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1. Introduction

Fluvio-aeolian environments in the European Sand 
Belt (ESB) experienced significant changes during the 
last glacial-interglacial transition (Koster, 2005). Such 
sedimentary successions exhibit cyclical periods of cooling 
and warming that manifest themselves in two different ways. 

Cold periods resulted in increased sediment influx, leading 
to the accumulation of fluvial and aeolian sediments. Rapid 
aeolian accumulation, in particular, buried existing soil 
levels (Kasse and Aalbersberg, 2019). During warm periods, 
rivers incised and formed terrace systems (Vandenberghe et 
al., 1994), while aeolian coversands and dunes affected soil-
forming processes (Sokołowski et al. 2022). Fluvio-aeolian 
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Abstract
The study examines sedimentology, stratigraphy, and the impact of wildfires on aeolian and soil processes during 
the Late Glacial Termination in the Korzeniew site, central Poland. The site, within a parabolic dune’s central and 
lee-slope area, presents stacked aeolian sand units intermixed with six charcoal-enriched palaeosols. Thirteen opti-
cally stimulated luminescence (OSL) dates on quartz and six radiocarbon dates establish the chronological frame-
work, dating deposition processes. Initial aeolian sand deposition occurred towards the Late Pleniglacial’s end. Cli-
mate amelioration during the Bølling interstadial led to permafrost thaw and gleyic soil formation, later overlain by 
migrating parabolic dunes from the older Allerød interstadial. Wildfires, influenced by vegetation cover, deposited 
charcoals on the dune’s lee slope. These charcoals underwent pedogenic reworking amid episodes of aeolian sand 
deposition during the Allerød interstadial and Younger Dryas, stabilizing in the earliest Holocene. Wildfires signifi-
cantly impacted local vegetation development and aeolian activity. Despite the warmth of the Allerød interstadial, 
increased fires correlated with expanding pine forests and their heightened fire susceptibility. Short-term climate 
shifts likely destabilized vegetation, fostering fire occurrences during the Allerød interstadial.
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successions are ideal for radiocarbon (14C)- and lumines-
cence-dating methods, allowing good chronologically con-
straint paleoenvironmental reconstructions in the period of 
time we are interested in.

Aeolian cover sands and aeolian dunes in the cen-
tral part of the ESB consist mainly of quartz with limited 
admixture of feldspars and other silicates as well as reveal 
good sorting of usually well-rounded material (Woronko  
et al., 2015; Rychel et al., 2018). This makes this type of 
sediment difficult for plants to colonise and vulnerable to 
any change in environmental parameters. It leads to the 
destruction of the vegetation cover that creates the condi-
tions for the development of soils and favours the re-activa-
tion of aeolian processes and the deposition of sandy cov-
ers on pre-existing soils (Kappler et al., 2019).

The large amount of charcoal of various sizes in the Late 
Glacial palaeosols indicates the large role of fires in the for-
mation of vegetation cover and soils on the dune surface 
(Kaiser et al., 2009). The centennial–millennial frequency 
of wildfires varied during the Last Glacial Termination 
(LGT) and Early Holocene. It is related to the climate oscil-
lations and changes in plant cover (Tolksdorf et al., 2014; 
Tsakiridou et al., 2020) as well as human activity (since 
the development of farming activities i.e., 7000 years ago) 
(Doyen et al., 2015).

Luminescence dating, predominantly using optically 
stimulated luminescence (OSL) on quartz grains, has 
greatly improved stratigraphic schemes by dating exten-
sively exposed fluvial and aeolian deposits (Kaiser et al., 
2009; Moska et al., 2020, 2022). It is rare to encounter a 
situation where the luminescence and radiocarbon methods 
create a perfectly interlocking chronostratigraphy for dune 
profiles, as is the case, for example, with the Zborowskie 

site (Moska et al., 2023). Cross-checking the results of OSL 
and radiocarbon dating allows the creation of more reliable 
stratigraphic schemes. Therefore, for the reconstruction of 
environmental changes recorded in fluvio-aeolian succes-
sion, profiles with multiple soil and organic horizons play 
a particular role.

