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Summary.We formulate and prove in Mizar the Ascoli-Arzelà’s theorem,
which gives necessary and sufficient conditions for a collection of continuous
functions to be compact. We use the metric space setting, and the notions of
equicontinuousness and equiboundedness of a set of continuous functions are
utilized.
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Introduction

The Ascoli-Arzelà theorem is an important result in real analysis [3], which
states that a family of continuous functions on a compact space has a uniform-
ly convergent subsequence if and only if the family is pointwise bounded and
equicontinuous [9], [13], [14]. The theorem is widely used in the study of functio-
nal analysis and has important applications in various fields such as differential
equations [12], topology (where is also an important result on its own [4]), and
approximation theory. It was proven by Ascoli in 1883 (in its weaker form) [2],
and then by Arzelà in 1895 [1], and it is also known in the literature as Arzelà-
Ascoli theorem (under such name it is also present, e.g. in Lean’s mathematical
library mathlib [6]).
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In Section 1 we formulate the notions of equicontinuousness and equiboun-
dedness of a set of continuous functions [16]. Second section deals with totally
bounded metric spaces, and in Section 3 we formally prove some properties of
the metric space of continuous functions. The final section contains the formu-
lation and the proof of the main theorem, where we reuse the formal apparatus
of metric spaces [5], [7], [10]. Previously proven version (in its topological set-
ting) of the theorem [15] was reused recently to enrich the Mizar Mathematical
Library [11] by properties of Feed-forward Neural Network in [8].

1. Equicontinuousness and Equiboundedness of Continuous
Functions

Now we state the propositions:

(1) Let us consider a non empty metric space T , and a subset A of T . Then
A ⊆ A.

(2) Let us consider a non empty topological space S, a non empty metric
space T , a function f from S into Ttop, and a point x of S. Then f is
continuous at x if and only if for every real number e such that 0 < e

there exists a subset H of S such that H is open and x ∈ H and for every
point y of S such that y ∈ H holds ρ(f(x)(∈ T ), f(y)(∈ T )) < e.
Proof: For every subset G of Ttop such that G is open and f(x) ∈ G there
exists a subset H of S such that H is open and x ∈ H and f◦H ⊆ G. �

Let S, T be non empty metric spaces and F be a subset of (the carrier of
T )(the carrier of S). We say that F is equibounded if and only if

(Def. 1) there exists a subset K of T such that K is bounded and for every
function f from the carrier of S into the carrier of T such that f ∈ F for
every element x of S, f(x) ∈ K.

Let x0 be a point of S. We say that F is equicontinuous at x0 if and only if

(Def. 2) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
of T such that f ∈ F for every point x of S such that ρ(x, x0) < d holds
ρ(f(x), f(x0)) < e.

We say that F is equicontinuous if and only if

(Def. 3) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
of T such that f ∈ F for every points x1, x2 of S such that ρ(x1, x2) < d

holds ρ(f(x1), f(x2)) < e.
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2. On Totally Bounded Spaces

Now we state the proposition:

(3) Let us consider a non empty metric space Z, and a non empty subset F
of Z. If Z is complete, then Z�F is complete.
Proof: Set N = Z�F . Reconsider S1 = S2 as a sequence of Z. For
every real number r such that r > 0 there exists a natural number k
such that for every natural numbers n, m such that n ­ k and m ­ k

holds ρ(S1(n), S1(m)) < r. Consider H being a subset of Ztop such that
H = F and F = H. For every natural number n, S1(n) ∈ H. Reconsider
L = limS1 as a point of N . For every real number r such that 0 < r there
exists a natural number m such that for every natural number n such that
m ¬ n holds ρ(S2(n), L) < r. �

Let us consider a non empty metric space Z and a non empty subset H of
Z. Now we state the propositions:

(4) Z�H is totally bounded if and only if Z�H is totally bounded.
Proof: Consider D being a subset of Ztop such that D = H and H = D.
Z�H is totally bounded. �

(5) If Z is complete and Z�H is totally bounded, then H is sequentially
compact and Z�H is compact. The theorem is a consequence of (3) and
(4).

(6) Suppose Z is complete. Then

(i) Z�H is totally bounded iff H is sequentially compact, and

(ii) Z�H is totally bounded iff Z�H is compact.

The theorem is a consequence of (3) and (4).

