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Abstract
The Pseudo-Hyperbolic Telegraph partial differential equation (PHTPDE) based on the Caputo fractional derivative is
investigated in this paper. The modified double Laplace transform method (MDLTM) is constructed for the proposed
model. The MDLTM was used to obtain the analytic solution for the pseudo-hyperbolic telegraph equation of fractional
order defined by the Caputo derivative. The proposed method is a highly effective analytical method for the fractional-
order pseudo-hyperbolic telegraph equation. A test problem was presented as an example. Based on the results, it is
clear that this method is more convenient and produces an analytic solution in fewer steps than other methods that require
more steps to have an identical analytical solution. This paper claims to provide an analytic solution to the fractional
order pseudohyperbolic telegraph equation order using the MDLTM. An analytical solution leads to an exact, closed-form
solution that can be expressed in mathematical functions or known operations. Obtaining analytic solutions to PDEs is
often challenging, especially for fractional order equations, making this achievement noteworthy.

Keywords: Pseudo-hyperbolic telegraph equation, caputo fractional derivative, modified double Laplace transform method, analytical
solution.
AMS 2020 codes: 35R11; 35C10; 35J05; 35A22.

1 Introduction

The study of integrals and differentials of non-integer order, as well as their applications, is known as frac-
tional calculus. Fractional models outperform classical models in terms of accuracy and efficiency. Furthermore,
noninteger derivative operators have been discovered to be crucial in understanding physical occurrences [1–5].
The advantages of fractional calculus have been investigated in various fields, including engineering, mechanics,
control theory, medicine, biology, and seismology [6–9]. The PHTPDE based on the Caputo derivative is a high-
order partial differential equation with mixed partial derivative. The proposed model is well known as a math-
ematical physics equation, which has an exhaustive range of applications in areas like longitudinal vibrations,
nerve conduction, plasma physics, and many other physical phenomena. The behaviour of the pseudo-hyperbolic
equation has been covered in several articles, including those that discuss the existence and uniqueness of solu-
tion [10], analytical and approximate solutions [11], numerical computations and stability estimates [12], and the
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presence and nonexistence of solution for Cauchy type issues with pseudo-hyperbolic equation [13]. In recent
years, many efficient techniques have been used to obtain approximate and analytical solutions for a fractional-
order partial differential equation, including the double Laplace transform method [14], theta-method [15], re-
producing kernel function and CrankNicholson difference method [16], finite element method [17], Laplace de-
composition method [18], fractional sub equation method [19], MDLTM [20], Fibonacci wavelet method [21].
The authors in [22] explored the investigation of the finite time stability (FTS) of multi-state neutral fractional
order systems when subjected to impulsive perturbations and state delays. The non-local fractional differential
equation of the Sobolev type with impulsive conditions was addressed in [23], and the existence and unique-
ness of mild solutions using the Banach fixed point technique and analytic semigroup were examined in every
approximate solution. Then, for approximative solutions, the Faedo-Galerkin approximation was employed to
establish specific convergence outcomes. The existence and uniqueness of solutions to the neutral functional
sequential integro-differential equations with Caputo fractional derivative on the time scales T-Cauchy problem
were examined by the researchers in [24]. The researchers in [25,26] utilized the q-homotopy analysis transform
technique to derive some solutions for several important models arising in real world problems.

In contrast, academics have extensively employed the double Laplace transform method, a powerful method
for solving the fractional-order partial differential equation, to address a wide range of issues, including the
authors in [20] arriving at the analytical solution to the partial differential equation of fractional order using the
double conformable Laplace transform method. The time-dependent (FSPPPD) Equation with Caputo Deriva-
tive was solved analytically and approximately using the (DLDM) and the (FDM), which were both suggested
by the authors in [27]. And the time-fractional wave equation was analytically solved by the authors in [28] us-
ing the double Laplace transform technique. The method considered in this study, a MDLTM, differs from other
approaches frequently used to solve fractional order differential equations, such as the Fourier transform, the
Laplace transform, and other numerical methods, in a number of ways. The modified double Laplace transform
method is a revolutionary strategy that has several advantages. It is more practical and takes fewer stages to
provide an analytical solution than existing approaches that need more steps to achieve the same result. In this
paper, we consider the following fractional order Pseudo-Hyperbolic Telegraph equation (PHTE) [29] based on
the Caputo fractional derivative

utt(x, t)+Dα
t u(x, t)+u(x, t)−λutxx(x, t)−uxx(x, t) = f (x, t), (1)

0 < x < L, t > 0, λ > 0, 0 < α ≤ 1,

u(x,0) = h(x), ut(x,0) = g(x), 0 ≤ x ≤ L,

u(0, t) = u(L, t) = 0, t ≥ 0,

where Dα
t u(x, t) is Caputo fractional derivative [30], that is defined as follow

Dαu(x, t)
∂ tα

= Dα
t u(x, t) =

1
Γ(n−α)

ˆ t

0

1
(t − p)n−α−1

∂ nu(p,x)
∂ pα

d p,(n−1 < α ≤ n), (2)

if α = n ∈ N, then we can write as:

Dα
t u(x, t) =

Dαu(x, t)
∂ tα

=
Dnu(x, t)

∂ tn .

