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Summary. In this article we formalize the main part of Hurwitz’s proof
of the transcendence of the number e in the Mizar language. The previous article
prepared the necessary definitions and lemmas. Here we deal with main crucial
steps of the proof.
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Introduction

In this article, which is a continuation of [19], we formalize the main part
of Hurwitz’s proof [8] that the number e is transcendental [12] using the Mizar
formalism [2], [3]. For related proof developments of the transcendence of e
(which is one of the items (#67) in Freek Wiedijk’s “Top 100 Mathematical
Theorems” list [21]) in Coq or HOL Light, see [4] and [5], respectively (although
the formalization is available also in the number of proof assistants, such as
Isabelle [6], Lean [15], or Metamath [13]). This is also a small step towards
developing transcendental number theory [1], started in Mizar with Liouville
numbers [11] as well as the theory of formal polynomials and their derivation
[18]. The following is a summary of the formalized proof (see also [7]).

The core idea of Hurwitz’s proof can be expressed as a lemma about algebraic
numbers, namely if we assume e is algebraic, a polynomial over Z admits e as a
root (see E_TRANS2:41). It corresponds to the equation (3) of [8]. This theorem,
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which is a base for a proof by contradiction, is technically preserved at the end
of the Mizar article. However it is actually redundant, after we complete the
proof of the main result.

In the first section we define a polynomial f0 over Z and observe properties
of f0. It is defined by f0(x) = xp−1(x−1)p(x−2)p · · · (x−m)p, where p is an odd
prime number and m + 1 is the number of component of the products. The f0
is defined as E_TRANS2:def 5. The components (x− j)j=0,1,...,m are represented
by τ(j) in the article and obtain:

f0 = τ(0)p−1
m∏
j=1

τ(j)p

The third section is about properties of f0 and F(f0) where F is introduced in
[19], the transformation F(f) = f + f ′ + f ′′ + · · ·+ f (deg f).

We deal with kth differentiation of the f0 and evaluate by a number j. The
following number-theoretical properties are formally proven:

1.
∏m
j=1 τ(j)p(0) = (((−1)m) · (m!))p (E_TRANS2:17)

2. f (k)0 (0) = 0, if 0 ¬ k ¬ p− 2 (E_TRANS2:18)

3. f (k)0 (0) = k!(
∏m
j=1 τ(j))(k − p+ 1), if p ¬ k (E_TRANS2:21)

4. f (k)0 (j) = 0, if k ¬ p, 1 ¬ j ¬ m (E_TRANS2:23)

5. f (k)0 = τ(j)u+p!v for some u, v ∈ Z[X], if p ¬ k, 1 ¬ j ¬ m (E_TRANS2:27)

6. f (k)0 (j) ∈ (p!), if p ¬ k, 1 ¬ j ¬ m (E_TRANS2:29)

We denote F for F(f0) for simplicity.

7. F(0) = (p− 1)!(((−1)|m) ∗ (m!))p + p!u for some u ∈ Z[X] (E_TRANS2:30)

8. F(j) ∈ (p!), if 1 ¬ j ¬ m (E_TRANS2:31)

We then obtain an equation system shown as below, where Ci stands for
coefficient of the ith coefficient of g0. This is based on the equation system
numbered (4) in Hurwitz’s proof [8].

1
(p−1)!C0F(0) − 1

(p−1)!C0e
0F(0) = 1

(p−1)!C0ε0
1

(p−1)!C1F(1) − 1
(p−1)!C1e

1F(0) = 1
(p−1)!C1ε1

...
...

...
1

(p−1)!CmF(m) − 1
(p−1)!Cme

mF(0) = 1
(p−1)!Cmεm
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where each equation is a product of ith coefficient of g0 and F(i) − exF(i)(=
−ie(i−ϑ)if0(ϑi)) which is from the result of the mean value theorem to exF(x).
In actual coding the sequence CmF(m) and (p− 1)!CmemF(0) are defined as
δ1, δ2 (delta_1 and delta_2 in the Mizar source), respectively.

