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Summary. In this article, we prove the transcendence of the number e
using the Mizar formalism, following Hurwitz’s proof. This article prepares the
necessary definitions and lemmas. The main body of the proof will be presented
separately.
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Introduction

In this article, we prove that the number e is transcendental [11] using the
Mizar formalism [2]. We encode Hurwitz’s proof [7], which in simplification of
Hermite’s idea [6]. This subject (considered challenging as 67th item in Freek
Wiedijk’s “Top 100 Mathematical Theorems” [19]) has been implemented over
the past decade within many theorem provers, such as HOL Light [4], Coq [3],
and also Isabelle [5] (Metamath [12] and Lean [13] versions are also available).
For formalized fundamentals of transcendental number theory [1] in Mizar (in
connection to Liouville numbers), see [10]. Here we formulate and prove some
auxiliary definitions and facts needed to go smoothly through the Hurwitz’s
proof.

As the proof goes by contradiction, at the beginning we should formulate
the assumption that e is algebraic, so a polynomial over Z admits e as a root.
It corresponds to the equation (3) of [7] and obviously, this is also rephrased in
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Mizar language, but just in the next article in the series (see E_TRANS2:41), as
otherwise we could have here a lemma which is redundant in the repository as
a whole.

So, we define a polynomial transformation F . For a polynomial f over Q
with degree r, we introduce a functor (see E_TRANS1:def 11):

F : f(x) 7→ f(x) + f ′(x) + f ′′(x) + · · ·+ f (r)(x)

In Hurwitz’s proof he defines F(x) = f(x) + f ′(x) + f ′′(x) + · · · + f (r)(x) as
equation (1) in [7]. In the actual formalization for constructing F we generate
a finite sequence of polynomials defined by G = {f (i)(x)}, then F is formalized
as the summation of it, namely F = SumG. Since higher order derivations for
a ring have been implemented in [18], we are able to formalize ith component of
G. Then we apply the mean value theorem to −exF (x) on an interval (as F can
be considered the acting of transformation F on a polynomial) and formalize
the following formula quoted as equation (2) in [7] (see E_TRANS1:34):

F (x)− exF (0) = −xe(1−ϑ)xf(ϑx).

The rest of the section is devoted to preparing lemmas to define the particu-
lar polynomial f(x) = 1

(p−1)!x
p−1(1 − x)p(2 − x)p · · · (n − x)p which plays an

important role of the main proof.

1. Preliminaries

From now on n, k denote natural numbers, L denotes a commutative ring,
R denotes an integral domain, and x0 denotes a positive real number.

The functor 1
expR

yielding a function from R into R is defined by the term

(Def. 1) 1
the function exp .

One can verify that 1
expR

is differentiable as a function from R into R and
the function exp is differentiable as a function from R into R. Now we state the
propositions:

(1) Let us consider natural numbers n, m, and an element b of R. Then
(n ·m) · b = n · (m · b).
Proof: Define P[natural number] ≡ ($1 ·m) · b = $1 · (m · b). For every
natural number n such that P[n] holds P[n+1]. For every natural number
n, P[n]. �

(2) Let us consider finite sequences F , G of elements of RF. Suppose lenF =
lenG and for every natural number i such that i ∈ domF holds F (i) ¬
G(i). Then

∑
F ¬

∑
G.
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(3) Let us consider an ideal I of L, and a finite sequence F of elements of L.
Suppose for every natural number i such that i ∈ domF holds F (i) ∈ I.
Then

∑
F ∈ I.

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of L such that lenF = $1 and for every natural number i such that
i ∈ domF holds F (i) ∈ I holds

∑
F ∈ I. P[0]. For every natural number

n such that P[n] holds P[n+ 1]. For every natural number n, P[n]. �

(4) Let us consider an element a of L, and a non empty finite sequence p
of elements of the carrier of L. Suppose for every natural number j such
that j ∈ dom p holds a | p/j . Then a |

∑
p.

Proof: For every natural number i such that i ∈ dom p holds p(i) ∈
{a}–ideal by [9, (18)]. �

Let k, j be natural numbers. The functor ηk,j yielding an element of N is
defined by the term

(Def. 2) k!
(k−′j)! .

Now we state the proposition:

(5) Let us consider natural numbers k, j. If j ¬ k, then j! ·
(k
j

)
= ηk,j .