One of the key sites where aeolian complex is interca-
lated with palaeosol and organic layers enriched in char-
coals is the Korzeniew site, central Poland. The objectives 
of the present study are (i) to reconstruct chronology of the 
studied succession on the basis of OSL/14C dating results 
comparison; (ii) to establish a frequency of wildfires and 
their role in soil-forming processes; and (iii) to correlate 
chronology of wildfires with Late Glacial climate changes 
in the ESB.

2. Study Area and Regional Setting

The Korzeniew site is located in the eastern Wielkopolska 
region, central Poland (Fig. 1). It is situated in a complex 
parabolic dune, located on the interfluves of two small 
river (the Czarna Struga and Powa Rivers) tributaries of 
the Prosna River and the Warta River and approximately 
25 km to the south from the Last Glacial Maximum (LGM) 
(Fig. 1). The outcrop is in the lee-side of the dune and is 10 
m in the highest point, 60 m long and 40 wide. The detailed 
studies were performed in the eastern part of the exposure 
in two profiles (Fig. 2).

The thickness of the Quaternary sediments is approxi-
mately 50 m. They are underlain by Miocene clay sedi-
ments. The Quaternary unit consists mainly of glacial tills 
of the Middle Pleistocene age (Trzmiel, 1995). During the 

Fig 1. �Location map of Korzeniew site based on DEM (source: www.geoportal.gov.pl) with the aerial view of the investigated profile. DEM, digital 
elevation model.
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LGM, glaciofluvial sand with gravels were deposited in 
front of an ice-sheet. In the same period, the extraglacial 
Prosna River and its tributaries deposited 5–10 m thick 
sandy-silty covers in the northerly direction. In the last 
glacial termination (LGT), two fluvial terraces were formed 
due to the Warta River incision and its tributaries (Kozarski 
et al., 1988; Dzieduszyńska et al., 2014). The investigated 
aeolian cover lies directly above the Late Weichselian flu-
vial complex. The fluvial terraces and glaciofluvial covers 
were the main source of the aeolian sands in the investi-
gated dune complex.

3. Materials and Methods

3.1. Lithological Analysis
The studied outcrop was analysed in two parts. In the cen-
tral part, where aeolian sediments reach maximum thick-
ness (approximately 10 m) only general lithofacial analysis 
and palaeotransport direction was measured. Detailed stud-
ies were conducted in the eastern part of the outcrop on 
the lee-side of the dune foreset. In 2 profiles, 13 samples 
for OSL dating and 6 samples for radiocarbon dating were 
collected (Fig. 3). For aeolian deposits, the methodology of 
lithofacial analysis proposed by Zieliński (2016) was used.

3.2. Palaeopedological Analysis
The lithological analyses were complemented by pedologi-
cal observations. Soil horizons were identified along with 

their morphological features. Symbols of soil horizons 
were used in accordance with the international standards  
(Jahn et al., 2006). The pedological characteristics are 
complemented by laboratory spectrophotometric analyses 
performed on dried samples and sieved on a 2 mm sieve. 
Samples taken in the field at an interval of 3 cm were used 
for these analyses. Measurements were made on a SFX50 
spectrophotometer produced by 3Color company, allowing 
measurements at an observation angle of 10° and a D65 
norm-light calibration. The parameters measured were 
luminance (L*), redness (a*) and yellowness (b*). Low 
L* values correspond to an increased presence of black 
particles, which should be associated with A-horizon and/or 
the presence of dark additives (e.g., charcoals). The redness 
a* is commonly interpreted as reflecting weathering inten-
sity (Yang and Ding, 2003). The parameter b*/a* reflects 
changes in the relationship between two parameters, while 
the R index to indicate the haematite in soil was calculated 
via formula (Barrón and Torrent, 1986). In order to generate 
true colours, reflecting the natural colours of the samples,  
R tuning was performed as proposed by Sprafke et al. 
(2020). Maximum tuning was achieved in the fourth step. 
This result (Rmax) was used in the visualisation of the 
analysis results. In addition, for the horizons with extreme 
tuned colours, their values were calculated according to the 
Munsell colour chart (2° observation angle, C light type), 
simplifying the designation (hue, value, chroma) to classic 
codes. The latest software Color QC was used in the colour 
analyses.

Fig 2. �Samples of pine charcoals separated for radiocarbon dating.
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Fig 3. � Results of lithofacial analysis and 14C/OSL dating results in the Korzeniew site. CS, coarse sand; OSL, optically stimulated luminescence.