We have new equation by adding each term of the equation system vertically:

1
(p− 1)!

m∑
i=1

CiF(i) − 1
(p− 1)!

m∑
i=1

Cie
iF(0) =

1
(p− 1)!

m∑
i=1

Ciεi

One can verify formally that the left hand side is not divisible by p, because p
divides the first term 1

(p−1)!ΣCiF(i), but p 6 | 1
(p−1)!Σe

iCiF(0). The right-hand
side is a member of Z and bounded by 1/2 by choosing sufficiently large p,
this means it is 0, which contradicts the left-hand side nature. Therefore e is
transcendental number.

1. Preliminaries

From now on R denotes an integral domain, p denotes an odd, prime natural
number, and m denotes a positive natural number. Now we state the proposi-
tions:

(1) Let us consider a natural number i, and an element r of RF. Then
∑

(i 7→
r) = i · r.
Proof: Define P[natural number] ≡

∑
($1 7→ r) = $1 ·r. For every natural

number i such that P[i] holds P[i+ 1]. For every natural number i, P[i].
�

(2) Let us consider sequences p1, q1 of ZR. Then (p1 ∗ q1)(0) = p1(0) · q1(0).

2. On the Ring of Polynomials

Now we state the propositions:

(3) Let us consider an element f of the carrier of Polynom-Ring ZR, and
a natural number n. Then @fn = (@f)n.

Proof: Define P[natural number] ≡ @f$1 = (@f)$1 . P[0]. For every natu-
ral number k such that P[k] holds P[k + 1]. For every natural number k,
P[k]. �

(4) Let us consider an element f of the carrier of Polynom-RingR, and
a natural number n. Then R2P(fn) = (R2P(f))n.
Proof: Define P[natural number] ≡ R2P(f$1) = (R2P(f))$1 . For every
natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �
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(5) Let us consider a natural number n, and an element f of the carrier of
Polynom-Ring ZR. Then n · f = n(∈ ZR) · f .
Proof: Define P[natural number] ≡ $1 · f = $1(∈ ZR) · f . For every
natural number k such that P[k] holds P[k+1]. For every natural number
k, P[k]. �

(6) Let us consider an element M of RF, and a finite sequence F of elements
of RF. Suppose for every natural number i such that i ∈ domF holds
|F (i)| ¬M . Then |

∏
F | ¬M lenF .

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of RF such that lenF = $1 and for every natural number i such
that i ∈ domF holds |F (i)| ¬ M holds |

∏
F | ¬ M lenF . P[0]. For every

natural number n such that P[n] holds P[n+1]. For every natural number
n, P[n]. �

Let p be a polynomial over ZR. Observe that the functor |p| yields a sequence
of ZR and is defined by

(Def. 1) for every natural number n, it(n) = |p(n)|.
Note that |p| is finite-Support as a (the carrier of ZR)-valued function. In

the sequel g denotes a non zero polynomial over ZR. Let us consider g. One can
verify that rng |g| is finite. Now we state the proposition:

(7) Let us consider a non zero polynomial g over ZR. Then there exists
a natural number M such that for every natural number i, |g(i)| ¬M .
Proof: rng |g| ⊆ N. Reconsider S = rng |g| as a finite, non empty,
natural-membered set. Reconsider M = maxS as a natural number. For
every natural number i, |g(i)| ¬M . �

3. The Polynomial f0 and Its Properties

Let i be a natural number. The functor τ(i) yielding an element of the carrier
of Polynom-Ring ZR is defined by the term

(Def. 2) 〈(−i)(∈ ZR), 1ZR〉.
Let p be a non zero natural number and m be a natural number. The functor

x.(m, p) yielding a finite sequence of elements of the carrier of Polynom-Ring ZR
is defined by

(Def. 3) len it = m and for every natural number i such that i ∈ dom it holds
it(i) = (τ(i))p.

