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Abstract: Wuhan area located middle Yangtze River Basin, is dominated by East Asian Monsoon. 
Widely developed Holocene flu-lacustrine sediments are ideal materials for the reconstruction of 
paleoclimate change and geo-environment evolution, for which the chronology is a key issue. In this 
study, 20 luminescence dating samples were collected from a flu-lacustrine sequence and the reliabil-
ity of the quartz OSL dating to these samples were checked by using luminescence characteristics of 
dose recovery test and thermos transfer test. Our results indicate that different grain size fraction of 
4~11 μm, 38~63 μm, and 90~125 μm were well-bleached before burial. Dating results show that all 
these ages range from 0.8 ± 0.1 to 7. 9 ± 0.7 ka between 4.25 and 38.55 m, and most of them follow 
the stratigraphic sequence and other climatic recorder within the normal range of error. Disordered 
OSL ages may be caused by complicated transport-deposit processes. As a consequence, OSL dating 
method of SAR-SGC protocol could provide a significant chronology for Holocene flu-lacustrine sed-
iment in large river depo-system. 
 
Keywords: Luminescence dating, quartz, flu-lacustrine sediment, Holocene, Wuhan area, the Yang-
tze River Basin. 

 
 
 
1. INTRODUCTION 

The Yangtze River, which is dominated by the 
strongest monsoon climate conditions (Fig. 1a), delivers 
large volumes of water, chemicals and sediment from its 
headwater regions and tributaries to middle-lower reaches 
and East China Sea, not only significantly influencing 

sedimentary system evolution in its drainage basin, but 
also greatly affect ecological environment and human 
activities (Wang et al., 2017; Zhang et al., 2015). In addi-
tion, over 400 million people – 6.6% of the world’s popu-
lation – lived in the Yangtze River Basin with a catch-
ment of more than 1.8 × 106 km2 (Sun et al., 2016). Par-
ticularly, Wuhan area, as the biggest city located middle 
Yangtze River Basin, has hundreds of lakes and Yangtze 
River mainstream drained here, is of great significance to 
understand paleoclimate change and paleo-environment 
evolution.  
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The Holocene is the current geological epoch, and it 
has seen the growth and impacts of the human species 
worldwide, including all its written history, development 
of major civilisations, and overall significant transition 
toward urban living in the present. During this period, 
changes of the natural environment and climate play a 
key role in the development and progress of human civili-
sation. Thus, effects of Holocene climate change and geo-
environmental evolution on human have been received 
more and more attention (Zhou et al., 2005; Prokopenko 
et al., 2007; Wallinga, 2010; Ashley et al., 2011; Briner 
et al., 2016; Marks et al., 2017; Guo et al., 2018). Re-
cently, a high-resolution and accurate geochronological 
framework of flu-lacustrine sediments, which are im-
portant records of paleo-environment and paleoclimate, 
allows us to understand these phenomena better.  

Radiocarbon dating is widely used for lacustrine sed-
iment chronology determination (Long et al., 2011). 
However, 14C dating of such sediments could be prob-
lematic because they often suffer from contamination 
from sources of ‘old carbon’ (hard water reservoir effect) 
(Liu et al., 2009) and the reservoir effect (Wang et al., 
2007; Queiroz et al., 2018; Xu et al., 2018). In addition, 
lack of continuous and suitable dating materials also 
makes it a challenging work to obtain accurate chronolo-
gies of fluvial-lacustrine sediment by 14C dating. In near-
ly two decades, optically stimulated luminescence (OSL) 
dating had been widely applied to dating lake sediments 
in order to improve the 14C dating problems (English et 
al., 2001; Berger and Doran, 2001; Olley et al., 2004; 
Cupper, 2008; Madsen et al., 2008; Fan et al., 2010; Liu 
et al., 2009; Shen et al., 2015; Ozcelik, 2016; Hu et al., 
2017; Lehmann et al., 2017; Zhao et al., 2015; Ideker et 
al., 2017; May et al., 2018; Harning et al., 2018). 

In this study, we collected 20 samples from the 45 m 
long Holocene core HH-2017 (30°37’59.20” N, 
114°17’21.43” E) in middle Yangtze River Basin, Wuhan 
area, China for OSL dating, in order to establish high-
resolution chronology of flu-lacustrine sediment for bet-
ter understanding regional paleo-climatic changes and 
geo-environmental evolution.  