3.3. OSL
Luminescence dating samples were extracted from the most 
representative sections of a pristine vertical outcrop using 
thin-walled steel pipes. The luminescence measurements 
were conducted at the Gliwice luminescence dating labo-
ratory (Moska et al., 2021). For the determination of dose 
rates, high-resolution gamma spectrometry was employed, 
utilising an HPGe detector manufactured by Canberra  
(This approach determined the U, Th and K content in the 
samples following the laboratory protocol (Moska et al., 
2021). Dose rates were computed through an online dose 
rate calculator (Tudyka et al., 2023), which incorporates 

the latest conversion factors. It was assumed that the av-
erage water content for nearly all samples was (5 ± 2%). 
However, for two specific samples, GdTL-4602 and GdTL-
4603, the measured water content was approximately 15%. 
Consequently, a value of 15 ± 3% was utilised for the final 
calculations for these samples. All essential data for dose 
rate calculations are detailed in Table 2.

For OSL measurements, coarse quartz grains (125–200 
μm) were isolated from sediment samples through a stan-
dard process involving treatment with 20% hydrochloric 
acid (HCl) and 20% hydrogen peroxide (H2O2). These 
quartz grains were then subjected to sieving and density 



GEOCHRONOMETRIA �| THE ROLE AND FREQUENCY OF WILDFIRES

104

separation using sodium polytungstate solutions, resulting 
in grains with densities ranging from 2.62 g/cm3 to 2.75 g/
cm3. The final step involved etching the grains with con-
centrated hydrofluoric acid (HF).

Automated Risø TL/OSL DA-20 readers equipped 
with a calibrated 90Sr/90Y beta source were utilised for 
OSL measurements. This source delivered approximately 
6.0  Gy/min to the grains at the sample position, with a 
6 mm Hoya U-340 filter used during OSL measurements. 
The determination of equivalent doses employed the sin-
gle-aliquot regenerative-dose (SAR) protocol (Murray 
and Wintle, 2000). The final equivalent dose (De) values 
for all samples were calculated using the Central Age 
Model (CAM, Galbraith et al., 1999) through the R pack-
age ‘Luminescence’ (Kreutzer et al., 2020). The result-
ing age distributions are displayed in Fig.  4, illustrating 
relative probability density functions (Berger, 2010). The 
overdispersion parameter for all samples remained well 
below 20%, with unimodal distributions indicating that the 
tested material represents a group of well-bleached quartz 
(Moska, 2019), allowing the application of the CAM model 
for the final equivalent dose calculations.

3.4. Radiocarbon Dating Procedure
Six samples were collected for radiocarbon dating. For all 
investigated samples, about 100 g of sediments that contain 

dozens of tiny pieces (about 1 mm or less) of charcoal were 
taken. In the Gliwice Radiocarbon Laboratory, it was pos-
sible to extract several small pieces of charcoal from this 
sediment, which were enough to create a graphite target for 
dating. Charcoal fragments for radiocarbon dating were se-
lected from each post-fire level. Before charcoal extraction, 
all samples were analysed using optical microscope with 
attached high-quality digital camera, which made it possi-
ble to carry out a preliminary characterization of the organ-
ic material used in the 14C dates. As expected, all samples 
contained well-preserved charcoal material (see Fig. 2).

For all samples, typical chemical pre-treatment based 
on the AAA (acid-alkali-acid) method was used before 
radiocarbon dating. The AAA pre-treatment involved rins-
ing the samples in hot HCl (0.5 M, 85°C, 1  h) followed 
by an NaOH (0.5 M, 85°C, 1 h) bath and final HCl wash 
(0.5 M, 85°C, 15 min.). Between treatments, the samples 
were rinsed with demineralised water. In the radiocarbon 
accelerator mass spectrometry (AMS) technique, the 14C 
concentration was measured in graphite prepared from the 
carbon contained in the sample. For this purpose, a line for 
preparation of graphite targets in the Gliwice 14C laboratory 
was used. All 14C results were calibrated using the OxCal 
program (Bronk Ramsey, 2009) and the IntCal120 calibra-
tion curve (Reimer et al., 2020). The results are presented 
in Table 1.