Let R be a (ZR)-extending commutative ring and i be an integer. One can
check that i(∈ R) reduces to i. Now we state the propositions:

(6) Let us consider a natural number n, and an element f of the carrier of
Polynom-Ring FQ. Then n · f = n(∈ FQ) · f .
Proof: Define P[natural number] ≡ $1 · f = $1(∈ FQ) · f . P[0]. For every
natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �

(7) Let us consider a natural number n, and elements f , g of L. If f | g,
then f | n · g.

2. Casting Functions between Polynomials and Elements of Rings

Let R be an add-associative, right zeroed, right complementable, distribu-
tive, non empty double loop structure and f be an element of the carrier of
Polynom-RingR. The functor R2P(f) yielding a polynomial over R is defined
by the term

(Def. 3) f .

Let p be a polynomial over R. The functor P2R(p) yielding an element of
the carrier of Polynom-RingR is defined by the term

(Def. 4) p.
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Observe that there exists a finite sequence of elements of FQ which is Z-
valued and 0.FQ is Z-valued and 1.FQ is Z-valued and there exists a polynomial
over FQ which is monic and Z-valued. Now we state the proposition:

(8) Let us consider an element f of the carrier of Polynom-RingR. Then
rng f = f◦(Support f) ∪ {0R}.
Proof: For every object y such that y ∈ f◦(N \ (Support f)) holds y ∈
{0R}. For every object y such that y ∈ {0R} holds y ∈ f◦(N\(Support f)).
�

Let f be an element of the carrier of Polynom-Ring FQ. The functor denomiset
(f) yielding a non empty, finite subset of N is defined by the term

(Def. 5) (TRANQN)◦(rng f).

The functor denomiseq(f) yielding a non empty finite sequence of elements
of N is defined by the term

(Def. 6) CFS(denomiset(f)).

Now we state the propositions:

(9) Let us consider an element f of the carrier of Polynom-Ring FQ. Then∏
denomiseq(f) is not zero.

(10) Let us consider an element f of the carrier of Polynom-Ring FQ, and
a natural number i. Then

(i) den f(i) ∈ denomiset(f), and

(ii) there exists an integer z such that z · (den f(i)) =
∏

denomiseq(f).

(11) Let us consider fields K, L, and an element w of L. Suppose K is a sub-
ring of L and w is integral over K. Then AnnPoly(w,K) is maximal.

(12) Let us consider an element f of Polynom-Ring FQ, and a non zero natural
number n. If f is irreducible, then n · f is irreducible. The theorem is
a consequence of (7) and (6).

(13) Let us consider an element x of RF. Suppose x is irrational. Let us
consider a non zero polynomial g over FQ. If ExtEval(g, x) = 0, then
deg(g) ­ 2.

3. More on Derivation of Polynomials

Now we state the propositions:

(14) Let us consider a polynomial g over FQ. Suppose deg(g) ­ 2 and P2R(g)
is irreducible. Then g(0) 6= 0FQ .
Proof: Reconsider g1 = NormPoly P2R(g) as a polynomial over FQ.
g1(0) 6= 0FQ by [17, (30), (37)]. �
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(15) Let us consider a non degenerated integral domain L, a non zero natural
number n, and a non zero element a of L. If char(L) = 0, then n · a 6= 0L.

(16) Let us consider a commutative ring R, an element f of the carrier of
Polynom-RingR, and a natural number i. Suppose i ­ 1 and the length
of f is at most i and f(i− 1) 6= 0R. Then len f = i.
Proof: For every natural number i such that i ­ 1 and the length of f is
at most i and f(i− 1) 6= 0R holds len f = i. �

(17) Let us consider an integral domain R, and an element f of the carrier of
Polynom-RingR. Suppose len f > 1 and char(R) = 0.
Then len(Der1(R))(f) = len f − 1.
Proof: Reconsider l1 = len f − 1 as a natural number. For every natural
number i such that i ­ l1 holds (Der1(R))(f)(i) = 0R. �

(18) Let us consider an integral domain L, a derivation D of L, an element f
of the carrier of L, and natural numbers j, n. Then Dn(j · f) = j ·Dn(f).
Proof: For every element f of the carrier of L and for every natural
numbers j, n, Dn(j · f) = j ·Dn(f) by [14, (18)], [18, (9), (6)]. �

(19) Let us consider a natural number k, and an element f of the carrier
of Polynom-Ring ZR. Suppose (Der1(ZR))1(f1) = 1Polynom-RingZR . Let us

consider a natural number j. Suppose 1 ¬ j ¬ k. Then (Der1(ZR))j(fk) =
ηk,j · fk−

′j .
Proof: Set D = Der1(ZR). Define P[natural number] ≡ for every natural
number j such that 1 ¬ j ¬ $1 holds Dj(f$1) = η$1,j · f$1−

′j . For every
natural number k such that for every natural number n such that n < k

holds P[n] holds P[k]. For every natural number k, P[k]. �

(20) Let us consider a natural number k, and an element f of the carrier
of Polynom-Ring ZR. Suppose (Der1(ZR))1(f1) = 1Polynom-RingZR . Then

(Der1(ZR))k(fk) = k! · (1Polynom-RingZR). The theorem is a consequence of
(19).