2. STUDYING AREA, CORING AND SAMPLING 

Wuhan area is located eastern Jianghan Basin, middle 
Yangtze River Basin, Fig. 1b. This region is dominated 
by the summer monsoon from June to September, which 
brings most of the moisture for the whole year. In winter, 
cold and wet continental air mass prevailed in the area. 
The mean annual temperature of Wuhan is between 
13.4°C and 18.5°C while the annual precipitation is about 
1300 mm (http://www.hbqx.gov.cn/news.action?id=6530). 
Subtropical monsoon climate and downland mound make 
Wuhan area composed of high-density river drainages 
and numerous lake systems, Fig. 1c. The water covers 1/4 
of the land area with more than 2117 km2, including  
471 km2 river channel and 868 km2 lacustrine coverage. 
As a consequence, Wuhan area widely developed 30~40 
m Holocene flu-lacustrine deposits.  

Considering of regional geomorphological/geological 
setting and human activities, in autumn field work of 
2017, a 45 m long core (114°17’21.43” E, 30°37’59.20” 
N, 26 m above sea level) is extracted from the left bank 
floodplain, which is 3 km far away from the Yangtze 
River, Fig. 1c. From bottom upwards the core, the depos-
its grain size become finer and finer from gravel to silt. It 
shows a typical flu-lacustrine depo-system and can be 

 
Fig. 1. Location of core HH-2017. a) and b) Wuhan area located in middle Yangtze River Basin is dominated by East Asian monsoon; c) map show-
ing hundreds of lakes and rivers developed in Wuhan area; core HH-2017 was drilled in left bank of Yangtze River. 
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divided into 11 layers according to variations in colour, 
texture and lithology, Fig. 2. Before 4.25 m, it is artificial 
backfill soil layer while no suitable materials for OSL 
dating after 38.55 m, thus, 20 samples were collected for 
OSL dating from 4.25 m to 38.55 m. In practical sam-
pling work, we cannot collect samples with an equal 
distance because of the unconsolidated formation and 
partly low core recovery rate, detailed information seen in 
Fig. 2 and Table 1. To avoid exposure to light, each 
columnar OSL dating sample were put into an algam-
made container just after drilling done.  

3. METHODS 

Quartz extraction and measurement techniques 
Quartz extraction and OSL measurement were con-

ducted in OSL Dating Laboratory, China University of 
Geosciences (Wuhan). In the laboratory, outermost sedi-
ment of each core OSL dating sample was scraped to 
avoid potential contamination inherited from drilling and 
sampling. Then, we scraped more outer possible light-
exposed materials used for dose rate and water content 
measurement. The left non-light-exposed materials in the 
middle part of the container were prepared for quartz 
extraction.  

The non-light-exposed materials were treated firstly 
with 30% H2O2 and 10% HCl to remove organic materi-
als and carbonates, respectively. For different grain size 
sedimentary layer, the 4~11 μm, 38~63 μm and 90~125 μm 
fractions were separated by wet sieving. Especially, the 

fine silt (4–11 μm) was obtained using sedimentation 
procedures based on Stokes’ Law (Lu et al., 2007). After 
that, on the one hand, the 4~11 μm and the 38~63 μm 
fractions were treated with H2SiF6 (38%) for about  
2 weeks to corrode feldspars, followed by 10% HCl to 
remove fluoride precipitates. On the other hand, sodium 
polytungstate was used to separate the 90~125 μm mate-
rials of the density ranging between 2.62 and 2.70 g/cm–3, 
and a density of 2.75 g/cm–3 heavy liquid was used to 
remove heavy minerals. Then the materials were treated 
with 40% HF for 40 min to remove feldspars and the part 
of grains affected by alpha particles and were treated with 
fluorosilicic acid (38%) for about 5 days and followed by 
10% HCl for 5 hours. Magnetic minerals of all samples 
were removed by magnetic selection. The purity of quartz 
grains was checked by IR (830 nm) stimulation to moni-
tor the presence of feldspar. In addition, X-ray diffraction 
(XRD) was also applied in order to confirm the lack of 
feldspar, and the results showed that the quartz content 
was between 98.7% and 100%. Any samples with obvi-
ous infrared stimulated luminescence (IRSL) signals were 
retreated with H2SiF6 to avoid De underestimated (Lai, 
2010). Finally, pure quartz sample of three grain size 
were washed and cleaned with distilled water, and dried 
at low temperature. The quartz grains were then mounted 
on the center part (with a diameter of ~0.5 cm) of stain-
less steel disks (with a diameter of 1 cm) using silicone oil.  