Fig 4. �(A) – Sandy–silty rhytmite with horizontal and wave lamination of the unit 1; (B) – inclined cross-stratification (Si) of the dune foreset (U-2) in 
the central part of the dune complex; (C) – Distal slope of the dune foreset with palaeosols (black arrows) and remnants after present-day root 
structures (red arrows); (D) – the composite palaeosol complex with four layers of charcoals (black arrows). Notice finger-like structure of the 
palaeosol below.
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Table 1. Radiocarbon dating results before and after calibration.

Nr. Korzeniew Laboratory No. Sampling depth (cm) Age conventional 14C (BP) Age calibrated 14C (BP)
Prob. 68.2%

Age cal 14C (BP)
Prob. 95.4%

Age calibrated 14C (BP)
median

1 KOR_01 GdA-7147.1.1 120 11,090 ± 55 13,095–12,930 13,105–12,840 13,005 ± 65

2 KOR_02 GdA-7148.1.1 200 11,070 ± 55 13,085–12,925 13,100–12,840 12,995 ± 70

3 KOR_03 GdA-7149.1.1 225 11,475 ± 60 13,435–13,300 13,475–13,185 13,355 ± 65

4 KOR_04 GdA-7150.1.1 250 11,640 ± 60 13,590–13,445 13,605–13,350 13,500 ± 70

5 KOR_05 GdA-7151.1.1 270 11,680 ± 55 13,595–13,480 13,745–13,415 13,540 ± 65

6 KOR_06 GdA-7152.1.1 310 11,760 ± 55 13,745–13,510 13,760–13,500 13,620 ± 80

4. Results

4.1. Lithology
Two depositional units were distinguished based on the 
lithofacial analysis (Fig. 3). The lower unit (U-1) consists 
of fine-grained sands with horizontally or translatent strati-
fication and silty sands with wave and horizontally lami-
nation (Fig. 4A). The lower boundary was uncovered and 
available thickness was 1 m. Sediments in the upper part 
contain precipitates of Fe and Mn hydroxides and bear 
traces of transformation by soil processes. They also show 
traces of gleying.

Upper unit (U-2) is composed of fine- to coarse-grained 
sands with inclined stratification in large scale with reacti-
vation surfaces (Figs. 3 and 4B). The unit is 10 m thick in 
the central part and to 2 m thick in the lee-side of the dune. 
The orientation of the inclined layers is in the SE direction 
in the bottom part of unit and E – in the upper part. A defla-
tion surface has been documented in the middle part of the 
series, which separates lithofacies of different orientations 
(Fig. 3). On the distal slope of the dune, there are seven 
palaeosols separated by sandy layers (Fig. 4C). The pal-
aeosols are enriched with charcoals.

4.2. Palaeosols and Radiocarbon Dating Results
Seven soil units were identified on the lee-slope of the ana-
lysed dune (Fig. 4C). Relatively low values of the L* index 
(Fig. 5) reflect the presence of buried humic horizons (Ab), 
while high values are typical of sands without soil changes 
and fossil eluvial soil horizons (Eb). Similarly, the param-
eter b* (yellowness) reflects the lithology of the sequence. 
Sand samples and enrichment horizons have relatively high 
b* values, while humic horizons (Ab) have significantly 
lower values. Digitally measured Munsell colours for the 
sand layers are generally yellow (2Y), and yellow-red for 
the pedogenically altered horizons (YR), but with different 
hue, value and chroma.

Among these palaeosols, six soils have a simple A–C 
horizon structure. Sharply discernible from the neighbour-
ing layers, the thin (~10 to 20 cm) humic horizons are the 
only horizons with evidence of soil changes. These hori-
zons are rich in chaotically distributed charcoals with 
diameters often exceeding 1  mm. They are accompanied 
by biogenic channels filled with lighter and darker mate-
rial, linked by adjacent layers of sand or other soil horizons.