3. Continuous Functions Revisited

Let S be a non empty topological space and T be a non empty metric space.
The continuous functions of S and T yielding a non empty set is defined by the
term

(Def. 4) {f , where f is a function from S into Ttop : f is continuous}.

Now we state the propositions:

(7) Let us consider a metric space X, and elements x, y, v, w of X. Then
|ρ(x, y)− ρ(v, w)| ¬ ρ(x, v) + ρ(y, w).

(8) Let us consider a non empty topological space S, a non empty metric
space T , and functions f , g from S into Ttop. Suppose f is continuous and
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g is continuous. Let us consider a real map D1 of S. Suppose for every
point x of S, D1(x) = ρ(f(x)(∈ T ), g(x)(∈ T )). Then D1 is continuous.
The theorem is a consequence of (2) and (7).

(9) Let us consider a non empty, compact topological space S, a non empty
metric space T , and functions f , g from S into Ttop. Suppose f is conti-
nuous and g is continuous. Let us consider a real map D1 of S. Suppose
for every point x of S, D1(x) = ρ(f(x)(∈ T ), g(x)(∈ T )). Then

(i) rngD1 6= ∅, and

(ii) rngD1 is upper bounded and lower bounded.

The theorem is a consequence of (8).

(10) Let us consider a non empty topological space S, and a non empty metric
space T . Then there exists a function F from (the continuous functions
of S and T )× (the continuous functions of S and T ) into R such that for
every functions f , g from S into Ttop such that f , g ∈ the continuous
functions of S and T there exists a real map D1 of S such that for every
point x of S, D1(x) = ρ(f(x)(∈ T ), g(x)(∈ T )) and F (f, g) = sup rngD1.
Proof: Set F1 = the continuous functions of S and T . Define P[object, ob-
ject, object] ≡ there exist functions f , g from S into Ttop and there exists
a real map D1 of S such that $1 = f and $2 = g and for every point t of
S, D1(t) = ρ(f(t)(∈ T ), g(t)(∈ T )) and $3 = sup rngD1. For every objects
x, y such that x, y ∈ F1 there exists an object z such that z ∈ R and
P[x, y, z]. Consider F being a function from F1 × F1 into R such that for
every objects x, y such that x, y ∈ F1 holds P[x, y, F (x, y)]. �

Let S be a non empty topological space and T be a non empty metric space.
The functor distFunc(S, T ) yielding a function from (the continuous functions
of S and T )× (the continuous functions of S and T ) into R is defined by

(Def. 5) for every functions f , g from S into Ttop such that f , g ∈ the continuous
functions of S and T there exists a real map D1 of S such that for every
point x of S, D1(x) = ρ(f(x)(∈ T ), g(x)(∈ T )) and it(f, g) = sup rngD1.

The functor ContFuncsmetr(S, T ) yielding a metric structure is defined by
the term

(Def. 6) 〈the continuous functions of S and T, distFunc(S, T )〉.
Let S be a non empty, compact topological space. One can check that

ContFuncsmetr(S, T ) is reflexive, discernible, symmetric, and triangle. Let S

be a non empty topological space. Let us observe that ContFuncsmetr(S, T )
is non empty and strict and the continuous functions of S and T is non emp-
ty and functional. Let S be a non empty, compact topological space. One can
check that ContFuncsmetr(S, T ) is constituted functions. Let f be an element of
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ContFuncsmetr(S, T ) and v be a point of S. One can verify that the functor f(v)
yields a point of Ttop. Now we state the propositions:

(11) Let us consider a non empty, compact topological space S, a non empty
metric space T , points f , g of ContFuncsmetr(S, T ), and a point t of S.
Then ρ(f(t)(∈ T ), g(t)(∈ T )) ¬ ρ(f, g). The theorem is a consequence of
(9).

(12) Let us consider a non empty, compact topological space S, a non empty
metric space T , points f , g of ContFuncsmetr(S, T ), functions f1, g1 from S

into T , and a real number e. Suppose f = f1 and g = g1 and for every point
t of S, ρ(f1(t), g1(t)) ¬ e. Then ρ(f, g) ¬ e. The theorem is a consequence
of (9).

(13) Let us consider a non empty, compact topological space S, and a non
empty metric space T . If T is complete, then ContFuncsmetr(S, T ) is com-
plete. The theorem is a consequence of (11), (2), and (12).

