − − +∆ = + + + ∂ ∆ + ∂ ∆ +

where εt = error term for white noise, p value is the autoregressive lag order, β = coefficient 
of time trend and α = constant.

Concerning error distribution in ADF, it gives a mild output, solved after the PP-Test 
presented by Phillips and Perron (1988) and Asteriou and Hall (2011). The regression with the 
AR (1) process, the mathematical formula for the Phillips-Perron (PP) test is shown as.

1 0 t 1   Y t tY α γ ε− −∆ = + +

Table 2. Data Stationary of Indian Base metal Indices 

Indices
Intercept Trend and intercept None

t-statistic prob. t-statistic prob. t-statistic prob.

Testing the presence of Unit root through the ADF Test

Aluminum –20.80592 0.0000 –20.83388 0.0000 –20.80373 0.0000

Copper –22.82349 0.0000 –22.82551 0.0000 –22.82586 0.0000

Lead –22.35278 0.0000 –22.35624 0.0000 –22.35270 0.0000

Nickel –23.26018 0.0000 –23.26526 0.0000 –23.26018 0.0000

Zinc –22.94033 0.0000 –22.93820 0.0000 –22.93763 0.0000

Testing the presence of Unit root through the PP test

Aluminum –524.3999 0.0001 –535.4517 0.0001 –508.2858 0.0001

Copper –600.5614 0.0001 –600.3762 0.0001 –584.7426 0.0001

Lead –571.5705 0.0001 –571.8146 0.0001 –569.9059 0.0001

Nickel –624.9083 0.0001 –628.7631 0.0001 –609.9581 0.0001

Zinc –703.9319 0.0001 –703.6525 0.0001 –687.1815 0.0001

Source: own elaboration.

Table 2 shows the output of the ADF and PP tests at the 1% level of significance; the result 
confirms that the data series in both tests are stationary as the probability statistics are less than 
zero along with that the results of absolute values are found to be larger than the critical values 
so the study rejects the hypothesis. 
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3.1.	 Identifying the mean equations

The data series of stationary and non-normality confirmation helps to proceed to the next 
step, identifying whether the return series depends on its past values. From Table 3, the result 
states that AR (2) and MA (1) are the best-fitting ARMA Models for all the data series.

Table 3. The ARMA model through minimum AIC and SBC for the metal index

Indices
Criteria

Akaike info. criterion Schwarz criterion
Aluminum 1.162611 1.1684611

Copper 1.181319 1.1871750

Lead 1.156424 1.1622790

Nickel 1.210143 1.2159980

Zinc 1.200566 1.2064210

Source: own elaboration.

From Table 3, it is clear that AR2 and MA1 are considered to be the best ARMA models 
through the AIC and SBC selection criteria for all the data series, as this model shows the 
minimum value of AIC and SBC while others show the higher values and are found insignificant.

As per the research objective of approximating and predicting the best-fitting model for 
evaluating the volatility clustering of the Indian base metal indices, further analysis is carried 
out. For the analysis, the GARCH family models are used, i.e., ARCH (1), GARCH (1, 1), 
TARCH (1, 1), EGARCH (1, 1), PARCH (1, 1), CGARCH (1, 1). The accurate numbers of lags 
in the model are considered by selecting the lowest AIC and SBC information criteria. Table 
4 is considered for identifying the best-predicting models for the Indian base metal indices.

Table 4. GARCH Models 

GARCH FAMILY A B C D E F

1 2 3 4 5 6 7

GARCH Models of Aluminum through ARMA (2, 1)

α0(constant) 0.197311* 0.000148* –7.10E–05 –0.040498* 0.328919* 0.258592*

(ARCH) Α –0.03099* 0.021536* 0.066685* 0.050243* –0.05458* –0.04209*

(Asymm-int) ᴽ – – –0.06193* 0.025999* 0.685619* –

(GARCH) Β – 0.976831* 0.979688* 0.997720* 0.999982* –0.821911*

Δ – – – – 0.068523* –

Ρ – – – – – –0.30937*

Φ – – – – – 0.229552*
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1 2 3 4 5 6 7