Let p be an odd, prime natural number and m be a positive natural number.
The functor f seq0 (m, p) yielding a finite sequence of elements of the carrier of
Polynom-Ring ZR is defined by the term
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(Def. 4) x.(m, p) a 〈(τ(0))p−
′1〉.

The functor f0(m, p) yielding an element of the carrier of Polynom-Ring ZR
is defined by the term

(Def. 5)
∏
f seq0 (m, p).

Now we state the propositions:

(8) Let us consider natural numbers i, n. Then len R2P((τ(i))n) = n+ 1.

(9) Let us consider elements f , g of the carrier of Polynom-Ring ZR. Sup-
pose (len R2P(f)) · (len R2P(g)) 6= 0. Then len R2P(f · g) = len R2P(f) +
len R2P(g)− 1.

(10) Let us consider a non zero natural number k, and an odd, prime natural
number p. Then

(i) x.(k, p) a 〈(τ(k + 1))p〉 = x.(k + 1, p), and

(ii)
∏

x.(k + 1, p) = (
∏

x.(k, p)) · (τ(k + 1))p.

Proof: x.(k, p) a 〈(τ(k + 1))p〉 = x.(k + 1, p). �

Let us consider an odd, prime natural number p and a positive natural
number m. Now we state the propositions:

(11) len R2P(
∏

x.(m, p)) = m · p+ 1.
Proof: Define P[non zero natural number] ≡ len R2P(

∏
x.($1, p)) = $1 ·

p + 1. P[1]. For every non zero natural number k such that P[k] holds
P[k + 1]. For every non zero natural number k, P[k]. �

(12) len R2P(f0(m, p)) = m ·p+p. The theorem is a consequence of (11), (8),
and (9).

(13) Let us consider a natural number i.
Then (Der1(ZR))(τ(i)) = 1Polynom-RingZR .

(14) Let us consider an element f of the carrier of Polynom-Ring ZR, and
a natural number i. Then

(i) (τ(0) ∗ f)(i+ 1) = f(i), and

(ii) (τ(0) ∗ f)(0) = 0ZR .

Proof: For every natural number i, (τ(0) ∗ f)(i + 1) = f(i) and (τ(0) ∗
f)(0) = 0ZR by [14, (16)], [17, (12)], [20, (31)]. �

From now on f denotes an element of the carrier of Polynom-Ring ZR. Now
we state the propositions:

(15) Let us consider an odd, prime natural number p, and a positive natural
number m. Then

(i) len x.(m, p) = m, and

(ii) len f seq0 (m, p) = m+ 1, and
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(iii) (f seq0 (m, p))(len x.(m, p) + 1) = (τ(0))p−
′1.

(16) Let us consider an odd, prime natural number p, a positive natural
number m, and a natural number k. Suppose 0 ¬ k ¬ p − 1. Let us
consider natural numbers i, j. Suppose i ∈ Seg(k + 1). Then τ(j) |
(LBZ(Der1(ZR), k,

∏
(f seq0 (m, p))�j , (τ(j))p))/i.

Proof: Set D = Der1(ZR). For every natural numbers i, j such that
i ∈ Seg(k+ 1) holds τ(j) | (LBZ(D, k,

∏
(f seq0 (m, p))�j , (τ(j))p))/i by (13),

[16, (19)]. �

4. Some Number-theoretical Properties

Now we state the proposition:

(17) Let us consider an odd, prime natural number p, and a positive natural
number m. Then (R2P(

∏
x.(m, p)))(0) = ((−1)m · (m!))p.

Proof: Define P[natural number] ≡ (R2P(
∏

x.($1, p)))(0) = ((−1)$1 ·
($1!))

p. P[1]. For every non zero natural number k such that P[k] holds
P[k + 1]. For every non zero natural number k, P[k]. �

Let us consider an odd, prime natural number p, a positive natural number
m, and a natural number k. Now we state the propositions:

(18) If 0 ¬ k ¬ p−′ 2, then (Der1(ZR))k(f0(m, p))(0) = 0ZR .