OSL measurement were made using an automated 
Risø TL/OSL-DA-20 reader equipped with blue diodes 
(λ=470 ± 5 nm) and IR laser diodes (λ=880 ± 60 nm). 

Table 1. Sample number and its sampling depth as well as environmental radioactivity and OSL dating results of HH-2017. 

Sample ID Depth  
(m) 

Dating grain  
size (μm) 

K  
(%) 

Th  
(ppm) 

U  
(ppm) 

Water  
content (%) 

No. of  
aliquots 

Dose rate 
(Gy/ka) 

Final De  
(Gy) 

OSL age  
(ka) 

HH-2017-01 4.25 4 ~ 11 2.52 ± 0.07 15.70 ± 0.42 2.94 ± 0.11 29 ± 5 11b 3.1 ± 0.2 2.6 ± 0.3 0.8 ± 0.1 
HH-2017-02 5.17 4 ~ 11 2.71 ± 0.08 15.00 ± 0.40 2.66 ± 0.10 27 ± 5 12b 3.3 ± 0.2 1.1 ± 0.1 0.4 ± 0.0 
HH-2017-03 6.25 4 ~ 11 2.45 ± 0.07 13.60 ± 0.38 3.32 ± 0.13 30 ± 5 12b 3.0 ± 0.2 2.5 ± 0.1 0.8 ± 0.1 
HH-2017-04 7.25 4 ~ 11 2.59 ± 0.08 15.60 ± 0.42 2.89 ± 0.11 35 ± 5 12b 2.8 ± 0.2 2.7 ± 0.0 1.0 ± 0.1 
HH-2017-05 8.28 4 ~ 11 2.23 ± 0.07 14.20 ± 0.38 2.40 ± 0.10 27 ± 5 12b 2.8 ± 0.2 2.2 ± 0.1 0.8 ± 0.1 
HH-2017-06 10.05 38 ~ 63 1.75 ± 0.06 13.80 ± 0.39 2.38 ± 0.10 35 ± 5 6a+11b 2.0 ± 0.1 8.0 ± 0.2 3.9 ± 0.2 
HH-2017-07 12.56 38 ~ 63 2.03 ± 0.06 11.40 ± 0.32 2.15 ± 0.09 26 ± 5 6a+12b 2.4 ± 0.2 12.6 ± 0.2 5.2 ± 0.4 
HH-2017-08 13.59 38 ~ 63 1.88 ± 0.06 12.30 ± 0.34 2.13 ± 0.09 26 ± 5 6a+12b 2. 4 ± 0.2 12.0 ± 0.3 5.1 ± 0.4 
HH-2017-09 14.24 38 ~ 63 2.07 ± 0.06 14.60 ± 0.39 2.40 ± 0.09 28 ± 5 6a+12b 2. 6 ± 0.2 12.5 ± 0.2 4.9 ± 0.4 
HH-2017-10 15.41 90 ~ 125 1.92 ± 0.06 10.70 ± 0.31 2.11 ± 0.09 30 ± 5 6a+12b 2.2 ± 0.2 14.0 ± 0.5 6.6 ± 0.5 
HH-2017-11 16.53 90 ~ 125 1.65 ± 0.05 8.50 ± 0.26 1.45 ± 0.07 24 ± 5 6a+12b 1.9 ± 0.1 12.1 ± 0.3 6.3 ± 0.5 
HH-2017-12 17.70 90 ~ 125 1.64 ± 0.05 7.90 ± 0.25 1.88 ± 0.08 25 ± 5 6a+12b 1.9 ± 0.1 11.5 ± 0.2 6.0 ± 0.4 
HH-2017-13 18.90 90 ~ 125 1.44 ± 0.05 12.90 ± 0.36 1.97 ± 0.09 22 ± 5 5a+12b 2.2 ± 0.2 15.3 ± 0.5 7.1 ± 0.5 
HH-2017-15 22.34 90 ~ 125 1.50 ± 0.05 10.00 ± 0.29 1.47 ± 0.07 21 ± 5 5a+12b 2.0 ± 0.1 11.9 ± 0.4 6.1 ± 0.5 
HH-2017-17 24.74 90 ~ 125 1.61 ± 0.05 11.00 ± 0.31 1.52 ± 0.07 24 ± 5 6a+11b 2.0 ± 0.1 13.9 ± 0.8 6.9 ± 0.6 
HH-2017-19 27.01 90 ~ 125 2.11 ± 0.06 6.84 ± 0.23 1.12 ± 0.06 27 ± 5 6a+12b 2.0 ± 0.2 16.0 ± 0.6 8.0 ± 0.7 
HH-2017-21 34.11 90 ~ 125 1.69 ± 0.06 6.53 ± 0.22 1.11 ± 0.06 17 ± 5 6a+12b 2.0 ± 0.2 16.1 ± 0.8 8.2 ± 0.7 
HH-2017-22 35.26 90 ~ 125 2.00 ± 0.06 13.50 ± 0.38 3.04 ± 0.12 21 ± 5 6a+12b 2. 9 ± 0.2 28.0 ± 1.0 10.0 ± 0.8 
HH-2017-23 35.95 90 ~ 125 1.90 ± 0.06 12.50 ± 0.35 2.17 ± 0.09 22 ± 5 6a+12b 2.6 ± 0.2 22.5 ± 0.6 8.9 ± 0.7 
HH-2017-25 38.55 90 ~ 125 2.25 ± 0.06 7.74 ± 0.25 1.40 ± 0.07 10 ± 5 6a+6b 2.8 ± 0.2 21.8 ± 0.9 7.9 ± 0.7 
 