Only the third soil from the top of the exposure has a 
much better developed profile: 3Ab-3Eb-3Bsb-3Cb with a 

Fig 5. � Spectrophotometric characteristic of the sand–palaeosol sequence in the Korzeniew site.
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total thickness of 50–60 cm (Figs. 4D and 5). The soil has 
a complete profile and the boundaries between horizons 
are usually transitional. The A horizon has a heterogeneous 
internal structure, showing layering and enrichment in iron 
compounds – these features are clearly visible in the abrupt 
changes in the values of all spectrophotometric parameters 
(Fig. 5). The diagnostic fossil endopodones are: eluvial (E) 
and enrichment (B) with thickness, respectively, of 6 cm 
and 25 cm. The upper horizon is characterised by signifi-
cant depletion, while the lower is enriched with iron com-
pounds. In spectrophotometric analyses, this is seen above 
all in the decrease (E horizon) and subsequent increase (B) 
of the R index, as well as the a* parameter (reddening). 
Changes in these parameters also correspond to changes 
in Munsell colours – the entire soil sequence is yellow-red 
(YR), including the E horizon (9YR6/2), which viewed 
macroscopically (field description) and in computer R tun-
ing has reached an almost white colour.

In the simple palaeosols, a large number of well-
preserved charcoals (Fig. 2) could be distinguished, indi-
cating a high likelihood that this material represents post-
fire horizons. These four distinct sediment layers contain 
charcoal fragments resulting from wildfires or human-
induced fires (Fig. 4D). The obtained results are presented 
in Table 1.

The two youngest results represent the same soil hori-
zon, which underwent stratification. Both dating results 
GdA-7147.1.1 and GdA-7148.1.1 show astonishing agree-
ment at 13,005  ±  65 calBP and 12,995  ±  70 calBP. The 
highest layer is considered to be a layer that was reworked 
from the same fire event as the layer below. This layer was 
deposited on a soil cover with active podzolization soil pro-
cesses. The subsequent post-fire layers in the central part 

are represented by the results GdA-7149.1.1 at 13,355 ± 65 
calBP, GdA-7150.1.1 at 13,500  ±  70 calBP, and GdA-
7151.1.1 at 13,540 ± 65 calBP. In our opinion, the horizon 
represented by the result GdA-7149.1.1 is an independent 
event, while the horizons below may represent the same 
past fire event. From a statistical point of view, both results 
are similar, and their presence can be explained in a similar 
way to the two highest layers.

No charcoal fragments could be extracted from the low-
est palaeosol (8Ab), so we have no results for that layer. 
This palaeosol has a completely different character, as 
evidenced by its increased Fe and Mn hydroxides content, 
which is evident in the abruptly higher R index value rela-
tive to the adjacent sand layers (Fig. 5).

4.3. OSL Dating Results
Samples for OSL dating were collected from two closely 
spaced profiles (Fig. 3) in order to capture sediments from 
both the dune slope and the main part of the dune, as well 
as the underlying aeolian sands and silts. This approach en-
abled the determination of the sequential deposition of units, 
primarily in a horizontal direction. All 13 samples taken for 
OSL dating represent distinctive chronostratigraphic layers. 
The sampling strategy was carefully designed to establish 
the best possible correlation between OSL chronostratigra-
phy and radiocarbon dating. The obtained results are pre-
sented in Table 2. Additionally, all probability distributions 
for the equivalent dose are depicted in Fig. 6.

Dose distributions have unimodal character, suggest-
ing that the quartz bleaching process during redeposi-
tion occurred correctly (Fig. 6). From the perspective of 
luminescence stratigraphy, we can observe that the two 
youngest results for the last aeolian phase, 11.6 ± 0.6 ka 

Table 2. �All-important data for investigated luminescence samples: code, depth, radionuclide concentration, dose rate, equivalent dose (CAM model) 
and final age.

Lab. Code Sample ID Sampling depth (cm) U (Bq/kg) Th (Bq/kg) K (Bq/kg) Dose rate (Gy/ka) Equivalent dose (Gy) OSL age (ka)

