General MathematicsVol. 31, No. 2 (2023), 80—84

DOI: 10.2478/gm-2023-0013

$ sciendo

Variance and information potential of some random
variables !

Gabriela Motronea, Alin Pepenar

Abstract

We investigate random variables for which the variance and the information
potential satisfy a preservation law.

2010 Mathematics Subject Classification: 94A17, 60E05.
Key words and phrases: Random variable, variance, information potential,
preservation law.

1 Introduction

The theory of information potential and its applications is extensively presented
in [3]. Recent results and applications can be found in [1], [2], [4]. These papers
are concerned, in particular, with a preservation law involving information potential
and variance. More precisely, let Y, be a random variable with probability density
function p(t, z) depending on a parameter x. Let V(x) be the corresponding variance
of Y, and S(z) the associated information potential

S(z) == / p2(t, z)dt.
R
For certain random variables Y, the following result holds:

(1) V(z)S?(z) = constant with respect to z.
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This shows, in particular, that V(z) and S(x) are asynchronous functions. Some
examples are presented in [1] and [2]. See also [4, Remark 10].

In Section 2 we present a general method for constructing random variables
which satisfy (1). Section 3 is devoted to an example where (1) is not satisfied, but
V(z) and S(x) are asynchronous.

2 Random variables obeying the preservation law

Let X be a continuous random variable having the probability density function
1

©(s), s € R. For x >0 let Y, := —X.
x

Theorem 1 The associated variances and information potentials satisfy
(2) VI[Y,]S?[Yz] = V[X]S?[X], = > 0.
In particular, V[Y;]S?[Y,] does not depend on x.

Proof. Let p(t,x) := xp(xt), t € R, x > 0. Then, for y € R we have

/y p(t, z)dt = /y xp(xt)dt = /fry xgo(s)ﬁ = /wy ©o(s)ds

—00 —00 —00 T —00

=P(X <zy)=P(Y, <y).

It follows that the probability density function of Y, is p(¢, z).
Now

S[Yz] :/Rp2(t, :U)dt:/Rx2cp2(xt)dt
:/$2902(s)d8:x/LpQ(s)ds:xS[X].
R R

T

1 1

Moreover, V[Y;] = < V[X], and so V[Y,]S?[V,] = S V[X]22S5?[X] = V[X]S?[X]
x x

and the proof of (2) is complete.

Example 1 Leta >0, 8> —1, A >0,
o +1 1o
B,—As T /B =
(3) o(s) = as’e < ( 5 )) Ao, 5> 0,
0,s <0.

If ¢ is the probability density function of X, and x > 0, then

-1
az?t (T p+l tﬁe*)‘(zt)a)\%, t>0,
p(t,x) =

(6]
0,t<0
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1
1s the probability density function of Y, = —X. So, according to Theorem 1 we have

x
VI[Y,]S?%[Y.] = V[X]S?[X]. This function p(t,z) can be obtained from [1, (2.2)] if
we take there a(x) = A\x®. So, by a direct calculation or by using [1, (2.3)] we get

VI[Y.)S?[Ya] = (aT%)QF2 (25“> o <6+1>

() r ()]

Remark 1 If we choose f = a — 1, (3) reduces to the Weibull probability density
function.

Example 2 (see also [1, Example 2.2]) If n € N and

p(s) =4 n!

then

0,t <0,

and consequently
2
9 _n+1(2n
VI[Y2]S7[Ya] = 42"+1<n> :

Example 3 Forn € N, n > 2, let us consider the random variable X having the
Student density of probability

r <n + 1) o
2 s2 2
o(8) = ——n% ( ) , s €R.
Vi ()
1\? 1

f(5) r(+3)

and S(X) = 2 .
Vvnrl <§> 'n+1)
1

The probability density function of Y, = ;X 18

Then V(X) = —3
n—

F(n+1) _ntl
2 22 2
_x< ) teR, o> 0.
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According to Theorem 1 we have

VI[Y,]S%[Ys] = ] <n-2H>4F <n+ ;>2

w(n—2)T (g)4 T(n +1)%

3 Asynchronous variance and information potential

In this section we consider the vector x = (a, u,v,0) where a € [0,1], p € R, v € R,
€ (0,00). Let Z, be the random variable with probability density function

p(t,z) = a\}% (aexp <—<t ;U’;)Q)) +(1—a)exp <_<t2—05>2> .

Theorem 2 The variance V[Z,] is increasing with respect to (u—v)? and increasing
with respect to o. The information potential S[Z;] is decreasing in (u — v)* and
decreasing in o.

Proof. By direct calculation we find that

/ tp(t,z)dt = ap+ (1 —a)v,

R

/ t*p(t, 2)dt = 0 + ap® + (1 — a)v?,
R

(4) V(Z: = Var|Z,) = o* + a(l — a)(u — v)2

Moreover,

SZ,] = /R (¢, @)t

= 27302 /R [GQ exp (— (t ;2“)2> +(1—a)%exp (— U ;2y)2>

+ 2a(1 — a) exp (— <t— “;V)g — W)] dt.

Therefore,

(5) S[Z.] = 201\/7? [a2 + (1= a)? + 2a(1 — a) exp <—(“”)2>} .

Using (4) and (5) we conclude the proof.
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