a aliquot number used for SAR; b aliquot number used for SGC. 
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Fig. 2. Drilling information and profile sketches locating the stratigraphic sampling location for the OSL dating. Before 4.25 m, it is artificial backfill 
layer while it is gravel layer after 38.55 m; thus, 20 samples totally were collected for OSL dating from 4.25 to 38.55 m. 
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The luminescence was stimulated by blue LEDs at 130°C 
for 40 s, and detected using a 7.5 mm thick U-340 filter 
(detection window 275–390 nm) in front of the photo-
multiplier tube. 90% diode power was used. Irradiations 
were carried out using a 90Sr/90Y beta source installed in 
the Risø reader.  

A preheat plateau test and dose recovery test were 
conducted on sample HH-2017-12 to select a proper 
preheat temperature. The Des were tested under different 
preheat temperatures from 160 to 300°C with a 20°C 
interval, and the results show a De plateau at 240~280°C 
(Fig. 3a). A dose recovery test (Murray and Wintle, 
2003) were conducted with different preheat temperatures 
and the ratios of recovered dose to a given dose  
(16 Gy) showed the preheat temperature of 240 and 
280°C are better (Fig. 3b). The stable recycling ratio 
(Fig. 3c) and relative lower thermal transfer ratio (Fig. 
3d) of 260°C further suggested the preheat temperature of 
260°C for 10 s for natural and regenerative doses, and 
cut-heat was at 220°C for 10 s for test doses for quartz. 
Signals of the first 0.64 s stimulation were integrated for 
growth curve construction after background subtraction 
(last 10 seconds). The concentrations of U, Th and K 
were measured by neutron activation analysis. The cos-
mic-ray dose rate was estimated for each sample as a 
function of depth, altitude and geo-magnetic latitude 
(Prescott and Hutton, 1994). The dose rates are shown in 
Table 1.  

Equivalent dose determination 
In the current study, the combination of the Single Al-

iquot Regeneration (SAR) protocol (Murray and Wintle, 
2000) and the Standard Growth Curve (SGC) method 
(Roberts and Duller, 2004; Lai, 2006; Lai et al., 2007; Yu 
and Lai, 2012, 2014), named as SAR-SGC method (Lai 
ad Ou, 2013), was employed for De determination. In this 
method, for each sample, 6–12 aliquots were measured 
using SAR protocol to get 6–12 growth curves, which 
were then averaged to construct an SGC for this individu-
al sample, e.g., the SGC of sample HH-2017-10 and HH-
2017-23, Fig. 4a and 4b. Then more aliquots were meas-
ured to obtain the values of test-dose corrected natural 
signals only, and each of the values could be matched in 
the SGC to obtain a De. For each sample, the final De is 
the average of the SAR Des and SGC Des. The OSL de-
cay curves (Fig. 4c and 4d) decaying to the level of the 
background within ca. 2 s demonstrate that these signals 
were mainly from the fast components. Thus, the samples 
were suitable for OSL dating. 
  