(19) Suppose 0 ¬ k ¬ p−′ 2. Then eval(R2P((Der1(ZR))k(f0(m, p))), 0ZR) =
0ZR . The theorem is a consequence of (18).

(20) Let us consider an odd, prime natural number p, and a positive natural

number m. Then eval(R2P((Der1(ZR))p−
′1(f0(m, p))), 0ZR) = (p −′ 1)! ·

(((−1)m · (m!))p(∈ ZR)). The theorem is a consequence of (17).

(21) Let us consider an odd, prime natural number p, a positive natural
number m, and a non zero natural number k. Suppose p ¬ k. Then
eval(R2P((Der1(ZR))k(f0(m, p))), 0ZR) = k! · (R2P(

∏
x.(m, p)))(k−′ (p−′

1)).

(22) Let us consider a natural number j, and an element u of the carrier of
Polynom-Ring ZR. Then eval(R2P((τ(j)) · u), j(∈ ZR)) = 0ZR .

(23) Let us consider an odd, prime natural number p, a positive natural num-
ber m, and natural numbers k, j. Suppose k < p and j ∈ Segm. Then
eval(R2P((Der1(ZR))k(f0(m, p))), j(∈ ZR)) = 0ZR . The theorem is a con-
sequence of (16) and (22).

(24) Let us consider a natural number i.
Then (Der1(ZR))(τ(i)) = 1Polynom-RingZR .
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(25) Let us consider an odd, prime natural number p, a positive natural
number m, and natural numbers j, k. Suppose j ∈ Segm and p ¬ k.
Let us consider a natural number i. Suppose i ∈ Seg p. Then τ(j) |
(LBZ(Der1(ZR), k,

∏
(f seq0 (m, p))�j , (τ(j))p))/i.

(26) Let us consider an odd, prime natural number p, a positive natural
number m, natural numbers k, j, and a natural number i. Suppose p +
1 < i and i ∈ dom(LBZ(Der1(ZR), k,

∏
(f seq0 (m, p))�j , (τ(j))p)). Then

(LBZ(Der1(ZR), k,
∏

(f seq0 (m, p))�j , (τ(j))p))/i = 0Polynom-RingZR .
Proof: Set D = Der1(ZR). Set P = Polynom-Ring ZR. Set x1 = τ(j). Set
y1 =

∏
(f seq0 (m, p))�j . 1P = D(x1). For every natural number i such that

p + 1 < i and i ∈ dom(LBZ(D, k, y1, x1p)) holds (LBZ(D, k, y1, x1p))/i =
0P. �

(27) Let us consider an odd, prime natural number p, a positive natural num-
ber m, and natural numbers k, j. Suppose j ∈ Segm and p ¬ k. Then
there exist elements u, v of the carrier of Polynom-Ring ZR such that
(Der1(ZR))k(f0(m, p)) = (τ(j)) · u+ p! · v.
Proof: Set D = Der1(ZR). Set P = Polynom-Ring ZR. Set t1 = τ(j). Set
j =
∏

(f seq0 (m, p))�j . 1P = D(t1). Reconsider l3 = LBZ(D, k, j, t1p) as a non
empty finite sequence of elements of the carrier of P. Set l4 = l3�p. For
every natural number i such that i ∈ Seg p holds τ(j) | l4/i. Consider u
being an element of P such that

∑
l4 = (τ(j))·u. Set k2 = k+1−′(p+1). For

every natural number i1 such that i1 ∈ dom(l3�p+1) holds (l3�p+1)/i1 = 0P.
l3�p+1 = k2 7→ 0P. �

(28) Let us consider an element u of the carrier of Polynom-Ring ZR, and
elements a, b of ZR. Then eval(a · (R2P(u)), b) ∈ {a}–ideal.

(29) Let us consider an odd, prime natural number p, a positive natural num-
ber m, and natural numbers k, j. Suppose j ∈ Segm and p ¬ k. Then
eval(R2P((Der1(ZR))k(f0(m, p))), j(∈ ZR)) ∈ {p!(∈ ZR)}–ideal. The the-
orem is a consequence of (27), (22), (5), and (28).