GdTL-4593 KOR_1 75 3.5 ± 0.2 3.5 ± 0.3 145 ± 11 0.81 ± 0.04 9.4 ± 0.2 11.6 ± 0.6

GdTL-4594 KOR_2 125 4.5 ± 0.2 4.0 ± 0.4 172 ± 13 0.91 ± 0.04 10.7 ± 0.2 11.8 ± 0.6

GdTL-4595 KOR_3 190 3.7 ± 0.2 3.2 ± 0.3 167 ± 13 0.85 ± 0.04 10.5 ± 0.2 12.4 ± 0.6

GdTL-4596 KOR_4 225 3.1 ± 0.2 2.9 ± 0.3 174 ± 13 0.85 ± 0.04 11.4 ± 0.2 13.5 ± 0.7

GdTL-4597 KOR_5 260 5.2 ± 0.2 4.0 ± 0.3 183 ± 14 0.92 ± 0.05 12.4 ± 0.2 13.5 ± 0.7

GdTL-4598 KOR_6 300 4.9 ± 0.2 4.1 ± 0.3 183 ± 14 0.91 ± 0.04 12.2 ± 0.4 13.5 ± 0.7

GdTL-4599 KOR_7 300 2.8 ± 0.2 2.7 ± 0.3 148 ± 12 0.75 ± 0.04 10.1 ± 0.3 13.6 ± 0.8

GdTL-4600 KOR_8 400 3.3 ± 0.2 3.1 ± 0.3 167 ± 13 0.80 ± 0.04 10.8 ± 0.3 13.6 ± 0.7

GdTL-4601 KOR_9 500 4.9 ± 0.2 3.7 ± 0.3 175 ± 14 0.85 ± 0.04 11.4 ± 0.3 13.5 ± 0.7

GdTL-4602 KOR_10 575 8.8 ± 0.3 6.2 ± 0.4 249 ± 19 1.07 ± 0.05 14.1 ± 0.4 13.2 ± 0.7

GdTL-4603 KOR_11 600 7.4 ± 0.3 6.0 ± 0.3 241 ± 18 1.02 ± 0.05 14.4 ± 0.5 14.2 ± 0.7

GdTL-4604 KOR_12 630 3.9 ± 0.2 3.6 ± 0.3 154 ± 12 0.75 ± 0.04 12.3 ± 0.2 16.5 ± 0.8

GdTL-4605 KOR_13 660 4.2 ± 0.2 3.3 ± 0.3 152 ± 12 0.74 ± 0.04 12.3 ± 0.2 16.7 ± 0.9

CAM, Central Age Model; OSL, optically stimulated luminescence.
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(GdTL-4593) and 11.8  ±  0.6 ka (GdTL-4594), are very 
similar and correspond to the final part of the Younger 
Dryas period. Sample GdTL-4595 with a result of 
12.4 ± 0.6 ka appears slightly underestimated compared 
to GdA-7148.1.1 (12,995  ±  70 calBP). The next seven 
OSL results, from GdTL-4596 to GdTL-4602, are sur-
prisingly convergent, indicating a time range from 13.2 
ka to 13.6 ka and clearly indicating that the main aeolian 
part of the Korzeniew profile originated in the Allerød 
interstadial period. Sample GdTL-4602 with the result 

of 13.2 ± 0.7 ka looks slightly younger due to different 
dose rates, which is approximately 20% higher than the 
other samples. Similar situation is observed for sample 
GdTL-4603, but, in this case, the final result 14.2 ± 0.7 
ka may be associated with Bølling interstadial. The last 
two samples, GdTL-4604 and GdTL-4605, with results 
of 16.5  ±  0.8 ka and 16.7  ±  0.9 ka, respectively, come 
from the fluvio-aeolian part of the profile and correspond 
to the final part of the Late Pleniglacial (so-called Oldest 
Dryas) period.

Fig 6. �Dose distributions for all investigated samples.

Fig 7. �Age model of depositional and soil processes in the Korzeniew site. 18O/16O ratio after Rasmussen et al. (2014). OSL, optically stimulated 
luminescence.
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5. Discussion

The investigated profile in the Korzeniew site contains re-
markably interesting aeolian succession enriched in char-
coal layers, presumably of post-fire origin (Van Hoesel et 
al., 2012). Cross-checking of radiocarbon and OSL dating 
results reveals a consistent chronological model and sug-
gests that we are dealing with at least four independent 
fire events occurring during the Allerød interstadial pe-
riod (Fig. 7).