The numerical solutions for the suggested model (1) were derived by [31] using the Dufort Frankel difference
scheme approach. Since the Caputo derivative [30] is the most frequently utilized derivative characteristic in the
literature on fractional analysis, we adopted it in our model. The authors in [29] employed the explicit finite
difference technique to solve the model (1). Additionally, they developed a first-order difference technique
to investigate the stability analysis and obtained the approximate solutions of the given issue. To obtain the
analytical solution to PHTPDE based on the Caputo fractional derivative of α order and 0 < α ≤ 1, this research
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article implements an efficient analytical technique called MDLTM to solve the proposed model analytically,
and this method is incredibly effective because it generates an accurate solution in relatively few steps than other
approaches that need more steps.

This research paper is organized as follows: section 2 gives background information. Section 3 provides
the general solution of fractional order PHTPDE defined by the Caputo derivative by the MDLTM. Section 4
presents the applications of MDLTM. Via section 5, the conclusion is given.

2 Basic concept

In this section, we define a few terms and give some fundamental details about the double Laplace Decom-
position Method.

Definition 1. In the positive quadrant of the xt-plane, the function u(x, t) as a function of two variables is defined.
In [32], the double Laplace transform for the function u(x, t) is specified as follows:

LxLt{u(x, t)}= ū(s, p) =
ˆ

∞

0

ˆ
∞

0
e−px−stu(x, t)dxdt (3)

whenever the integral is present the numbers p and s are both complex numbers.

From this definition, we can thus deduce:

LxLt{u(x)g(t)}= ū(p)ḡ(s) = Lx{u(x)}Lt{g(t)} (4)

Definition 2. The complex double integral formula is used to define the inverse double Laplace transform
L−1

x L−1
t {ū(s, p)}= u(x, t), as in [33]:

L−1
x L−1

t {ū(s, p)}= u(x, t) =
1

2iπ

[ˆ c+i∞

c−i∞
epxd p

ˆ d+i∞

d−i∞
est ū(s, p)ds

]
(5)

where c and d are appropriate real constants, and ū(s, p) must be an analytical function for each p and s in the
area denoted by the inequalities Re(p)≥ c and Re(s)≥ d.

The double Laplace transform formula in [27] is used to transform the partial derivatives of any integer order.
LxLt

{
∂ nu(x,t)

∂xn

}
= pnū(s, p)−∑

n−1
i=0 pn−1−iLt

{
∂ iu(0,t)

∂xi

}
LxLt

{
∂ ku(x,t)

∂ tk

}
= skū(s, p)−∑

k−1
j=0 sn−1−iLx

{
∂ ju(x,0)

∂x j

}
LxLt

{
∂ k+nu(x,t)

∂xn∂ tk

}
=

pnsk
[
ū(s, p)−∑

n−1
i=0 pn−1−iLt

{
∂ iu(0,t)

∂xi

}
−∑

k−1
j=0 sn−1− jLx

{
∂ ju(x,0)

∂x j

}
+∑

n−1
i=0 ∑

k−1
j=0 p−1−is−1− jLx

{
∂ i+ ju(0,0)

∂xi+ j

}]
.

Definition 3. According to [27], the double Laplace transform formula for Caputo fractional derivative (2) is
defined as

LxLt

{
Dαu(x, t)

∂ tα

}
= sα ū(s, p)−

n−1

∑
k=0

sα−1−kLx

{
Dku(0,x)

∂ tk

}
. (6)

Definition 4. In [30], the gamma function is defined as

Γ(z) =
ˆ

∞

0
e−t tz−1dt, Re(z)> 0. (7)
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3 The projected scheme

In order to solve fractional-order PHTE in the Caputo sense, this section develops the key concept of the
double Laplace decomposition approach for the proposed problem.