5. Properties of the Polynomial Transformation F

Now we state the propositions:

(30) Let us consider an odd, prime natural number p, and a positive natural
numberm. Then there exists an element u of ZR such that (F(f0(m, p)))(0)
= (p−′ 1)! · (((−1)m · (m!))p(∈ ZR)) + p!(∈ ZR) · u.
Proof: Set G3 = G(f0(m, p)). Set p1 = p −′ 1. eval(G3�(p −′ 1), 0ZR) =
p1 7→ 0ZR . For every natural number j such that j ∈ dom(eval(G3�p, 0ZR))
holds (eval(G3�p, 0ZR))(j) ∈ {p!(∈ ZR)}–ideal by [9, (6)], (21), [10, (18),(19)].
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Consider u being an element of ZR such that (Eval(R2P(@
∑
G3�p)))(0) =

p!(∈ ZR) · u. �

(31) Let us consider an odd, prime natural number p, a positive natural num-
berm, and a natural number j. Suppose j ∈ Segm. Then (F(f0(m, p)))(j(∈
RF)) ∈ {p!(∈ ZR)}–ideal.
Proof: Set G3 = G(f0(m, p)). eval(G3�p, j(∈ ZR)) = p 7→ 0ZR . For
every natural number k such that k ∈ dom(eval(G3�p, j(∈ ZR))) holds
(eval(G3�p, j(∈ ZR)))(k) ∈ {p!(∈ ZR)}–ideal. �

6. The Main Part of the Proof

Now we state the proposition:

(32) Let us consider an element x of RF. Then (Eval(R2P(@f0(m, p))))(x) =
(eval(R2P(@

∏
x.(m, p)), x)) · (eval(R2P(@(τ(0))p−

′1), x)).

Let us consider m, p, and g. The functor δ1(m, p, g) yielding a finite sequence
of elements of RF is defined by

(Def. 6) len it = m and for every natural number i such that i ∈ dom it holds
it(i) = g(i) · (F(f0(m, p)))(i(∈ RF)).

In the sequel z0 denotes a non zero element of RF.
Let us consider m, p, g, and z0. The functor δ2(m, p, g, z0) yielding a finite

sequence of elements of RF is defined by

(Def. 7) len it = m and for every natural number i such that i ∈ dom it holds
it(i) = −g(i) · (powerRF(z0, i) · (F(f0(m, p)))(0)).

The functor δ(m, p, g, z0) yielding a finite sequence of elements of RF is
defined by the term

(Def. 8) δ1(m, p, g) + δ2(m, p, g, z0).

The functor δZ
1 (m, p, g) yielding a finite sequence of elements of ZR is defined

by the term

(Def. 9) δ1(m, p, g).

Now we state the propositions:

(33)
∑
δ1(m, p, g) ∈ ZR.

Proof: For every natural number i such that i ∈ dom(δ1(m, p, g)) holds
(δ1(m, p, g))(i) ∈ Z. �

(34) Let us consider a non zero polynomial g over ZR. Suppose deg(g) = m.
Let us consider a non zero element x of RF. Then

∑
δ2(m, p, g, x) = g(0) ·

(F(f0(m, p)))(0)− (ExtEval(g, x)) · (F(f0(m, p)))(0).
Proof: For every non zero element x of RF,

∑
δ2(m, p, g, x) = g(0) ·

(F(f0(m, p)))(0)− (ExtEval(g, x)) · (F(f0(m, p)))(0). �
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(35)
∑
δ1(m, p, g) ∈ {p!(∈ ZR)}–ideal. The theorem is a consequence of (31).

(36) Let us consider an element x of RF. Suppose 0 < x ¬ m. Let us consider
a natural number i. Suppose i ∈ Segm.
Then | eval(R2P(@(x.(m, p))/i), x)| ¬ mp.
Proof: Set F1 = RF. Reconsider z0 = −i as an element of F1. |(z0 + x)p| ¬
mp. �

(37) Let us consider an element x of RF. Then eval(R2P(@(τ(0))p−
′1), x) =

xp−
′1. The theorem is a consequence of (3) and (4).