The initial aeolian deposition represents U-1 unit. 
Rhytmically stratified sandy and silty sediments were 
deposited under changeable conditions. Sandy lithofa-
cies (Sh, Src(T)) were deposited by migration of ripples 
or transport in near-ground suspension on a dry surface. 
Deposition of silty lithofacies occurred under windless or 
low velocity wind conditions (Fm, FSh) and on the wet 
surface (SFw) as the adhesive ripplemarks (Ruegg, 1983; 
Schwan, 1988; Lea, 1990). Alternating deposition of sandy 
and silty lithofacies is the result of seasonal changes: sand 
– during the autumn/winter; and silt – during spring melt 
season (Schwan, 1986; Kasse, 2002). Such deposition took 
place within the aeolian sand sheet on impermeable back-
ground (Koster, 1988; Goździk, 2000). Results of OSL 
dating from U-1 unit (GdTL-4604 and GdTL-4605, with 
results of 16.5  ±  0.8 ka and 16.7  ±  0.9 ka) suggest that 
the aeolian sand sheet formed in the final part of the Late 
Pleniglacial (ca. 16 ka, Fig. 7).

Reduction of available capacity of sandy-silty mate-
rial and relative improvement of environmental condi-
tions led to initial pedogenic processes and formation of 
the first soil. Absence of organic material limited possibil-
ity of direct dating of such processes. We can assume that 
the palaeosol formed under harsh conditions between the 
very end of the Late Pleniglacial and first part of the Late 
Glacial period. OSL dating result obtained directly from 
the palaeosol refers to the Bølling interstadial 14.2 ± 0.7 ka 
(GdTL-4603), but it should be noted that this palaeosol is 
a natural boundary between aeration and saturation zones 
of the first ground-water level. We assume that the vertical 
migration of fine-grained material (particularly clay min-
erals) and precipitation of Fe–Mn hydro-oxides played an 
important role. Nevertheless, weak pedogenic processes are 
visible. Such morphological position of the soil (at the top 
of aeolian sand cover and beneath the migrating dune fore-
set) is often for palaeosols of the Bølling age (Kaiser et al., 
2009; Moska et al., 2022). The relatively poor soil forma-
tion from Bølling interstadial may be due to erosion of its 
top (humus) layer or to severe waterlogging, resulting from 
the permafrost still present in the subsoil and reduced water 
conduction in the ground. This would explain a certain 
degree of gleyic character of this layer. Stratigraphically, 
the lowermost palaeosol might be correlated with Lower 

Loamy Bed known from western part of the ESB, where 
gleyic phenomena were identified as well (Vandenberghe 
et al., 2013; Kasse et al., 2018).

The main deposition in the site is represented by 
U-2 unit. Lithofacies Si formed mainly due to the slide of 
sand avalanches on the leeward slope of a moving dune. 
The deflation surface within the unit indicates two stages 
of the form development. The small lateral extent of the 
lithofacies and the narrow distribution of structural direc-
tions in the bottom part suggest transverse dune migration 
from NW to SE direction. The larger transverse extent of 
the lithofacies in the upper part of the unit shows blow-
ing of sedimentary sand across the slope. Such conditions 
occur on the lee slope of parabolic dune (Hunter and Rubin, 
1983; Zieliński, 2016). This interpretation is also indicated 
by wider spread of directional elements. Such deposition 
demonstrates the development of parabolic dune, which 
covered the partially blown existing form, with the pre-
dominance of the western wind direction. This palaeotrans-
port direction prevailed in the western and central parts of 
the ESB throughout the entire Late Glacial (Kasse et al., 
2018; Pincé et al., 2022) and is also reported from northern 
Europe (Alexanderson and Bernhardson, 2019).

The cross-checking of OSL and radiocarbon dating 
results from the U-2 unit reveals their consistency and 
correct chronology of depositional processes (Fig. 7). 
Deposition of migrating dune front was relatively fast 
and took place in the early phase of the Allerød inter-
stadial (GI-1-c2). Similar results were obtained from the 
palaeosol complex enriched in charcoals (13 620  ±  80 
calBP, GdA-7152). We assume that the charcoals pro-
duced by wildfire are more or less synchronous with 
soil processes on the lee-slope of the dune. The follow-
ing alternating aeolian sands and palaeosols enriched in 
charcoals resulted from fires that induced removal of 
vegetation and reactivation of dune-forming processes 
(Kappler et al., 2019). At least partial removal of plant 
cover led to release of exposed sandy material and its 
deposition on the lee-slope of the dune (Sankey et al., 
2009). An intensification of wildfires is noted from the 
Allerød–Younger Dryas transition in the central-western 
part of the ESB (Tolksdorf et al., 2014). This is linked to 
the expansion of Pinus sylvestris in the late part of the 
Allerød interstadial seen in lacustrine sediment profiles 
in central Poland and other parts of central and western 
Europe (Kaiser et al., 2009; Bos et al., 2018; Mirosław-
Grabowska et al., 2020).

