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Variance and information potential of some random
variables 1
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Abstract

We investigate random variables for which the variance and the information
potential satisfy a preservation law.
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1 Introduction

The theory of information potential and its applications is extensively presented
in [3]. Recent results and applications can be found in [1], [2], [4]. These papers
are concerned, in particular, with a preservation law involving information potential
and variance. More precisely, let Yx be a random variable with probability density
function p(t, x) depending on a parameter x. Let V (x) be the corresponding variance
of Yx and S(x) the associated information potential

S(x) :=

∫
R
p2(t, x)dt.

For certain random variables Yx the following result holds:

(1) V (x)S2(x) = constant with respect to x.
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This shows, in particular, that V (x) and S(x) are asynchronous functions. Some
examples are presented in [1] and [2]. See also [4, Remark 10].

In Section 2 we present a general method for constructing random variables
which satisfy (1). Section 3 is devoted to an example where (1) is not satisfied, but
V (x) and S(x) are asynchronous.

2 Random variables obeying the preservation law

Let X be a continuous random variable having the probability density function

φ(s), s ∈ R. For x > 0 let Yx :=
1

x
X.

Theorem 1 The associated variances and information potentials satisfy

(2) V [Yx]S
2[Yx] = V [X]S2[X], x > 0.

In particular, V [Yx]S
2[Yx] does not depend on x.

Proof. Let p(t, x) := xφ(xt), t ∈ R, x > 0. Then, for y ∈ R we have∫ y

−∞
p(t, x)dt =

∫ y

−∞
xφ(xt)dt =

∫ xy

−∞
xφ(s)

ds

x
=

∫ xy

−∞
φ(s)ds

= P (X < xy) = P (Yx < y).

It follows that the probability density function of Yx is p(t, x).
Now

S[Yx] =

∫
R
p2(t, x)dt =

∫
R
x2φ2(xt)dt

=

∫
R
x2φ2(s)

ds

x
= x

∫
R
φ2(s)ds = xS[X].

Moreover, V [Yx] =
1

x2
V [X], and so V [Yx]S

2[Yx] =
1

x2
V [X]x2S2[X] = V [X]S2[X]

and the proof of (2) is complete.

Example 1 Let α > 0, β > −1, λ > 0,

(3) φ(s) =

 αsβe−λsα
(
Γ

(
β + 1

α

))−1

λ
β+1
α , s > 0,

0, s ≤ 0.

If φ is the probability density function of X, and x > 0, then

p(t, x) =

 αxβ+1

(
Γ

(
β + 1

α

))−1

tβe−λ(xt)αλ
β+1
α , t > 0,

0, t ≤ 0
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is the probability density function of Yx =
1

x
X. So, according to Theorem 1 we have

V [Yx]S
2[Yx] = V [X]S2[X]. This function p(t, x) can be obtained from [1, (2.2)] if

we take there a(x) := λxα. So, by a direct calculation or by using [1, (2.3)] we get

V [Yx]S
2[Yx] =

(
α2−

2β+1
α

)2
Γ2

(
2β + 1

α

)
Γ−4

(
β + 1

α

)
·
[
Γ

(
β + 1

α

)
Γ

(
β + 3

α

)
− Γ2

(
β + 2

α

)]
,

Remark 1 If we choose β = α − 1, (3) reduces to the Weibull probability density
function.

Example 2 (see also [1, Example 2.2]) If n ∈ N and

φ(s) =


sn

n!
e−s, s > 0,

0, s ≤ 0,

then

p(t, x) =


xn+1

n!
tne−xt, t > 0,

0, t ≤ 0,

and consequently

V [Yx]S
2[Yx] =

n+ 1

42n+1

(
2n

n

)2

.

Example 3 For n ∈ N, n > 2, let us consider the random variable X having the
Student density of probability

φ(s) =

Γ

(
n+ 1

2

)
√
nπΓ

(n
2

) (1 + s2

n

)−n+1
2

, s ∈ R.

Then V (X) =
n

n− 2
and S(X) =

Γ

(
n+ 1

2

)2

Γ

(
n+

1

2

)
√
nπΓ

(n
2

)2
Γ(n+ 1)

.

The probability density function of Yx =
1

x
X is

p(t, x) =

Γ

(
n+ 1

2

)
√
nπΓ

(n
2

)x(1 + x2t2

n

)−n+1
2

, t ∈ R, x > 0.
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According to Theorem 1 we have

V [Yx]S
2[Yx] =

Γ

(
n+ 1

2

)4

Γ

(
n+

1

2

)2

π(n− 2)Γ
(n
2

)4
Γ(n+ 1)2

.

3 Asynchronous variance and information potential

In this section we consider the vector x = (a, µ, ν, σ) where a ∈ [0, 1], µ ∈ R, ν ∈ R,
σ ∈ (0,∞). Let Zx be the random variable with probability density function

p(t, x) :=
1

σ
√
2π

(
a exp

(
−(t− µ)2

2σ2

))
+ (1− a) exp

(
−(t− ν)2

2σ2

)
.

Theorem 2 The variance V [Zx] is increasing with respect to (µ−ν)2 and increasing
with respect to σ. The information potential S[Zx] is decreasing in (µ − ν)2 and
decreasing in σ.

Proof. By direct calculation we find that∫
R
tp(t, x)dt = aµ+ (1− a)ν,∫

R
t2p(t, x)dt = σ2 + aµ2 + (1− a)ν2,

(4) V [Zx] = V ar[Zx] = σ2 + a(1− a)(µ− ν)2.

Moreover,

S[Zx] =

∫
R
p2(t, x)dt

=
1

2πσ2

∫
R

[
a2 exp

(
−(t− µ)2

σ2

)
+ (1− a)2 exp

(
−(t− ν)2

σ2

)
+ 2a(1− a) exp

(
−
(
t− µ+ ν

2

)2

− (µ− ν)2

4

)]
dt.

Therefore,

(5) S[Zx] =
1

2σ
√
π

[
a2 + (1− a)2 + 2a(1− a) exp

(
−(µ− ν)2

4

)]
.

Using (4) and (5) we conclude the proof.
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