 
Fig. 3. Luminescence characteristics of sample HH-2017-12 under 
different preheat temperature. a) preheat plateau tests; b) dose recov-
ery test; c) recycling ratio; and d) thermo transfer ratio. 
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4. RESULTS AND DISCUSSIONS 

OSL dating results 
OSL dating results are presented in Table 1 and Fig. 

5. The analytical results show that all these ages range 
from 0.8 ± 0.1 to 7.9 ± 0.7 ka, and most of them follow 
the stratigraphic sequence within the normal range of 
error. Disordered OSL dating may be caused by special 
transport process of flu-lacustrine sediment, especially of 
“partly re-erosion and re-deposition” in large river depo-
system (Kawakami et al., 2004). The borehole drilled 
nearby mainstream of the Yangtze River is sensitive to 
the climate and geo-environment change. The sediments 
could be of fluvial or lacustrine origin under normal con-
ditions, but also may be derived from extreme climate 
events, such as occasionally short-term flooding. The 
reversed age to depth might be caused by the quick depo-
sition process, or ages cannot distinguish the deposition 
time due to the large error in age calculation. But it’s 

worth noting that the age inversions around 20 cm  
(~0.8 ka) and 37 cm (~0.4 ka) core depth may be caused 
by partly exposure of dating materials. This is because 
that the dose rate of sample HH-2017-02 is equal to its 
adjunct samples, but the final De value is half of its ad-
junct samples. With the similar sampling and preparation 
process, we proposed that only partly dating materials 
exposed to light could reduce the final De value, then the 
younger OSL dating age. However, the results obtained 
in this study highlight the implication in the application 
of the OSL dating to flu-lacustrine deposits. The obtained 
ages also show an increase with depth while the experi-
ments examining luminescence properties are all con-
sistent with the reliable application of the SAR-SGC 
protocols. In addition, it should be noted that Fig. 5 also 
exhibits the sediment of HH-2017 mainly deposited in two 
periods, the first period is from 7. 9 ± 0.7 to 5.2 ± 0.4 ka, 
while the second period is between 3.9 ± 0.3 and 
0.8 ± 0.2 ka. There is an obvious slow deposition period 
from 5.2 ± 0.4 to 3.9 ± 0.3 ka.  

 
Fig. 4. Growth and decay curves of sample HH-2017-10 and HH-2017-23. 
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Widespread lake sediment hiatus of the Wuhan area 
in middle Holocene 

Yao et al. (2019) carried out multi AMS 14C dating in 
various cores in middle and lower reaches of the Yangtze 
River Basin. Their result combined with previous studies 
results showed that there was widespread hiatus of sedi-
ment during 6~3 ka in lakes from both sides of the middle 
and lower reaches of the Yangtze River in Holocene 
(Boyle et al., 1999; Yang et al., 2004; Yao et al., 2006; 
Gu et al., 2008; Yao et al., 2015). Based on the recon-
structed water level data of the Yangtze River and sea 
level, the authors proposed that during 6~3 ka, water 
level of the Yangtze River was relatively stable, although 
sediments were accumulated in lakes, they were easy to 
be eroded and transported due to relatively high elevation 
of water-sediment and the impact of Yangtze River, re-
sulting in discontinuity of deposition. One of the possible 
reasons for lake sediment hiatus during this period is that 
the inflow of sediment in the upper reaches of the Yang-
tze River decreases and natural levees are easily de-
stroyed, resulting in the deduction of blocking effect on 
lakes from both sides of the Yangtze River and making 
lake sediments easily to be eroded into the river (Yao et 
al., 2019). As located at middle Yangtze River reaches, 
our OSL dating results of HH-2017 are partly corre-
sponding with the results of previous studies, which 
demonstrated that our OSL dating results was reliable 
rather than problematic in experiment and age calculation.  

Relationship between lithology change and climate 
change  

Changes in sedimentary lithology and apparent accu-
mulation rate indicate the depositional model change. In 
millennial-scale, only a minor change showed in tectonic 
activity and terrain slope, which hardly resulted in such a 
quickly deposition rate and sedimentary environment 
change in Wuhan area. Thus, we propose that Holocene 
climate change and increasing human activity contributes 
to these phenomena. 