(14) Let us consider a non empty, compact topological space S, and a non
empty metric space T . Suppose T is complete. Let us consider a non
empty subset H of ContFuncsmetr(S, T ). Then H is sequentially compact
if and only if ContFuncsmetr(S, T )�H is totally bounded. The theorem is
a consequence of (13), (3), and (4).

Let us consider a non empty metric space M , a non empty, compact to-
pological space S, a non empty metric space T , a subset G of (the carrier of
T )(the carrier of M), and a non empty subset H of ContFuncsmetr(S, T ). Now we
state the propositions:

(15) If S = Mtop, then if G = H and ContFuncsmetr(S, T )�H is totally boun-
ded, then G is equicontinuous.
Proof: Set Z = ContFuncsmetr(S, T ). SetM2 = Z�H. DefineQ[object, ob-
ject] ≡ there exists a point w of M2 such that $2 = w and $1 = Ball(w, 1).
For every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of M into the carrier
of T such that f ∈ G for every points x1, x2 of M such that ρ(x1, x2) < d

holds ρ(f(x1), f(x2)) < e. �

(16) Suppose S = Mtop. Then suppose G = H and ContFuncsmetr(S, T )�H is
totally bounded. Then

(i) for every point x of S and for every non empty subset H1 of T such
that H1 = {f(x), where f is a function from S into T : f ∈ H} holds
T �H1 is totally bounded, and

(ii) G is equicontinuous.

Proof: For every point x of S and for every non empty subset H1 of T
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such that H1 = {f(x), where f is a function from S into T : f ∈ H} holds
T �H1 is totally bounded. �

(17) Suppose S = Mtop and T is complete andG = H. Then ContFuncsmetr(S,
T )�H is totally bounded if and only if G is equicontinuous and for eve-
ry point x of S and for every non empty subset H1 of T such that
H1 = {f(x), where f is a function from S into T : f ∈ H} holds T �H1 is
compact.
Proof: Set Z = ContFuncsmetr(S, T ). Set M2 = Z�H. For every real
number e such that e > 0 there exists a family L of subsets of M2 such
that L is finite and the carrier of M2 =

⋃
L and for every subset C of M2

such that C ∈ L there exists an element w of M2 such that C = Ball(w, e).
�

4. Ascoli-Arzelà Theorem

Now we state the proposition:

(18) Let us consider a non empty metric space M , a non empty, compact
topological space S, a non empty metric space T , a subset G of (the carrier
of T )α, and a non empty subset H of ContFuncsmetr(S, T ). Suppose S =
Mtop and T is complete and G = H. Then H is sequentially compact if
and only if G is equicontinuous and for every point x of S and for every
non empty subset H1 of T such that H1 = {f(x), where f is a function
from S into T : f ∈ H} holds T �H1 is compact, where α is the carrier of
M . The theorem is a consequence of (14) and (17).

Let us consider a non empty metric space M , a non empty, compact to-
pological space S, a non empty metric space T , a non empty subset F of
ContFuncsmetr(S, T ), and a subset G of (the carrier of T )(the carrier of M). Now
we state the propositions:

(19) Suppose S = Mtop and T is complete andG = F . Then ContFuncsmetr(S,
T )�F is compact if and only if G is equicontinuous and for every point x
of S and for every non empty subset F2 of T such that F2 = {f(x), where
f is a function from S into T : f ∈ F} holds T �F2 is compact. The the-
orem is a consequence of (14) and (17).

(20) Suppose S = Mtop and T is complete andG = F . Then ContFuncsmetr(S,
T )�F is compact if and only if for every point x of M , G is equicontinuous
at x and for every point x of S and for every non empty subset F2 of T
such that F2 = {f(x), where f is a function from S into T : f ∈ F} holds
T �F2 is compact. The theorem is a consequence of (19).
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(21) Let us consider a non empty metric space M , a non empty, compact
topological space S, a non empty metric space T , a compact subset U
of Ttop, a non empty subset F of ContFuncsmetr(S, T ), and a subset G
of (the carrier of T )α. Suppose S = Mtop and T is complete and G =
F and for every function f such that f ∈ F holds rng f ⊆ U . Then
ContFuncsmetr(S, T )�F is compact if and only if G is equicontinuous, whe-
re α is the carrier of M .
Proof: Set Z = ContFuncsmetr(S, T ). F is sequentially compact iff Z�F is
totally bounded. For every point x of S and for every non empty subset F2
of T such that F2 = {f(x), where f is a function from S into T : f ∈ F}
holds T �F2 is compact. �
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