For this purpose, we examine the fractional-order PHTE (1) in the following form

utt(x, t) = λutxx(x, t)−Dα
t u(x, t)+uxx(x, t)−u(x, t)+ f (x, t), (8)

which is 0 < x < L, t > 0 and also subjected to the initial and boundary conditions

u(0,x) = h(x), ut(x,0) = g(x), (9)

where 0 ≤ x ≤ L and also
u(0, t) = u(L, t) = 0, (10)

where t ≥ 0. Here λ > 0 and Dα
t u(x, t) is Caputo fractional derivative of order 0 < α ≤ 1, while f (x, t) is

the given function. To get the general solution of equation (8), firstly we utilize double Laplace transform to
equation (8), we obtain

s2ū(s, p)− sū(0, p)− ūt(0, p) = LxLt {λutxx(x, t)−Dα
t u(x, t)+uxx(x, t)−u(x, t)}+ f̄ (s, p), (11)

where f̄ (s, p) = LxLt{ f (x, t)}. After that, by applying a single Laplace transform to equations equation (9)
and equation (10), we get

ū(0, p) = h̄(p),

ūt(0, p) = ḡ(p),

ū(s,0) = ū(s,L) = 0, 0 ≤ x ≤ L, t ≥ 0.

(12)

by substituting formula (12) into formula (11) and simplifying, we obtain the following formula

ū(s, p) =
1
s2

[
LxLt {λutxx(x, t)−Dα

t u(x, t)+uxx(x, t)−u(x, t)}+ f̄ (s, p)+ sh̄(p)+ ḡ(p)
]
. (13)

When we apply the inverse double Laplace transform for equation (13), yields

u(x, t) = L−1
x L−1

t
1
s2 {LxLt {λutxx(x, t)−Dα

t u(x, t)+uxx(x, t)−u(x, t)}}

+L−1
x L−1

t

{
1
s2 f̄ (s, p)+

1
s

h̄(p)+
1
s2 ḡ(p)

}
.

(14)

The general solutions to equation (13), can be expressed as an infinite series, as shown below

u(x, t) =
∞

∑
n=0

un(x, t). (15)

Consequently, equation (13) becomes

∞

∑
n=0

un(x, t) = L−1
x L−1

t

{
1
s2 LxLt

{
λ

∂ 3

∂x2∂ t

∞

∑
n=0

un(x, t)+
∂ 2

∂x2

∞

∑
n=0

un(x, t)−
Dαu(x, t)

∂ tα

∞

∑
n=0

un(x, t)−
∞

∑
n=0

un(x, t)

}}

+L−1
x L−1

t

{
1
s2 f̄ (s, p)+

1
s

h̄(p)+
1
s2 ḡ(p)

}
.

(16)
The general solution of equation (8) is described as the following formulas:
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u0(x, t) =L−1
x L−1

t

{
1
s2 f̄ (s, p)+

1
s

h̄(p)+
1
s2 ḡ(p)

}
, (17)

and

un+1(x, t) = L−1
x L−1

t

{
1
s2 LxLt

{
λ

∂ 3

∂x2∂ t

∞

∑
n=0

un(x, t)+
∂ 2

∂x2

∞

∑
n=0

un(x, t)−
Dαu(x, t)

∂ tα

∞

∑
n=0

un(x, t)

−
∞

∑
n=0

un(x, t)

}}
,n ≥ 0.

(18)

We suppose that each part on the right side of (18) has an inverse double Laplace transform.

4 Applications of MDLTM

In this section, we provide an illustration and applicability of how to solve the fractional-order PHTE using
the provided approach. We consider the following fractional-order PHTE [29], as

utt(x, t) = λutxx(x, t)−Dα
t u(x, t)+uxx(x, t)−u(x, t)+

(
2+

2t2−α

Γ(3−α)
+2λ t +2

(
t2 +1

))
sin(x), (19)

where 0 ≤ x ≤ π, 0 ≤ t ≤ 1,λ > 0, 0 < α ≤ 1 subject to the initial and boundary conditions

u(x,0) = sin(x), ut(x,0) = 0, 0 ≤ x ≤ π (20)

and also
u(0, t) = u(π, t) = 0, t ≥ 0. (21)

Taking the MDLTM to both sides of (19) and by using the initial conditions (20) and simplifying, we get

ū(s, p) = LxLt{u(x, t)}

=

[
1
s
+

2
s3 +

2
s5−α

+
2λ

s4 +
4
s5 +

2
s3

]
1

p2 +1

+
1
s2 LxLt {λutxx(x, t)−Dα

t u(x, t)+uxx(x, t)−u(x, t)} .

(22)

Equation (22), when transformed using the inverse double Laplace method, yields

u(x, t) =
(
1+2t2 +

2
Γ(5−α)

t4−α +
λ

3
t3 +

1
6

t4
)

sin(x)

+L−1
x L−1

t

{
1
s2 LxLt {λutxx(x, t)−Dα

t u(x, t)+uxx(x, t)−u(x, t)}
}
.