Radiocarbon dating results allow to estimate chro-
nology of local wildfires. At least four fires took place 
between 13 620 ± 80 calBP (GdA-7152) and 12 995 ± 70 
calBP (GdA-7148). The result obtained from the first pal-
aeosol (13 005  ±  65 calBP, GdA-7147) suggests at least 
partial redeposition of charcoals. Nevertheless, an increase 
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of fires number is reported also from the central and west-
ern parts of the ESB and related to expansion and removal 
of pine during the Late Glacial climate oscillations, par-
ticularly in the Allerød–Younger Dryas transition (Kaiser 
et al., 2009; van Hoesel et al., 2012). All the radiocarbon 
results fall within a narrow range of about 600 years on the 
stratigraphic scale. The vertical succession of the obtained 
radiocarbon dating results reveals that upper six palaeosols 
represent the Allerød interstadial (Fig. 7). On the other 
hand, the luminescence results also position this period 
in the Allerød interstadial, but due to the resolution of the 
results (radiocarbon uncertainties are an order of magni-
tude smaller), it is not possible to create such a precise 
and detailed chronology. However, it is significant that the 
obtained OSL results align well with the radiocarbon chro-
nology, which, in our opinion, best reflects the sequence 
of events over time (Fig. 7). Achieving such radiocarbon 
chronology was possible due to the use of the best organic 
material – charcoals.

Vegetation played a crucial role in stabilising dunes, so 
events like wildfires drastically changed the environmental 
conditions on dunes. In the Korzeniew site, the fire pro-
cesses are not correlated with climate deterioration, typi-
cal for the Allerød–Younger Dryas threshold (Jankowski, 
2012; Hošek et al., 2017). Typically, fires contribute to 
increased aeolian activity. It may be surprising to observe 
at least four independent post-fire layers in one location 
within a period of just 600 years. Fire layers in dunes can 
provide information about past vegetation types, fuel avail-
ability and climatic conditions. Changes in fire activity and 
frequency over time can reflect shifts in vegetation com-
munities, moisture levels or human influence on the land-
scape (Dotterweich et al., 2013).

Despite being considered a period of significant cli-
mate warming, the Allerød interstadial also had at least two 
short-lived colder events (Rasmussen et al., 2014). In the 
case of the described profile, we can clearly state that the 
Allerød is characterised by the most intense phase of dune 
formation, shedding new light on the chronostratigraphy of 
dunes in this area.

The youngest part of the Korzeniew profile can be cor-
related with the Younger Dryas period, based on the lumi-
nescence results 11.6 ± 0.6 ka (GdTL-4593) and 11.8 ± 0.6 

ka (GdTL-4594). This aeolian phase also contains mate-
rial from the fire event described by the radiocarbon result 
13,005 ± 65 calBP (GdA-7147.1.1), but in this case, it is 
much more likely that these charcoals were reworked from 
the same fire event as the layer below. Therefore, it is easy 
to explain their significantly older age than the neighbour-
ing luminescence dating results.

6. Conclusions

Investigated succession in the Korzeniew site led to re-
constructing sedimentary and palaeoenvironmental pro-
cesses. Such reconstruction is enhanced by cross-checking 
radiocarbon-OSL dating results. The research carried out 
revealed that:

•• Simultaneous using of two independent dating methods 
and dense sampling is appropriate to construct a de-
tailed chronostratigraphic model.

•• Successfully reconstructed sequence showing silt-
sand aeolian deposition from the very end of the Late 
Pleniglacial gave way to dune deposition with palaeo-
sols within the Allerød interstadial and Younger Dryas.

•• Wildfires controlled the development of the vegetation 
cover on and in the immediate vicinity of the dunes and 
the activity of aeolian processes.

•• Despite the relatively warm climatic conditions during 
the Allerød interstadial, an increased number of fires 
were observed during this period. This is linked to the 
expansion of pine trees and their high fire potential.

•• Short-termed climate oscillations in the Allerød intersta-
dial might have destabilised vegetation conditions and 
facilitated the development of fires on the one hand and 
facilitated the re-colonisation of dune areas by plants on 
the other.
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