ARCH LM Test 0.675600 0.304700 0.195000 0.481400 0.021400 0.148700

AIC 1.183859 0.720898 0.706771 0.697500 0.899085 1.264744

SBC 1.193621 0.732612 0.720438 0.711167 0.914703 1.280362

F Statistics 0.175074 1.053089 1.679537 0.495524 5.300391 2.087092

GARCH Models of copper through ARMA (2,1)

α0(constant) 0.203771* 0.115283* 0.082446* –0.82983* 0.359423* 0.306401*

(ARCH) Α –0.05344* –0.05967* 0.153571* –0.66405* –0.09465* –0.09288*

(Asymm-int) ᴽ – – –0.21657* –1.07962* 0.648509* –

β(GARCH) – 0.461602* 0.595430* 0.191179* 0.999963* –0.79671*

Δ – – – – 0.118124* –

Ρ – – – – – 0.991866*

Φ – – – – – 0.062327*

ARCH LM Test 0.905600 – 0.118900 0.003300 – 0.034300

AIC 1.183931 – 1.104628 1.420611 – 0.813535

SBC 1.193693 1.184393 1.118294 1.434277 – 0.829154

F Statistics 0.014041 0.030967 2.431730 8.633556 3.953776 4.483872

GARCH Models of Lead through ARMA (2,1)

α0(constant) 0.198735* 0.121329* 0.151288* –0.77788 0.066601 0.317803*

(ARCH) Α –0.05096* –0.05308* 0.083690* –.56949* –0.00361* 0.084945

(Asymm-int) ᴽ – – –0.15235* –1.04709* 0.433020 –

β(GARCH) – 0.409647* 0.502919* 0.227179* 0.963273 –0.364666

Δ – – – – 2.632507* –

Ρ – – – – – –0.262995

Φ – – – – – 0.125051

ARCH LM Test 0.423200 – 0.180500 0.000400 0.698200 0.142200

AIC 1.163233 – 1.337942 1.417251 1.149084 1.410362

SBC 1.172994 1.169079 1.351609 1.430917 1.164703 1.425981

F Statistics 0.641153 0.485366 1.793393 12.70452 0.150209 2.153782

GARCH Models of Nickel through ARMA (2,1)

α0(constant) 0.211591* 7.08E–05* 5.06E–05* –3.30478* 0.395436* 0.275862*

(ARCH) Α –0.05625* 0.015018* 0.018451* –0.18671* –0.09984* 0.118676

(Asymm-int) ᴽ – – –0.004528 0.099766* 0.618892* –

β(GARCH) – 0.983510* 0.983627* –0.92353* 0.999907* –0.40124*

Δ – – – – 0.113003* –

Ρ – – – – – –0.122867

Φ – – – – – 0.042207

ARCH LM Test 0.6802 0.1209 0.1234 0.6032 0.0004 0.0000

AIC 1.218002 0.663841 0.664303 1.054864 0.776579 1.388445
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1 2 3 4 5 6 7

SBC 1.227763 0.675555 0.677969 1.068531 0.792198 1.404064

F Statistics 0.169807 2.405597 2.374305 0.269983 12.74719 22.20573

GARCH Models of Zinc through ARMA (2,1)

α0(constant) 0.211430* 0.141747* 0.147383* –0.86506* 0.375347* 0.210752*

(ARCH) Α –0.06268* –0.06273* –0.07405* –0.60531* –0.10382* –0.05462*

(Asymm-int) ᴽ – – 0.008396 –1.10934* 0.638136* –

β(GARCH) – 0.348651* 0.351129* 0.158449* 0.999770* –0.77980*

Δ – – – – 0.126930* –

Ρ – – – – – –0.280897

Φ – – – – – 0.000282

ARCH LM Test 0.2831 0.3235 0.3705 0.0263 0.0006 0.9260

AIC 1.203493 1.200318 1.203978 1.434055 0.825376 1.153219

SBC 1.213252 1.212029 1.217640 1.447718 0.840990 1.168834

F Statistics 1.151781 0.974442 0.801771 4.939108 11.91733 0.008624

Note: A = ARCH (1), B = GARCH (1, 1), C = TARCH (1, 1), D = EGARCH (1, 1), E = PARCH (1, 1), F = CGARCH (1, 1).
At the 5% level of significance *.

Source: own elaboration.