(23)

When the decomposition series is applied to equation (23) for u(x, t), then we have

∞

∑
n=0

un(x, t) = ( +2t2 +
2

Γ(5−α)
t4−α +

λ

3
t3 +

1
6

t4
)

sin(x)

+L−1
x L−1

t

{
1
s2 LxLt

{
λ

∂ 3

∂x2∂ t

∞

∑
n=0

un(x, t)+
∂ 2

∂x2

∞

∑
n=0

un(x, t)−
Dαu(x, t)

∂ tα

∞

∑
n=0

un(x, t)

−
∞

∑
n=0

un(x, t)

}}
.

(24)
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The following recursive relationship can be deduced from equation (24)

u0(x, t) =
(

1+2t2 +
2

Γ(5−α)
t4−α +

λ

3
t3 +

1
6

t4
)

sin(x) (25)

un+1(x, t) = L−1
x L−1

t

{
1
s2 LxLt

{
λ

∂ 3

∂x2∂ t

∞

∑
n=0

un(x, t)+
∂ 2

∂x2

∞

∑
n=0

un(x, t)−
Dαu(x, t)

∂ tα

∞

∑
n=0

un(x, t)

−
∞

∑
n=0

un(x, t)

}}
,n ≥ 0.

(26)

From equation (26), we may get the following formula

u1(x, t) =−
(

2
Γ(5−α)

t4−α +
2

Γ(7−2α)
t6−2α +

4λ

Γ(6−α)
t5−α +

8
Γ(7−α)

t6−α + t2 +
1
3

t4 +
λ

30
t5 +

1
90

t6

+
2λ

3
t3 +

λ 2

12
t4 +

λ

10
t5
)

sin(x)

u2(x, t) =
(

6λ

Γ(6−α)
t5−α +

6λ

Γ(8−2α)
t7−2α +

6λ 2

Γ(7−α)
t6−α +

32λ

Γ(8−α)
t7−α +

λ

3
t3 +

16λ

120
t5 +

λ 2

36
t6

+
56λ

Γ(8)
t7 +

λ 2

6
t4 +

λ 3

60
t5 +

12
Γ(7−α)

t6−α +
12

Γ(9−2α)
t8−2α +

24
Γ(9−α)

t8−α +
1
6

t4 +
16

Γ(7)
t6

+
16

Γ(9)
t8 +

2
Γ(7−2α)

t6−2α +
2

Γ(9−3α)
t8−3α

)
sin(x),

and so forth. The general solution of equation (26) can be expressed as an infinite series. As a result, the
desired analytical solution is

u(x, t) =
(
t2 +1

)
sin(x). (27)

Fig. 1 3D simulation of the exact solution of equation (19) for 0 ≤ x ≤ π,0 ≤ t ≤ 1,λ > 0 and 0 ≤ α ≤ 1.
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Fig. 2 3D simulation of the analytic solution of equation (19) for 0 ≤ x ≤ π,0 ≤ t ≤ 1,λ > 0 and α = 0.01.

Fig. 3 3D simulation of the analytic solution of equation (19) for 0 ≤ x ≤ π,0 ≤ t ≤ 1,λ > 0 and α = 0.5.

5 Conclusion

The fractional order PHTPDE based on the Caputo fractional derivative of order was considered in this study.
The general solution to the proposed problem was examined utilizing the MDLT method. As an application, a
test example was given. The MDLT method was applied to obtain the analytical solution. The acquired result
showed that this method is incredibly efficient because we build an analytic solution in only a few steps, while
other methods require more steps to achieve the same result. In conclusion, this paper presented an important
contribution by proposing an analytic solution to the fractional order pseudo-hyperbolic telegraph equation using
the modified double Laplace transform method. The obtained solution provides an exact, closed-form expres-
sion that can be expressed in mathematical functions or known operations, offering valuable insights into the
behaviour of the equation. The significance of this achievement lies in the challenging nature of obtaining an-
alytic solutions for fractional-order equations, making the proposed method noteworthy. By demonstrating the
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Fig. 4 3D simulation of the analytic solution of equation (19) for 0 ≤ x ≤ π,0 ≤ t ≤ 1,λ > 0 and α = 0.99.

effectiveness of the MDLTM, the paper opens up new possibilities in order to solve similar types of equations
in mathematical physics and engineering. By implementing the Modified Predictor-Corrector method for the
fractional order pseudo-hyperbolic telegraph equation, researchers can obtain accurate numerical solutions that
complement the analytic solutions obtained through the MDLTM. This would enable the exploration of complex
phenomena, such as wave propagation, signal transmission, or diffusion processes, where numerical simulations
are essential for capturing detailed behaviour and dynamics.
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