(38) (i) mm+1 ExpSeqR is convergent, and

(ii) limmm+1 ExpSeqR = 0.

(39) Let us consider a non zero natural number M , and a non zero element z0
of RF. Suppose z0 = e. Then there exists a natural number n1 such that for
every natural number n such that n1 ¬ n holds | (m

m+1)n

n! −0| < 1
2·(M ·(z0m)) .

The theorem is a consequence of (38).

(40) Every Z-valued polynomial over FQ is a polynomial over ZR.

7. Conclusion of the Proof

Now we state the propositions:

(41) Formal counterpart of (3) in [8]:
Suppose e is algebraic. Then there exists a Z-valued polynomial g over FQ
such that

(i) P2R(g) is irreducible, and

(ii) ExtEval(g, e(∈ RF)) = 0, and

(iii) deg(g) ­ 2, and

(iv) g(0) 6= 0FQ .

Proof: Consider x being an element of CF such that x = e and x is inte-
gral over FQ. Consider f0 being an element of Polynom-Ring FQ such that
f0 6= 0.FQ and {f0}–ideal = AnnPoly(x,FQ) and f0 = NormPoly f0. Con-
sider f being a polynomial over FQ such that f0 = f and ExtEval(f, x) =
0CF . Reconsider m =

∏
denomiseq(f0) as a non zero natural number. Re-

consider f0 = m · f0 as an element of the carrier of Polynom-Ring FQ.
rng f0 ⊆ Z. �

(42) e is transcendental.
Proof: Consider g being a Z-valued polynomial over FQ such that P2R(g)
is irreducible and ExtEval(g, e(∈ RF)) = 0 and deg(g) ­ 2 and g(0) 6= 0FQ .
Reconsider g0 = g as a polynomial over ZR. Reconsider g0 = g as a non
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zero polynomial over ZR. Reconsider m0 = deg(g0) as a positive natural
number. Reconsider z0 = e as a non zero element of RF. Consider M0 be-
ing a natural number such that for every natural number i, |g0(i)| ¬M0.
Consider n1 being a natural number such that for every natural number n
such that n1 ¬ n holds | (m0

m0+1)n

n! − 0| < 1
2·(m0·M0·m0m0+1·(z0m0 )) . Consider

p1 being a prime number such that n1+m0+M0 < p1.
∑
δ(m0, p1, g0, z0) =∑

δ1(m0, p1, g0) +
∑
δ2(m0, p1, g0, z0).

∑
δ1(m0, p1, g0) ∈ ZR. Consider

u being an element of ZR such that (F(f0(m0, p1)))(0) = (p1 −′ 1)! ·
(((−1)m0 · (m0!))p1(∈ ZR)) + p1!(∈ ZR) · u.

∑
δ2(m0,p1,g0,z0)
(p1−′1)! is an element

of ZR and
∑

δ2(m0,p1,g0,z0)
(p1−′1)! = (((−1)m0 · (m0!))p1(∈ ZR) + p1 · u) · g0(0).∑

δ1(m0, p1, g0) ∈ {p1!(∈ ZR)}–ideal. Consider v being an element of

ZR such that
∑
δ1(m0, p1, g0) = p1!(∈ ZR) · v.

∑
δ1(m0,p1,g0)
(p1−′1)! = p1 · v.∑

δ(m0,p1,g0,z0)
(p1−′1)! ∈ ZR and

∑
δ(m0,p1,g0,z0)
(p1−′1)! =

∑
δ1(m0,p1,g0)
(p1−′1)! +

∑
δ2(m0,p1,g0,z0)
(p1−′1)! .

|
∑

δ(m0,p1,g0,z0)
(p1−′1)! | ¬ 12 .

∑
δ(m0,p1,g0,z0)
(p1−′1)! = 0. �
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