(21) Let us consider a natural number j. Suppose j > k. Let us consider
an element f of the carrier of Polynom-Ring ZR. Suppose (Der1(ZR))1(f1)

= 1Polynom-RingZR . Then (Der1(ZR))j(fk) = 0Polynom-RingZR .
Proof: Set L = Polynom-Ring ZR. Set D = Der1(ZR). For every element
f of the carrier of L such that D1(f1) = 1Polynom-RingZR holds Dj(fk) =
0L. �

(22) Let us consider an integral domain R, an element f of the carrier of
Polynom-RingR, a natural number k, and a natural number i. Then
(Der1(R))k(f)(i) = ηi+k,k · f(i+ k).
Proof: Set D = Der1(R). Define P[natural number] ≡ for every natural
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number i for every natural number i, D$1(f)(i) = ηi+$1,$1 · f(i+ $1). For
every natural number k such that P[k] holds P[k + 1]. For every natural
number i, D0(f)(i) = ηi+0,0 · f(i + 0). For every natural number k, P[k].
�

(23) Let us consider a function h from R into R, and a finite sequence s of
elements of the carrier of R. If h is additive, then h(

∑
s) =

∑
h · s.

Proof: Define P[natural number] ≡ for every function h from R into R
for every finite sequence s of elements of R such that len s = $1 and h is
additive holds h(

∑
s) =

∑
h · s. P[0]. For every natural number n such

that P[n] holds P[n+ 1]. For every natural number n, P[n]. �

(24) Let us consider an integral domain R, an element f of the carrier of
Polynom-RingR, and a natural number j. Suppose len f > j and char(R) =
0. Then len (Der1(R))j(f) = len f − j.
Proof: Reconsider l1 = len f − 1 as a natural number. Reconsider l3 =
len f − j as a natural number. Reconsider l4 = l3− 1 as a natural number.
Reconsider l5 =

(l4+j
l4

)
· (j!) as a natural number. ηl4+j,j =

(l4+j
j

)
· (j!).

(Der1(R))j(f)(l4) = l5 · f(l1). For every natural number i such that i ­ l3
holds (Der1(R))j(f)(i) = 0R. �

4. Constructing Polynomial Transformation F

Let p be an element of the carrier of Polynom-Ring ZR. The functor @p
yielding an element of the carrier of Polynom-Ring RF is defined by the term

(Def. 7) p.

Let F be a finite sequence of elements of the carrier of Polynom-Ring ZR. The
functor @F yielding a finite sequence of elements of the carrier of Polynom-Ring RF
is defined by

(Def. 8) dom it = domF and for every natural number i such that i ∈ domF

holds it(i) = @F/i.

Let L be a commutative ring, F be a finite sequence of elements of the carrier
of Polynom-RingL, and x be an element of L. The functor eval(F, x) yielding
a finite sequence of elements of the carrier of L is defined by

(Def. 9) dom it = domF and for every natural number i such that i ∈ domF

holds it(i) = eval(R2P(F/i), x).

Now we state the propositions:

(25) Let us consider a natural number N0, a commutative ring L, a finite
sequence F of elements of the carrier of Polynom-RingL, and an ele-
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ment x of L. Suppose lenF = N0 + 1. Then eval(F, x) = eval(F �N0, x) a

〈eval(R2P(F/ lenF ), x)〉.
Proof: For every natural number k such that 1 ¬ k ¬ len eval(F, x) holds
(eval(F, x))(k) = (eval(F �N0, x) a 〈eval(R2P(F/ lenF ), x)〉)(k). �

(26) Let us consider a commutative ring L, a finite sequence F of elements of
the carrier of Polynom-RingL, and an element x of L. Then eval(R2P(

∑
F ),

x) =
∑

eval(F, x). The theorem is a consequence of (25).