At about 21.6 m of HH-2017, the sediment grain size 
changes from fine sand to silty sand. OSL dating results 
show that the sedimentary layer deposits between 6.4 and 
5.5 ka, which is closely related to Asian summer mon-
soon weakened period recorded by stalagmite of Heshang 
cave, Hubei province and Dongge cave, Guizhou prov-
ince, China from 6.2 to 5.4 ka. (Cosford et al., 2008; Li et 
al., 2014; Wang et al., 2014; Yun et al., 2015). The 
paleo-hydrological conditions since 13 ka. in this region 
based on the synthesis of 4 proxies extracted from the 
Dajiuhu peatland and above two cave stalagmites show 
that period of 6.4–5.5 ka is a long-term drier period (Xie 
et al., 2013, 2015; Zhang et al., 2016). However, it is 
notable that in the middle Yangtze River region, most 
drier periods occurred at the warm conditions, different 
from the cold-drought association in North China. Thus, 
the climate variation changes the rainfall capacity and 
surface flow, then the sediment grain size. In addition, 
high resolution paleoclimate records from pollen, peat, 
ice core and ocean sediments also indicate that there is a 
significant climate change during 6~5 ka, which is also 
recorded in the HH-2017 lithology change (Qin et al., 
2012; Huang et al., 2012; Li et al., 2014; Zhang et al., 
2017). 

During 5.2~3.9 ka, there is a slow sediment accumu-
lation in HH-2017. Various stalagmite record in the mid-
dle Yangtze River region also indicates that the region is 
drier at about 4.2 ka (Xie et al., 2015). Rainfall reduction 
makes both surface flow erosion capacity and river carry-
ing capacity decreased, then less sediment contribution 
and low depositing rate in this region. In addition, histor-
ical documentation also indicates that there is great cli-
mate variability between approximately 5~4 ka all over 
the world (Mayewski et al., 2004; Daley et al., 2010; 
Bringué and Rochon, 2012; Litt et al., 2012; Zhu et al., 
2017; Huang et al., 2018; Wang et al., 2018; Zhang et al., 
2018).  

Relationship between lithology change and enhanced 
human activity 

Since 1 ka, rapidly increasing population in middle 
Yangtze River needs more land to produce food. During 
the Song dynasty (960–1279 a A.D.) and Ming dynasty 
(1368–1644 a A.D.), the perennial heavy incursions of 
the northern nomads resulting in the economic centre 
moved from north China to middle Yangtze River, and 

 
Fig. 5. Plot of OSL ages against the depth of core HH-2017. 
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then Wuhan area became the economic centre of the 
middle reaches of the Yangtze River with its preponder-
ant amphibious transportation (Wang, 1990; Shi, 1991). 
In addition, Zhang and Zhang (2010) reported that the 
crop loss was caused by the weather cooling in north 
China also contributed to the migration of population and 
economic centre. Agriculture and deforestation are ex-
pected to increase the sediment yield, but reservoirs can 
trap much of this sediment before it reaches the Yangtze 
River. Consequently, enhanced human activity of re-
claiming farmland from lakes make lots of artificial lakes 
in this area (Zhou and Mi, 1998; Sun et al., 2016). Many 
studies have recognised that human activities can signifi-
cantly change the erosion-deposition patterns and rates 
(Bayon et al., 2012; Hu et al., 2013; He et al., 2014; 
Reusser et al., 2015; Wan et al., 2015). Thus, lacustrine 
sediment widely developed in Wuhan area after 1 ka.  

5. CONCLUSIONS  

Luminescence characteristics, including preheat tem-
perature, lab dose recovery, OSL decay and growth 
curve, and ages distribution show that the OSL signal of 
flu-lacustrine sediments from core HH-2017 was reset 
before burial and that OSL dating could have considera-
ble potential for improving the chronology of Holocene 
flu-lacustrine sediments in Wuhan area. 

The good agreement between the OSL ages, strati-
graphic sequence, and climate background suggests that 
OSL dating method could establish significant chronolo-
gy framework for fluvial sediment in large river drainage, 
which lack of suitable materials for 14C dating. In addi-
tion, relatively high resolution OSL ages of HH-2017 
would provide a powerful chronology for reconstructing 
paleoclimate change and paleo-environment evolution in 
the Wuhan area, China.  
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