From the result of the minimum AIC and SBC, maximum likelihood (ML) values, the 
models that can be accepted as best suiting are EGARCH (1,1) for Aluminum; GARCH for 
Nickel, while for PARCH (1,1) for Copper, Lead, Zinc. Apart from that, the values of the 
ARCH and GARCH parameters, i.e., (α) and (β) for all the models, are observed as positive 
and significant. This can be interpreted as the Indian base metal indices having ARCH and 
GARCH. 

To confirm the existence of volatility asymmetric for the data series, it can be said from 
the value of (ᴽ), i.e., from the EGARCG model. The outcomes confirm that all the data series 
show negative results except for Aluminum and Nickel. This negative result in the EGARCH 
interprets from the conditional variance equation that the return has an asymmetric response 
due to a positive value. This positive result of return outlays Commodity indices consists of the 
leverage effect, i.e., bad news brings volatility.

4.	 Discussion

From the result of the minimum AIC and SBC, maximum likelihood (ML) values, the 
models that can be accepted as best suiting are EGARCH (1,1) for Aluminum; GARCH for 
Nickel, while for PARCH (1,1) for Copper, Lead, Zinc. Apart from that, the values of the ARCH 
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and GARCH parameters, i.e., (α) and (β) for all the models, are observed as being positive 
and significant. This can be interpreted as the Indian base metal indices having ARCH and 
GARCH. 

To confirm the existence of volatility asymmetric for the data series, it can be said from 
the value of (ᴽ), i.e., from the EGARCG model. The outcomes confirm that all the data series 
show negative results except for Aluminum and Nickel. This negative result in the EGARCH 
interprets from the conditional variance equation that the return has an asymmetric response 
due to a positive value. This positive result of return outlays Commodity indices consists of the 
leverage effect, i.e., bad news brings volatility.

Conclusions

The study encompasses various symmetric and asymmetric models for volatility for 
identifying conditional volatility in Indian base metal indices for the first time from 2011 to 2022. 

One of the most important intentions behind this study was to identify the presence 
of the effects of asymmetry in the commodity markets by implementing GARCH family 
models. The model shows that volatility clustering exists as the GARCH test’s probability 
values are statistically significant.

Besides, the sum of α and β is less than one for all the commodity returns observed from 
models like GARCH, PARCH, and TARCH. This means the volatility sustains for a longer 
time, and it consumes a long period to reach the mean value. For instance, the sum of α and β 
for Aluminum and Nickel is high. This means the model for volatility measurement is accurate 
through the GARCH models.

The result of GARCH is found to be bigger in the case of aluminum and nickel, which 
means the returns of such are more dependent on their past variances compared to copper, lead, 
and zinc. 

The study has revealed that the GRACH asymmetric models, while approximating 
and predicting the financial time series, can enhance the model’s output when it has a high 
frequency. Here, the asymmetric GARCH models work better in predicting the volatility in 
comparison to classic models.

Regarding the valuations of the financial assets, it is wise to select the model that considers 
the long memory. This study shows that the GARCH, EGARCH, and PARCH models are 
considered the best-fitted models as the conditional volatility is more persistent for all the base 
metal indices.
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Bollerslev et al. (1994) and Pagan (1996) opined the different results that are followed by 
many researchers and practitioners which is not true, so this study’s outputs can be considered 
a rational approach for evaluation, i.e., the return series of Indian base metal indices have 
leptokurtic, Volatility clustering, Leverage effect, and long memory.

The findings of this study on Indian base metal indices highlight significant volatility 
clustering and leverage effects, which are essential for investors and policymakers. The selected 
GARCH family models, including EGARCH, GARCH, TARCH, PARCH, and CGARCH, 
effectively capture these dynamics. The presence of volatility clustering indicates the 
persistence of market trends, crucial for timing trades and hedging positions. Furthermore, 
the identification of leverage effects reveals the asymmetric response of base metal indices to 
positive and negative news, providing insights into market dynamics. These findings align with 
the Efficient Market Hypothesis, suggesting that market prices reflect available information 
but also demonstrate the influence of psychological factors on market behavior. Policymakers 
may consider implementing measures to manage volatility, such as circuit breakers, to stabilize 
market conditions and reduce investor risk. Future research could explore the impact of external 
factors on volatility and the effectiveness of different risk management strategies. Overall, this 
study contributes to a deeper understanding of financial market behavior and offers valuable 
insights for investors, policymakers, and researchers. 
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