(27) Let us consider elements p, q of the carrier of Polynom-Ring ZR. Then

(i) @(p+ q) = @p+ @q, and

(ii) @(p · q) = (@p) · (@q).

5. The Formal Counterpart of the Transformation (1) in [7]

Let f be an element of the carrier of Polynom-Ring ZR. The functor G(f)
yielding a finite sequence of elements of the carrier of Polynom-Ring ZR is defined
by

(Def. 10) len it = len f and for every natural number i such that i ∈ dom it holds

it(i) = (Der1(ZR))i−
′1(f).

Now we state the propositions:

(28) Let us consider a finite sequence F of elements of the carrier of Polynom-
Ring ZR, an element x of ZR, and an element x1 of RF. If x = x1, then
eval(@F, x1) = eval(F, x).
Proof: For every natural number i such that i ∈ dom(eval(@F, x1)) holds
(eval(@F, x1))(i) = (eval(F, x))(i) by [15, (27)]. �

(29) Let us consider a finite sequence F of elements of the carrier of Polynom-
Ring ZR. Then

∑@F = @
∑
F . The theorem is a consequence of (27).

(30) Let us consider an element x0 of ZR, an element x of RF, and a fini-
te sequence F of elements of the carrier of Polynom-Ring ZR. Suppose
x = x0. Then (Eval(R2P(@

∑
F )))(x) =

∑
eval(F, x0). The theorem is

a consequence of (28), (29), and (26).

Let f be an element of the carrier of Polynom-Ring ZR. The functor F(f)
yielding a function from R into R is defined by the term

(Def. 11) Eval(R2P(@
∑
G(f))).
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6. Formulating Equation (2) in [7]

Now we state the proposition:

(31) Let us consider an element p of the carrier of Polynom-Ring RF. Then
Eval(R2P(p)) ‘| = Eval(R2P((Der1(RF))(p))).
Proof: Set D1 = Der1(RF). Define P[natural number] ≡ for every ele-
ment p of the carrier of Polynom-Ring RF such that len R2P(p) ¬ $1 holds
Eval(R2P(p)) ‘| = Eval(R2P(D1(p))). P[0] by [16, (58)], [8, (52), (54)]. If
P[n], then P[n+ 1] by [8, (36), (37), (55), (14)]. P[n]. �

Let f be an element of the carrier of Polynom-Ring ZR. The functor Φ(f)
yielding a function from R into R is defined by the term

(Def. 12) 1
expR

· F(f).

Note that F(f) is differentiable as a function from R into R.
Let us consider an element f of the carrier of Polynom-Ring ZR. Now we

state the propositions:

(32) ( 1
expR

· F(f))�[0, x0] is continuous.

Proof: Set f1 = 1
the function exp . Set f2 = F(f). For every real number r

such that r ∈ dom((f1 · f2)�[0, x0]) holds (f1 · f2)�[0, x0] is continuous in
r. �

(33) 1
expR

· F(f) is differentiable on ]0, x0[.

(34) The formal version of the equation (2) in [7]:
Let us consider an element f of the carrier of Polynom-Ring ZR, and a po-
sitive real number x0. Suppose len f > 0. Then there exists a real number
s such that

(i) 0 < s < 1, and

(ii) (F(f))(x0)− (the function exp)(x0) · (F(f))(0) =
−x0 · (the function exp)(x0 · (1− s)) · (Eval(R2P(@f)))(s · x0).

7. On Some Ring and Domain Ring Extensions

Now we state the propositions:

(35) Let us consider an integral domain F , a ring extension E of F , a polyno-
mial p over F , a polynomial q over E, an element a of F , and an element
b of E. If p = q and a = b, then a · p = b · q.

(36) Let us consider an integral domain F , a domain ring extension E of F ,
a polynomial p over F , an element a of F , and elements x, b of E. If b = a,
then ExtEval(a · p, x) = b · (ExtEval(p, x)). The theorem is a consequence
of (35).
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(37) Let us consider a non degenerated commutative ring L, a non empty fini-
te sequence F of elements of the carrier of Polynom-RingL, and an element
x of L. Then eval(R2P(

∏
F ), x) =

∏
eval(F, x).

Proof: For every non zero natural number k such that lenF = k holds
eval(R2P(

∏
F ), x) =

∏
eval(F, x). �

(38) Let us consider a non empty finite sequence F of elements of the carrier
of Polynom-Ring ZR, and an element x of RF. Then eval(R2P(@

∏
F ), x) =∏

eval(@F, x). The theorem is a consequence of (37).
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